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Nonlinear quantum stochastic resonance
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We investigate quantum stochastic resonaf@8&R) in the periodically driven spin-boson system with
Ohmic dissipation. For the special case % of the Ohmic coupling strength we present exact QSR results. For
arbitrary Ohmic coupling, the amplitude and the phase of the nonlinear response function vs temperature are
studied in a vast regime of temperatures and frequencies. It encompasses a dissipative-damitateeht
tunneling regime, occurring at “high” temperatures and adiabatic driving, as wetloasrenttunneling
regimes, reached either at “low” temperatures or/and nonadiabatic frequencies. As a general feature, a prin-
cipal maximum appears only in parameter regimes where incoherent tunneling dominates over coherent tran-
sitions. Moreover, for adiabatic driving, the nonlinear QSR exhibits a noise-indsiggpressiorof higher
harmonics accompanied by a characteristic phase chgB#)863-651X%96)05807-2

PACS numbsg(s): 05.30—d, 05.40+j, 33.80.Be, 73.50.Td

[. INTRODUCTION proached. In contrast, for classical and semiclassical SR, the
resonance is maximal in thabsenceof asymmetry[4,17].

The process whereby noise operates on a bistable systefts the external frequenc{) is increased and/or when the
enhancing the response to an external periodic signal haemperature is lowered, quantum coherence and/or driving-
been termed stochastic resonaf®) [1]. While this phe- induced correlations render the dynamics intrinsically non-
nomenon has been the object of many investigatiomdas-  Markovian [13,14] [regions(b) and (c) of Fig. 1]. In this
sical systemg2,3], the role of quantum fluctuations on SR work we investigate both QSR in the linear-response regime,
has only started to be explorgd-6]. In particular, the semi- where only thermal equilibrium correlation functions for the
classical SR, that is, SR in the temperature region wherspin-boson system need to be evaluated, as well as the non-
guantum corrections to the classical rate of activation aréinear QSR in the region of thel({)) plane outlined in Fig.
important, has recently been investigatedidh On the other 1 [18]. In particular, for the nonlinear QSR we predict vari-
hand, the possibility of SR in the deep quantum regime hasus phenomena, both for cohergigbnventional quantum
been addressed [B], where the role of incoherent tunneling coherent regime for adiabatic driving ktw temperatures,
transitions at adiabatic driving frequencies is addressed. Idriving-induced coherent regime faronadiabaticdriving)
the present work, recent analytical results on the dynamics aind incoherent driven quantum dynamics. Apart from the
the driven spin-boson system will allow us to investigate thegeneric amplification of the first harmonic of the periodic
nonlinear quantum stochastic resonan@@SR) in a broad quantum output, we also discover the existence of the quan-
parameter range encompassing adiabatic and nonadiabation analog of noise-induced suppressi¢hgdS) of higher
frequencies, incoherent and coherent tunneling dynamicdiarmonicq17] and, correspondingly, a characteristic sudden
Parts of our analysis have been recently present¢é]in change in the phase shift between periodic response and ap-

The investigation of the nonlinear QSR requires one tgplied driving signal.
solve the equation of motion of the nonlinearly driven dissi- The paper is organized as follows. In Sec. Il we describe
pative bistable system. We shall consider the case of aaur model and define the quantities of interest to investigate
Ohmic thermal environment characterized by a temperatur®SR. As a first example, we consider the case afeak
T and by a dimensionless coupling strengtlof the bistable external signal, where the response function may be evalu-
system to the environment. ated within Kubo’s linear-response theory, so that only the

While the dynamics of the Ohmic dissipative spin-bosonknowledge ofthermal equilbriumproperties of the dissipa-
system in theabsenceof driving has been investigated in tive two-level systen(TLS) is required. We then focus our
detail by several authors over the past 15 yéfosreviews  attention on the linear QSR in the parameter regime
see[7-9]), that of thedriven spin-boson system has only #Q<kgT, where a simplified expression for the quantum
started to be exploredl0-15. In the absence of driving, at fluctuation dissipation theorem holdghis restriction is re-
sufficiently high temperatures and/or coupling, the dissipaleased later on in Sec. )V The investigation of the linear-
tive effects are so strong that quantum coherence is conresponse theory for QSR turns out to be not only interesting
pletely suppressed by incoherent tunneling transitiGe® per se, but also sheds light on the physics that rules QSR
the upper left inset in Fig.)1 The incoherent dynamics can (related to thermal equilbrium properties of the dissipative
then be modeled by rate equations. This picture still holds fofLS), together with the qualitative differences between lin-
low-frequency drivind 10] [region(a) of Fig. 1]. The role of  ear and nonlinear QSR.
incoherenttransitions at low-frequency driving for classical ~ Sections llI-V constitute the main part of this work.
SR has been addressed in Ré&6] and its extension to QSR There, with the aid of recent results on the dynamics of
in [5]. In [5] it was found that QSR succeedingly vanishes aglriven dissipative two-state systems, we investigate the non-
the equality between forward and backward transitions is apinear QSR. In Sec. Il the nonlinear QSR is examined for
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FIG. 1. Dynamics of the
—) HIGH FREQUENCIES driven (e#0) two-state system
for weak Ohmic couplinga. As
the temperaturel or frequency
driving induced coherence Q is varied in the T,Q) plane,
different tunneling regimes are en-

TUNNELING -

e=0 A

HIGH TEMPERATURES

0 0.25 0.5 .
countered. For strong coupling,
T T T T T T (b) regimes(a) and (b) extend down
to the lowest temperatures. For
comparison, the static case
LOW FREQUENCIES L— LOW FREQUENCIES (¢=0) is considered in the inset,
LOW TEMPERATURES HIGH TEMPERATURES where the parameter regions in the
adiabatic quantum coherence incoherent regime (a,T) plane for InCOherenF or
guantum coherentQC) tunneling

are drawn.

