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Stochastic resonance~SR! occurs in nonlinear dynamical systems when the response to a weak coherent
input is enhanced by the presence of noise. While classical SR presently is an intensely studied phenomenon,
the role of quantum fluctuations has only started to be explored. We study SR in the temperature range where
quantum tunneling corrections to the classical rate of activation are relevant. For a particle subject to moderate-
to-large friction, we show that the semiclassical SR can be enhanced considerably by quantum fluctuations, as
compared to the predictions of a classical analysis.@S1063-651X~96!10406-2#

PACS number~s!: 05.40.1j, 05.30.2d, 03.65.Sq, 33.80.Be

I. INTRODUCTION

Stochastic resonance~SR! is the process whereby noise
operates on a bistable system enhancing the response to a
weak coherent input. Since its discovery in 1981@1#, this
intriguing phenomenon has been the object of many investi-
gations@2,3#, stimulated by its experimental demonstration
in biological @4# and physical@5# systems. The archetypal
model for SR is that of a particle of massM moving in a
double-well potential while coupled to a heat bath at tem-
peratureT and subject to a time-dependent periodic force.
Classically, the resonance condition is assumed when the
thermal hopping frequency is near the frequency of the
modulation @6–9#. In the presence of memory effects, the
classical escape rate out of a metastable well reads, for
moderate-to-strong friction@10#,

G cl5
va

2p

vR

vb
expS 2Vb

kBT
D . ~1.1!

Here,va5@V9(qa)/M #1/2 is the angular frequency of small
oscillations about the metastable minimum atqa ,
vb5@2V9(qb)/M #1/2, and Vb are the angular barrier fre-
quency and barrier height located atqb ~see also Fig. 1!.
Finally, the friction-renormalized angular barrier frequency
vR is defined below in Eq.~1.3!. It is readily seen that the
classical transmission factorvR /vb,1 determines the dif-
ference between the transition-state-theory result and the cor-
rect classical rate due to diffusive recrossing of the barrier.
Equation~1.1! generalizes the pioneering work by Kramers
@11# on the effects of frequency-independent friction on the
escape rate@see Eq.~1.4!#, to include frequency-dependent
damping. The Arrhenius law~1.1! predicts a vanishing rate
G as the temperatureT approaches absolute zero. However,
quantum mechanics allows for the possibility of crossing the
barrier through quantum tunneling, thus leading to a finite
~quantum! rate at zero temperature.

Tunneling transitions dominate over thermally activated
transitions below a crossover temperatureT0 ~see Fig. 2!. A
simple criterion for the crossover temperatureT0 was given
by Gol’danskii in 1959@12#. For a parabolic barrier with
barrier frequencyvb , he found T05\vb/2pkB . The
Gol’danskii criterion, however, disregards the environmental
influence upon the tunneling rate. In order to fully take into

account the influence of dissipation and thermal fluctuation
on the tunneling rates, a functional integral approach has
been employed in@13–15#, while an alternative derivation
based on the periodic orbit approach is discussed in@16,17#.
It is found that

T05\vR/2pkB , ~1.2!

wherevR is a dissipation-renormalized frequency, which is
given by the largest positive solution of the equation

vR
21vRĝ~vR!5vb

2 , ~1.3!

with ĝ(v) being the Laplace transform of the friction kernel
g(t) appearing in the classical equation of motion@see below
Eq. ~2.4!#. This relation holds independent of the detailed
shape of the potential provided that it is parabolic in the
vicinity of the barrier top. In the case of frequency-
independent damping, i.e.,ĝ(v)5g, one has

vR5~vb
21g2/4!1/22g/2. ~1.4!

It should be noted that the crossover temperature may be
quite large and can reach for some physical and chemical
systems values larger than 100 K@17,18#. On the other hand,

FIG. 1. Thermal and quantum fluctuations influence the escape
rates out of the metastable wells of an asymmetric bistable poten-
tial.
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in Josephson systems where both classical SR@19# and quan-
tum corrections@17,20,21# have been observed, it can be in
the mK region.