(c) (a)

the casex=1/2 of the Ohmic coupling strength. Therein, we 7 ey. Finally, the dissipative influence of the bath is fully
obtain exactQSR results. In Sec. IV an iterative scheme ischaracterized by a zero averaggt)),=0 and by the cor-
discussed that allows the evaluation of the nonlinear rerelation function

sponse function, within the non-interacting-blip approxima- i /

tion (NIBA) for the stochastic forces, fomny driving ho (= cosliw(f Bl2—it)]
strength and frequency. As a first application, we consider <§(t)§(0)>o:;J0 dod(w) SN wh B12) (2.2
the linear-response limit of our results afdthin the NIBA)

we evaluate the linear susceptibility f@ny driving fre-  of the stochastic forcg=3,c,x, [7,8]. Here B=1/kgT is
quency(). Second, we release the assumption of weak drivthe inverse of the temperature af)g denotes the ensemble
ing strengths and investigate the nonlinear QSR in the reaverage with respect to the bath Hamiltonian with all the
gimes of adiabatic driving wheréwithin the NIBA) the  coupling constants, set to zeroJ(w) is the spectral density
dynamics is Markovian and of nonadiabatic driving where aof the environment and we make the specific choice of
driving-inducedcoherence occurs. In Sec. V we study theonhmic dissipation)(w) = (27#/a%) awe™“'“c, where a is
nonlinear QSR in the regime of weak coupling and low tém-the dimensionless coupling strength amgis a cutoff fre-
peratures(where coherent tunneling occurs and the NIBA guency{7-9]. In the following we shall assume that the cut-
fails). In doing so we use the results of a golden rule ap-off frequencyw, in the environment modes is the highest
proach to the TLS dynamics. Finally, in Sec. VI we presentaquency of the problem.
our conclusions. Finally, the dynamical quantit(t)=(o,(t)) is consid-
ered to be the output of the system to the external perturba-
Il. THE BISTABLE MODEL FOR SR tion and the averaged power spectr@w)

As a working model we consider a TLS Hamiltonian. o o
Here the bath is described as an ensemble of harmonic os- ?(w):f dre'“"C(7), (2.3
cillators with a bilinear coupling in the TLS bath coordinates —o
and we allow for an externally applied harmonic force ) ]
(fiela)codt, of amplitudefie/a and frequency). Then, the defined as the Fourier transform of the averaged correlation

driven spin-boson Hamiltonian reads function C(7)
_ Q r2@io 1
€ C(n)=5= dt_<0'z(t+T)O’Z(t)+0'z(t)0'2(t+T)>,
2 0 2

e h A he Q
- E( O-X+ 600-2)_ TCOi t)O-Z (24)

is the quantity of interest to investigate $R0]. The com-
bined influence of dissipative and driving forces at interme-
diate times results in a reduction of the coherent tunneling
motion of the isolated TLS by incoherent tunneling transi-
The ¢’s are Pauli matrices and the eigenstatesrphre the  tions. For timest large compared to the time scale of the
basis states in a localized representation, waile the tun-  transient dynamics, the motion acquires the periodicity of the
neling distance. The tunneling splitting energy of the sym-external perturbation an&(t) and C(r) reach the asymp-
metric TLS is given byt A, while the asymmetry energy is totic values

1w [ P2
+ 52 m—a +m,03x3—c xa0,]. (2.0
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(e=0). Hence, from the definitions of E¢R.8), the study of
the power amplitudep, or of the phasep, reduces to the
evaluation of the linear susceptibility, yielding

ImP()=Pdt)= > Pp(Q,e)e” ™
— 0 m=—o

= X |Pp(Q,ele M (25

and 7 (Q)=4m|x(Q)|?, (2.10
i O ) — _ N V2= imQr
lImC(n)=Cafn)= 2 [Pr(Q,6)% ™. (2.6 Q)
gi=arctan ————|. (2.11)
The harmonic$,, of P(t) present the quantity of interest to Rex(Q)

investigate the nonlinear QSR. The amplitudBs,| deter-
mine the weights of theS spikes of the averaged spectral

power density in the asymptotic stae(w) via the relation  Further, the absorptive part jtQ) of the susceptibility is
[6,19] related to the Fourier transfor@((}) of the symmetrized

correlation function C(r)=qu(r)/a2, where Cg4(7)
=3(q(t+7a(t) +a(t)g(t+ 7))z, by the fluctuation dissi-
pation theorenj22]