The role of quantum fluctuations on SR has only started to
be explored. As a matter of fact, the quantum tunneling
mechanism for the escape rate, and hence for SR itself, is
strongly dependent on temperature~see Fig. 2!. Prior studies
@22,23# on the effects of quantum noise on SR addressed the
regime of very low temperaturesT!T0 , where thermal hop-
ping events can be neglected.

The focus of this work is on the effect of quantum fluc-
tuations in the opposite regimeT.T0 , where quantum tun-
neling is not the dominant escape mechanism, but leads to
significant quantum corrections of the classical rate of acti-
vation ~temperature regime of semiclassical SR, as denoted
in Fig. 2!. BecauseT0 is a function of the dissipation mecha-
nism, the relative size of the corresponding regions varies
with the dissipation strength. In particular, the semiclassical
region may extend far aboveT0 ~cf. Figs. 3–6!. In the
present work, we leave out only the very narrow temperature
region around T0 , determined by the condition

uT/T021u<(\vR /Vb)
1/2 ~and denoted ‘‘crossover region’’

in Fig. 2!, where the evaluation of the escape rates requires
going beyond the semiclassical treatment discussed in Sec.
III.

In the investigated temperature regimeT.T0 , the pres-
ence of the additional quantum ‘‘channel’’ for barrier cross-
ing results in a quantum correction factor that merely multi-
plies the classical rate of activation@see Eq.~3.1! below#. We
find then that~for moderate-to-strong damping! the semiclas-
sical SR can become enhanced up to two orders of magni-
tude, as compared to the predictions for SR based on a pure
classical SR analysis.

II. THE BISTABLE MODEL FOR SR

To investigate semiclassical SR, we consider a particle of
massM moving in an asymmetric bistable potentialV(q)
~see Fig. 1!, while coupled to a heat bath and subject to a
time-dependent periodic forcef (t)52AcosVt. The poten-

FIG. 2. Dominant escape mechanism out of a
metastable potential, and corresponding regimes
for SR, depicted as a function of temperature.
T0 denotes the crossover temperature below
which quantum tunneling dominates over ther-
mally activated hopping events. BecauseT0 is a
function of the dissipation mechanism, the rela-
tive size of the corresponding regions varies with
the dissipation strength. In the region marked by
a question mark, quantum SR has, up to now, not
been investigated theoretically.

FIG. 3. Amplification vs temperature of the
semiclassical scaled signal-to-noise-ratioR̃sc as
influenced by quantum fluctuations~solid line!.
For comparison, the classical signal-to-noise-
ratio is also depicted~dashed line!. The inset
shows that the enhancement of the semiclassical
R̃sc, as compared to the classical oneR̃cl, can
reach two orders of magnitude.
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tial is characterized by an asymmetry energye>0 and be-
comes symmetricV(q)5V(2q) whene50. The two meta-
stable minima are located at6qa and the maximum is at
qb50. Due to the asymmetry of the potential, the barrier
height to be surmounted by a classical particle located at
6qa is E65Vb7e/2, depending on whether the particle is
in the left or right well, respectively. Finally, the concept of
metastability makes sense only when the barrier is large
enough so that the forwardG1 and backwardG2 escape
rates out of the metastable states are verysmall compared
with all the other characteristic rate scales of the system dy-
namics. In particular, because the angular frequencyva de-
scribes the time scale for decay within a metastable well, the
activation energiesE6 are to be large enough compared to
the thermal energykBT to ensure that the condition
va@G6 is fulfilled @17#.

The heat bath is assumed to be representable as a set of
harmonic oscillators interacting bilinearly with the particle
@24,25#, so that the Hamiltonian takes the form

H5
p2

2M
1V~q!1(

i51

N F pi22mi
1
miv i

2

2 S xi2 ci
miv i

2qD 2G
2q f~ t !, ~2.1!

where the quantum thermal noisej(t) is fully characterized
by a zero averagêj(t)&050 and by the correlation function

^j~ t !j~0!&05
\M

p E
0

`

dv vg̃~v!
cosh@v~\b/22 i t !#

sinh~v\b/2!
,

~2.2!

with b51/kBT. Here^ &0 denotes the statistical average over
the bath degrees of freedom with all the coupling constants
ci set to zero and in the absence of the external forcef (t).
Finally, the friction coefficientg̃(v)5*0

`dt cos(vt)g(t) ap-
pearing in Eq.~2.2! is the real part of the Fourier transform
of the time-dependent memory friction

FIG. 5. Amplification vs temperature of the
semiclassical power amplitudeh̃ 1

sc for different
coupling strengthsa5g/2vb ~solid lines!. For
strong damping, the effects of quantum fluctua-
tions extend well above the crossover tempera-
tureT0 . For comparison, the classical power am-
plitudes are also drawn~dashed lines!.