©

Sas(w)=27rm;x|Pm(Q,%)|25(w—mQ). 2.7

In order to investigate QSR we shall examine the scaled _ -
power amplitudes,, in the mth frequency component of filmy(Q) =tanh(# pQ/12)C(Q). (2.12
S.{w) and the associated phase skiff as well, i.e.,

Pm(Q,€)=47|P(Q,€)/fel?, The real part Rg(Q) follows from Eq.(2.12 through the
Kramers-Kronig relations. Hence the study of the linear SR,
A ’( |um(Q,E)> within an approach based on Kubo's theory, involves the
em(Q,e)=arctan ———— . (2.8 evaluation of correlation functions in thermal equilibrium.
ReP (), ¢€) The computation of the symmetrized correlation function

As a final remark we observe that, for weak external signaIsC(Q) can be carried out approximately,8,23,24. As we

) .. shall see, an investigation of the linear response for QSR will
only the fundamental power amplitude, and phase shift -
. . : be fundamental to understand some general characteristics of
¢, are different from zero to linear order in the external

strength. Within such an approximation, these quantities arﬁSR’ together with the qualitative differences between the

related to the amplitude and phase of the linear susceptibi near and nonlinear QSR.

: . Let us first consider the case @feak couplinga<1,
ity, respectively. Hence they can be also evaluated by com- , . o ) . X

. ) . c which exhibits the richest behavior as the temperature is var-
puting correlation functions at thermal equilibrium. The re-

sults of this procedure are discussed in the foIIowing'Ed' At low temperatureshe tunneling dynamics is domi-

subsection for the case of slow driving fieligQ <1, nated by quantum coherent effects even in the presence of

For strong driving forces, the linear-response approxima—d'SS'patlon[See the inset in Fig. 1, where QC denotes the

tion breaks down and the evaluation gf and @, or of parameter region in they(,T) plane where quantum coher-

higher harmonics, involves the computation of statistical® ' <° occurs7—9]. To be definite, at low temperatures
) . 2 2y1/2
quantities of the full Hamiltoniari2.1). As we shall see, in keT<E/2ma [where E :=f(Ac+ €)™ denotes the bath

the nonlinear regime strong nonlinear effects such as a noisé@norm"’lllzed energy difference between the two energy lev-

induced suppression of higher-order harmonics may appea?.ls and Ae(.a) the renormalized tunneling splittihgand
weak coupling, the two-level system undergoes damped co-

herent oscillations of frequendy/# and lifetime y.q,. Su-
perimposed to this is an incoherent tunneling motion with
For weak external signal®,{t) can be evaluated within decay time y,, towards the thermal equilibrium value
the linear-response approximation. Then, only the harmonicB .= % €,/E tanh@/2ksT). The corresponding symmetrized
0,£1 of P,{t) in Eq. (2.5 are different from zero. In par- correlation functionC(Q)) has been evaluated j23]. It ex-
ticular, P, becomes just the thermal equilibrium valBg, of hibits two narrow resonances of widthy.,, around
the operator o, in the absence of driving and (==E/# related to the damped coherent oscillations of the
P.1=fiex(xQ) is related by Kubo's formuld21] to the  TLS, and a quasielastic peak of widjh, at 2 =0, describ-
linear susceptiblilityy4(€2) =a®x(2) for the particle posi- ing incoherent relaxation towards thermal equilibrium.

Linear response for QSR

tion g=a/20,, where Within a Lorentzian approximation valid dgQ<1, the
i e linear susceptibilityy(£2) is readily obtained by use of the
;qq(m: 7£ ‘dTefim@( {[a(7),d(0)]). fluctuation dissipation theorem ER.12 and reads
(2.9 _ _ _
X (Q) = Xcol )+ Xrel( ), (2.13

Here 4(7) is the Heaviside function arid] denotes the com-
mutator and(), the thermal statistical average of the full
system in the absence of the external periodic forcevhere
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FIG. 2. Amplification vs tem-
perature of the fundamental am-
0.12 plitude 7, for weak signals in the
— region of quantum coherent tun-
B' neling (full line). Because the co-
~ 0.08 herent contribution( 2.14 to 7,

Sy ’ decreases monotonicallgdashed
line), the QSR maximum arises
solely because of incoherent tran-

0.04 sitions. Here and in the following
figures, frequencies are in units of
A, and temperatures in units of
0 ﬁAe/kB .
roughly whenE~kgT. Because of the smooth temperature
Xeod Q)= Eztanhz— dependence of the relaxation ragg,, the maximum is de-
termined by the competition between the detailed balance
1 1 factor 1/cosA(E/2kgT) (which saturates to the value 1 when
x E/ﬁ+(Q+i7’coh)+ E/f— (Ot iy ) 2kgT=E) and the algebraic factol ~! stemming from
Xrel(2) in Eq. (2.15. o S )
(2.14 As the temperature is increased dissipation-induced inco-
) herent tunneling transitions become increasingly important,
3 (Q):(@) 1 1 1 until the coherent tunneling motion is destroyed above the
rel E | 4kgT cosH(E/2kgT) 1—iQy, temperatureT* (a) =E/2makg [23]. Correspondingly, the
(2.15 three peaks of2.15 merge into a single quasielastic peak of
width v, ,
and the dissipation renormalized tunneling matkixis
A= TQ)= o : 1 219
A=A —~ [cog ma)[(1—2a)]H220) 4KgT cosH (% ey/2kgT) 1-iQvy,
Cc
(2.19 On the other hand, fostrong couplingae=1/2 incoherent
Finallv. the rat d . b transitions always dominate the dynamicsaaly tempera-
inafly, the rateSycon andyre are given by ture. This parameter regime is sketched in the upper left inset
A, of Fig. 1 (incoherent tunneling Hence, at high temperatures
Vrel= T (—) COch_ (2.17  T>T*(a) for weak coupling, as well as always for strong
coupling, the dynamics can be described in terms of a Mar-
b\ 2k T kovian rate equation for the position’s probability
Vrel €0 B
—+ . .
Y=g 2”“( E ) T (213 P(t) =~ 7[P(t)~ Pegl (2.20
Hence the linear susceptibilify( Q) is the sum of a coherent with rate y, and towards the equilibrium value

and of an incoherent contribution, the former being the onlyP.,=tanh(ey2kgT). Whena=1 or/and whenr>T* one

one that survives a§—0. From Eqs(2.10—(2.15 the lin-

finds that y,=ReX(€) and Pgq=—tan(ma)Im2(eg)/

ear QSR can now be straightforwardly investigated. In Fig. ReX (ey) =tanh{iey/2kgT). Here

the power amplitudey, in (2.10), i.e., the squared amplitude
of the linear susceptibility, is plotted versus temperature in

the parameter region where quantum coherence o¢salig
line). The frequencies are expressed in unitsAgfand the

temperature is given in units éfA./kg . Because the coher-
ent contribution(2.14 decreases monotonically with tem-

perature(see the dashed linewe find the intriguing result
that the maximum for QSR arises because ofittteherent
relaxational dynamics of aasymmetricTLS towards ther-
mal equilibrium(with e,=0, one hag,¢=0 for a symmetric
TLS). Finally, the QSR maximum imy;, obtained by com-
bining Eqg. (2.10 with Egs. (2.14 and (2.15, is attained

hBA
2

172 T(a+ihBel2m)
I'1-a+ihBeyl2m)

Ae
E(Eo):_

w

(2.21

andI'(z) denotes the gamma function. Again, from an analy-
sis of Eq.(2.19 the linear QSR in the regime of incoherent
tunneling can be investigated. Similar to the previously dis-
cussed QC case, the QSR maximum is attained roughly
whenfieg~kgT. The QSR is determined by the competition
between the detailed balance factor 1/@ksky/2kgT),
which exponentially increases with the temperature until it
saturates to the value 1 whekgd =% ¢y, and the algebraic
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FIG. 3. Amplification vs tem-
perature of the fundamental am-
plitude 7, [cf. ( 2.8)] via quantum
SR, for different driving strengths
€ in the exactly solvable case
a=1/2 of the Ohmic strength.
The principal maximum occurs in
the temperature region where in-
coherent tunneling prevail§see
- - - = Linear Response € <1 Fig. 4.
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factor T™* in the incoherent susceptibilityp]. For a quasi- . o ryr2eS()
symmetric systenfie,<kgT the saturation is immediately hak(N,y)=(=1)"sin(ma) fo dre M YmeTET
attained and the linear susceptibility shows only a monotonic

decay as the temperature is increased; hence no SR peak , 2¢ Qr
—ikQ7g; ;
occurs. xXe sin( €g)Jok oS5 |
. AN EXACT SOLUTION FOR THE NONLINEAR QSR: B (N, y)=(— 1)ksimmf°°d7e—m— yri2—S(7)
THE CASE a=1/2 0
The main theme of the periodically driven spin-boson sys- ikt 1207 2¢ Qr
tem is the modification of the coherent tunneling motion of xe cod €o7)Iak+1| o SIN5- -
the isolated TLS by the combined influence of the environ-
mental and driving forces. As discussed in the preceding (3.2

section, the environmental stochastic forces act in reducing

the transientcoherent tunneling by incoherent processes un- ] .

til, at long times, quantum coherence is completely suptiere S(7)=2aln[#Bwc/msinh(@hp)], In(z) is a Bessel
pressed. For driven systems the asymptotic dynamics adunction of the first kind, and= wA%/2w is the dissipation
quires the periodicity of the periodic force, independently offénormalized tunneling frequenc¥, [see Eq.(2.16] for

the characteristics of the thermal bath. An exact formal so&=1/2. In Fig. 3 the power amplitudg, (1, €) is plotted as
lution for any strength of the external force, which is in the @ function of the temperature for different driving strengths
form of a power series in the tunneling transitions, has bees (frequencies are in units of and temperatures in units of
obtained using a real-time path-integral approach irf¥/kg). Following the discussion of Sec. Ii7; can be in-
[10,13,14. For arbitrary couplingr one has to resort to ap- terpreted as the squgred amplitude of a generalized nonlinear
proximate solutions of the formal solution. In Secs. IV and V Susceptibility xx (€2, €). For highly nonlinear driving fields
we shall discuss controlled approximations that cover the> €, the power amplitude decreases monotonically as the
entire range of parameters outlined in Fig. 1. In this sectiof€émperature increase@ippermost curve As the driving

we shall consider the special value=1/2 of the Ohmic strength for periodic driving is decreased, a shallow mini-
friction. In contrast to the classical case, where no exactum followed by a maximum appears when the static asym-
closed analytical solutions are yet available for the nonlineafMetry €, equals, or slightly overcomes, both the external
dynamics, in the quantum case the two-state approximatioffequency() and strengthe (intermediate curvgsFor even

of the dynamics within an extended bistable potential allowssmaller external amplitudes, the nonlinear QSR can be stud-
an exact solution for this special value of the Ohmic strengthied within the linear-response theofgtashed curve where

As shown in[10], the power series in the tunneling transi- the linear susceptibility for the special cage- 1/2 takes the

tions can be summed wugxactly in analytic fornmto give analytic form
) Yy 20, ~ 1y Q)
Pm(Q,E)—mThm(—lmQﬁ). (3.0 X(Q)_Z_q-riy—iQ O (3.3

with with
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S = ylxs) ¢(x+—i% Yo ngO\):(—1)kA2C057TawadTe_)‘T_S(T)
hpQ i 2¢ O
— lﬂ( X_—i f—ﬂ_) , (3.9 X e~ k27coq EOT)J2k< ﬁésin%) ,

and x. =3+ apB/2mw (y/2*i€y). In the linear region the
shallow minimum is washed out and only the principal maxi-
mum survives. It is now interesting to observe that, because

Oak+1(N)=(— 1)k+1A2c03;mf dre—AS(7
0

for the undriven case the TLS dynamics ter 1/2 isalways Sk 12 Q7 2_% Q7
incoherentdown to T=0, again the principal maximum e Sin(€o7)Jzk+a| SN

arises at the temperatuiie at which the relaxation process
towards thermal equilibrium is maximal. On the other hand,

the minimum inv, appears in the temperature region whereWe now observe that the coupled ensemble of equations

driving-inducedcoherent Processes are of |mportance. ThIS(4.2) can be converted again into the integro-differential
means that the power amplitudg [or the nonlinear suscep- equation

tibility xn(Q,€)] plotted versus frequencyshows reso-
nances whell~e¢y/n (n=1,2,...) (full line in Fig. 4). QO (2m00
This is a typical nonlinear effect, which has to be compared P.{t)=F(t)— _f dt' Pt L(t t—t') (4.9
with the resonances &= *# () that the coherent pa(2.14) 2 Jo

of the linear susceptibility exhibits in the quantum coherent

regime. Correspondingly, the dynamics is intrinsically non-that describes the time evolution within a period. Here
Markovian. As the temperature is increased, the coherence is

increasingly lost(note the behavior of the dot-dashed and

4.3

dashed lines in Fig.)4 f(t)=§n: e MM (—inQ),
IV. INCOHERENT AND COHERENT QSR WITHIN THE _ o
NIBA E(t,t’)=§1 e Mg Ng (~inQ). (4.5

In the static casee¢=0), the major difficulty for an ana-
lytic resummation of the series in the TLS tunneling transi-This result, within the NIBA, is still exact and explicitly
tions arises from the bath-induced correlations between difshows that, even at high temperatures and/or strong cou-
ferent transitions. Further, it is known that a perturbativepling, the asymptotic driven dynamics is intrinsicatyn-
approach in the Ohmic coupling would fail in describing the Markovian[in contrast to Eq(2.20 for the undriven cage
destruction of the quantum coherent motion induced by thén the following we shall first briefly discuss the linear re-
environmental stochastic forces at finite temperatures. In theponse limit of Egs(4.1) and(4.2) valid for any frequency.
presence of time-dependent driving the situation is everBubsequently, we shall release the assumption of weak ex-
more intricate, because one also has to take into account thernal fields and we shall study the nonlinear QSR in the case
correlations induced by the external field. The bath-induceaf high-frequency and low-frequency driving, respectively,
correlations can be treated within the non-interacting-blip apwhere two different approximations of E@4.4) are dis-
proximation for the stochastic for¢&¢0,13, whose range of cussed. For the weak-coupling case and not too low tempera-
validity is, in general, different as compared to the undriventures (so that the NIBA still applies they would represent
case, and it has to be determingelf-consistentlyA set of  the regionga) and(b), respectively, of Fig. 1. Regioft) of
coupled equations for the Fourier coefficieftg, has been Fig. 1 is investigated in Sec. V. In the strong-coupling case,
recently derived folany strength and frequency of the driv- only region (a) or (b) may be attained, but not regidie)
ing force[13], yielding the result because adiabatic quantum coherence at strong friction never

occurs.

_ fo(0) g-m(0)
97 go(0) #Fo go(0)

Pm, 4.1 A. Linear response

On the assumption that the driving force is weak, Egs.
and form=0 (4.1) and (4.2) can be evaluated by linearizing them in the
amplitudee of the time-dependent force. To linear order in
i €, only the coefficients, andg,, with m=0,+1 need to be
Po=—| f o (—imQ)— > g m(—iMQ)P | considered. Further, the linearized coefficiefif¥,g{® are
m{ m’ of order zero ire, while f{*,g{" are of ordefe. In terms of
(4.2 these linearized coefficients and of the zeroth-order function

The coefficients f,, are defined by Eq.(3.2 via v(Q eo):Azcosmafwdfem’*%)cos(eor), (4.6)
fm=A2%h,(—imQ,0); for theg,, one has ’ 0



1396

MILENA GRIFONI AND PETER HANGGI

3x10~*

2x10™*

m1(§2)

1x10~4 o

I
'

FIG. 4. Fundamental ampli-
tude 7, vs driving frequency()
for different temperatures in the
exactly solvable casea=%. At
high temperatures only incoherent
relaxation occurs(dashed ling
As the temperature is decreased,
resonances are found at submul-
tiples Q=¢3/n (n=1,2,...) of

the static biagdot-dashed and full

lines). These denote the occur-
rence of driving-induced coher-
1

one finds, for the linear susceptibility, the expression

5 1
Q =
X 0T o(Qe0)]
x| fP(=iQ)
f(O)(O)
—g¥ :

03570

Futher, by comparison with E¢2.21) and the definition of
P, in the line above it, one obtainsf{’(0)/
gg‘ﬂ(O): Peq=tanh(iey/2ksT) andg{”(0)= v,,. This result,
within the NIBA, holds for any driving frequencf. It is

(4.7

ence.
20

- Q 2710 o
Paét):]:(t)—zzm: gm(t)JO dt’paitr)eflmm ,

4.9

Gm(t)=2, e ™Mg . (—inQ). (4.9

We observe now that dtigh frequencie®nly smallm val-

ues in the sum4.8) are of importance, because they repre-
sent contributions almost at resonance with the fast oscillat-
ing field. In particular, takingn=0 amounts to evaluating
P.{t) to order 1/¢.Q). Here 7. ':=lim;_,go(0)=17, is

the only nonvanishing coefficiew,, in (4.3) for zero exter-

nal driving field. It defines the time scale for the system to
reach thermal equilibrium in the absence of driving. We re-

cover in this case the high-frequency approximatiori4o®)
now interesting to observe that, due to the specific form og(;a

the Ohmic interactiorS(7) [see the line below Eq3.2)],
whenever the conditiofl << akgT/% is met, one can linear-
ize the integrands defining({}, ey) and the linearized coef-
ficientsf{Y(—iQ),g{Y(—iQ) in the small quantitf) 7. We
obtainv (), e0) =v(0,60) =g{"(0) together with

viously discussed in RdflL3]. On the other hand, because
. (4.8), together with(4.9), within the NIBA is still exact,

we can now evaluate amth harmonicP,, of P.{t) to the
order (1£.Q)5"! if m#0, to the order(1/Qr,)° if m=0,
which we denoteP(Y, by use of thezeroth and first shar-
monics ofP,{t) by means of the relation

i
~ (s+1) _ -
d PEtV=—| f (—imQ)
Wi fOm= < 9 0 mQ(
fO(—i0)=f(0) 2deof° (0) S
+ pe-g. _(—imQ)|, m#0, (4.1
and 2P g (—imQ) (4.10
c d with the initial valueP{")=f,(0)/g(0). Theaverage value
W ioy—a®io = £ (0) o =Tto
gy (—iQ)=g7"(0)= 5 9o (0,
ZdEO

PSS, s#0, is obtained by inserting Eq4.10 in Eq. (4.1).

The dynamics described .10 can be highly coherent,

from which the linear susceptibility is readily found in the @S revealed by a numerical analysis of the Fourier coefficient

simple Lorentzian form of Eq(2.19. We defer the investi-

P,(Q,€) as a function of the driving frequency: When the

gation of QSR in the nonadiabatic regime to the next subse@xternal frequency matches fractional values of the intrinsic
tion.

bias, resonances are foufgke the inset in Fig.)5Finally,

B. High-frequency QSR

In order to discuss a systematic treatment of Eh4)

we observe that, because a fast oscillating field results in
reducing the bath-induced correlations, whenever the NIBA
is applicable in the absence of driving, it is justified even

better in the presence of a high-frequency driving., al-
useful at high driving frequencies, it is convenient to recast ivays for strong couplingx>1; for weak couplinga<<1
in the form

when 2rakg T>%A, or g>A,). Figure 5 describes the first
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&
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107 -
0 30

FIG. 5. Monotonic decay vs temperature of the first amplitygefor nonadiabatic driving. As shown in the inset, in the investigated
parameter regime the dynamics is dominated by driving-induced coherent transitions. Correspomdinglys not exhibit a peak as the
temperature is varied.

amplitude», versus temperature. In the investigated param# Q) <2w7akgT), we can approximatey,(—inQ)=g.,(0)
eter regime the power amplitude always shows a monotoniand f,(—inQ)=f,(0) in Eq. (45 to get
decay as the temperature is increased. This is in accordangt,t’) — y,(t) 5(t") and F(t) — y,(t) Pet). HenceP,{t)
with the findings of the previous sectiofisee Figs. 2—4  in Eq. (4.4 obeys the time-dependent rate equation
where the maximum in the power amplitude was found in )

the temperature regime dominated by incoherent tunneling. Padt) = = 7o(1)[Padt) = Ped )], (4.1
This is also in accordance with results on classical SR at high

driving frequencies 19] with  a  time-dependent rate y,(t)=Rex[e(t)]

and time-dependent adiabatic  equilibriumP{t)
=—tan(ra)imX[e(t)]/Re[e(t)]. Here 3(€) is defined

At low frequencies the above discussed truncation schemigy Eq.(2.21) ande(t) = e+ ecodt plays the role of a time-
is useless because the contribution from all the harmonicdependent adiabatic asymmetry. Finally, the rate equation
has to be considered. Wheneve 7.<1 (that is, can be solved in terms of quadratures to give

C. Low-frequency QSR

106 T Y T

1078
— FIG. 6. Noise-induced sup-
&~ pression(NIS) of the third ampli-
o tude 73 vs temperature in the
& P! T adiabatic  incoherent  regime
10~10 | il - (4.12 as the frequency is de-
!5 creased.
i!
Q<107
|
i
1012 i ] ] 1
10 20 30 40 50
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T
9 1 T |
e =20 € =10
a = 1071
. Q=103
E‘ FIG. 7. Discontinuity in the
\; O e associated phase shift in corre-
- spondence of the NIS in the am-
plitude 7.
_ﬁ/g I ] 1 -
10 20 30 40 50

T

_Q (2w Cimae [ andP{(t) =tani#e(t)/2kgT]. It should be noted that in the
Pr(Q.€)=5— dtgya(to)Pedto)e™™ Of dty nonlinear regimés ¢, the presence of the termmvkgT in
0 0 . . . . ;
the denominator is crucial becausg) is zero at any instant
o totty t, obeying t=1/Qarcos,/€). This explicity shows the
xe™! 19XP( - ft dty.(t)|. (412  preakdown of any perturbative approach to deal with time-
0 dependent problems at high temperatures in the nonlinear
Equation(4.12 completely describes the nonlinear SR dy-"€9'™M€-

quation (4.12 P y ! ! y The nonlinear QSR is investigated in Fig. 6, where the

namics at low frequency within the validity range of the . . )
NIBA; see also[10,13. We observe that classical nonlinear third power amplitude; is plotted versus temperature. We
ind the quantum analog of a NIS of higher harmonics as the

SR has been recently investigated in a superconductin i< d d 71 for the ph ¢
quantum interference device systég6]. Lowering further equency Is decreased. See Rér] for the phenomenon o
NIS in the classical case. As shown in Fig. 7, the related

the temperature brings the system into the regime of Ed. ,
b J y J %hase shifip; possesses a crossover at the very same value

(4.12, where nonlinear QSR could be observed for a mac .
roscopic quantum system. At low frequencies, the NIBA sOf the temperature at which the NIS appears. To understand
the results shown by Figs. 6 and 7 it is convenient to rewrite

justified for strong dampingr>1, while for weak coupling . s)
a<l it is valid in the region ZakgT=#%A, or (4.12 as thet sum of a quasstatRf# and a retarded con-
l&(t)|>Ae. In the small coupling limite<<1 the relaxation tribution PG

rate in(4.11) and(4.12 becomes

B ) g(t) ~ he(t) i i i
vl =male T s (0 ke (413 Pu(2,8)=PP(6)+PI0(Q.8), (414
T T T T
016 F 7 i 4
' €) = FIG. 8. Amplification vs tem-
L perature of the power amplitude
0.12 ) = 10—’4 - 7, in the adiabatic coherent re-
-3 gime. For intermediate driving
o = 10 strength e<e, the position and

m(T)

0.08 the shape of the maximum are

only slightly modified with re-
9 : spect to the linear-response ap-
~ proximation. As the driving
0.04 ——€t = 1 strength is increased, the maxi-
— LINEAR RESPONSE mum in the nonlinear QSR in-
creasingly disappears.
0 ] l 1 I
0 1 2 3 4 5
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104

FIG. 9. Noise-induced sup-
pression of the third amplitude
73 VS temperature in the adiabatic
coherent regimé 5.1) (full line).
The dot-dashed and dashed lines
depict the quasistatic and the re-
i tarded contributions ton; [see
i! e ] Egs.( 4.14 and( 5.2)].

10-¢

n3(7T)

/
1
'I
1073 Ir

where the retarded contribution vanishes(as>0. To be simply related to the functioN(t), representing the popula-
definite, in terms of dimensionless integration variablestion difference between the lower and upper eigenstates of
x=0ty, y=Qt;, andz=Qt one finds from Eq(4.12 that the driven two-state system, by.{t)= fie(t)/E(t) N(t).
Here E(t)=#A[A2+¢(1)?]¥? is the time-dependent level
splitting. One then finds tha¥i(t) obeys the first-order dif-
ferential equationN(t) = — y,¢(t)[N(t) —Ngg(t) ], which is
1 (o= he(x) again in the form gf a rate equation with a time-dependent
P%(&)= 5 jo dxtanhe——cosnx (415  rate y(t)= mahA2/E(t)cothE(t)/2kT [see Eq(2.17)] and

2kgT time-dependent adiabatic equilibrium value
q Neq(t) =tantE(t)/2kT. Again this equation can be solved in
an terms of quadratures to give, for the harmonic$g{t), the
1 ne expression
(ret) N .
P (Q,6)=5— ZkgT L 27Td>< sinx
1—eTJ)o cosi[e(x)/2kgT] A Qoo Che(to) o
Pr(Q,6)=5— 0o Mo
2m ) E(to)

27 . y
Xf dyém(”y)exl{ —J' dZ'ya(X-l-Z)/Q), ©
. 0 x|ttty

(4.16 oty
xex% - ft dtyre|(t)). (5.9

where I'=[3"dzy,(z)/27, z=Qt. Hence the quasistatic
contribution is independent of the frequenfy, while the

retarded contribution becomes negligible whéh<vy,, . )
which for the parameters chosen in Figs. 6 and 7 amounts to Equations(4.12—(5.1) capture the essential features of
Q<10*A,. Hence the NIS is most pronounced when the-the dynamics of the driven TLS for low frequencies and

retarded contribution becomes negligiléee also Fig. 9 be- Weak coupling in thewhole temperature range. For strong
coupling or strong adiabatic asymmetripgt)|>A., Eq.

low).
(4.12 holds down to the lowest temperatures. Figure 8

V. ADIABATIC QUANTUM COHERENT QSR shows the behav_|or of the power amplification versus
temperature for different external strengktsompared with

At low temperature&z T<#E, weak couplingy<1, and the linear-response resifull line). As shown in Fig. 8, the
A.=|g(t)|, the NIBA fails to predict the correct long-time position of the maximum and the shape of the resonance are
behavior because the neglected bath-induced correlatiomgodified as compared to the linear-response approximation
contribute to the dissipative effects to first order in the cou-obtained with Eqs(2.14) and(2.15 (see also Fig. 2 Figure
pling strength. Nevertheless, at low temperatures, where il shows the behavior ofy; versus temperaturéull line).
the static case quantum coherence oc¢tis QC region in  Again for adiabatic driving, even in this low-temperature re-
the inset of Fig. 1a perturbative treatment is allowd,8]. gime, we observe a NIS of higher harmonics as the fre-
A solution of the dynamics can then be discussed in thejuency is decreased. As discussed in Sec.[$¢e Eq.
low-frequency regim&Q <A?, where the tunneling motion (4.14], we can evaluate any harmonig, as the sum of a
may be treated in the adiabatic lini25] [region (c) of Fig. quasistatic contribution7(%) and a retarded contribution
1]. In the adiabatic regime and for weak coupliRg{t) is 7Y where the latter vanishes &—0. To be definite,
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1072 T T

10~4

FIG. 10. Noise-induced sup-
pression of the third amplitude
73 VS temperature in the quasis-
tatic coherent regime[cf. Eqg.
(5.2)] for different asymmetries
€. The NIS disappears when the
external strengtle exceeds the in-
trinsic asymmetrye, .

n3(7T")

10-¢

108

when the conditiony,g< is fulfilled, Eq.(5.1) may be sim- amplitude plotted versus temperatuifeat is, stochastic reso-

plified to the quasistatic expression nance occurs only when incoherent tunneling contributions
dominate over coherent transitions. Further, we found that
1 (27 fhe(Xx) E(x) : ;
pas—_—_ f X——"tan COSNX (5.2) guantum noise can substantiaiphance but alsosuppress
™ 27)o E(x) kT the nonlinear response. In particular, the occurrence of a

o noise-induced suppression of higher harmonics allows a
which is independent of the external frequeriey The dot-  gjistortion-free amplification of signals in quantum systems.
dashed line of Fig. 9 represents the quasistatic contributiofthe possibility of QSR in the presence of coherent tunneling
7%, while the dashed line is the retarded contributioncarries a great potential for applications, as they emerge in
7", which, for the chosen parameters, is negligible whenhe task of controlling persistent quantum coherences in
(1<10"°A,. Correspondinglynot shown, but see Fig. 6 for complex systems by use of tailored laser pulse sequences
the case where the NIBA holighe phase exhibits a cross- [27]. These QSR phenomena may be detected by measuring
over at the very same value of the temperature where the Nifhe ac conductance in mesoscopic meftaj&g], in ac-driven
appears. Figure 10 depicts the dependence of the NIS's agomic force microscopfr9], investigating ac-driven hydro-
the intrinsic asymmetry, is varied. It is found that the NIS  gen tunneling in metalg30], or in driven macroscopic quan-
disappears when the external strength overcomes the intrifiam systemg$26]. Hence quantum noise does not represent a
sic asymmetry. nuisance, but rather can be a useful tool when interplaying

with external periodic perturbations.
VI. CONCLUSIONS
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