FIG. 4. Amplification vs temperature of the
semiclassical scaled fundamental amplitudeh̃ 1

sc

which accounts for quantum tunneling fluctua-
tions ~solid line!. For comparison, the classical
power amplitudeh̃ 1

cl is also drawn~dashed line!.
The inset shows that quantum tunneling can en-
hance the semiclassicalh̃ 1

sc, with respect to the
classical oneh̃ 1

cl , up to two orders of magnitude.
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g~ t !5
1

M(
i

ci
2

miv i
2cos~v i t !. ~2.3!

The density and coupling constants of the environment are
chosen in such a way that the particle obeys the classical,
generalized Langevin equation of motion with memory fric-
tion @26#,

Mq̈1
]V

]q
1ME

2`

t

dsg~ t2s!q̇~s!5jc~ t !1 f ~ t !,

~2.4!

where the frequency-dependent damping coefficientg̃(v)
and the force-force correlation function~2.2! satisfy in the
classical limit\bv→0 the Green-Kubo formula

g̃ ~v!5
1

MkBT
E
0

`

dt eivt^jc~ t !jc~0!&0 , ~2.5!

and jc(t) denotes the thermal classical noise. Hence, the
thermal noise is characterized by the temperatureT of the
thermal bathandby the couplingg of the bistable system to
the environment. It should be noted that, while in the classi-
cal regime the Arrhenius factors for the escape ratesG6 are
independent of damping, and only the attempt frequencies
are modified@cf. Eq. ~1.1!#, in the quantum regime the pref-
actor of the rate and the exponent as well crucially depend on
the strengthg̃ of the dissipative mechanism. Finally, the ex-
pectation value with respect to thefull Hamiltonian~2.1! of
the particle’s position

P~ t !5^q~ t !& ~2.6!

is considered to be the output of the system when the exter-
nal time-dependent periodic forcef (t)5A cosVt modulating
the particle’s position is applied. In particular, the averaged
power spectrumS̄(v)

S̄~v!5E
2`

1`

dteivtC̄~t!5SN~v!1S~as!~v!, ~2.7!

defined as the Fourier transform of the averaged correlation
function C̄(t),

C̄~t!5
V

2pE0
2p/V

dt
1

2
^q~ t1t!q~ t !1q~ t !q~ t1t!&,

~2.8!

is the quantity of interest to investigate SR@27#. For a time-
periodic perturbation, the power spectrum results in the sum
of two contributions, whereSN represents, in the absence of
a signal, the broadband ‘‘noise’’ background, possessing a
Lorentzian hump atv50. We shall denote this contribution
by SN

(0) . In the presence of the signal,SN is obtained as a
product of the Lorentzian hump with a correction factor~of
order unity for weak signals! describing the influence of the
signal @6,8#. The ‘‘asymptotic’’ contribution S(as)(v) is
given by the sum ofd spikes at integer multiplesv5nV of
the signal frequency, reflecting the fact that, for timest large
compared to the time scale of the transient dynamics, the
motion acquires the periodicity of the external perturbation.
To be definite,P(t) and C̄(t) reach the asymptotic values
@6,23#

lim
t→`

P~ t !5P~as!~ t !5 (
m52`

`

Pm~V,A!e2 imVt, ~2.9!

lim
t→`

C̄~t!5C~ as!~t !5 (
m52`

`

uPm~V,A!u2e2 imVt. ~2.10!

Thus, the amplitudesuPmu of the harmonics ofP(t) deter-
mine the weights of thed spikes of the averaged spectral
power density in the asymptotic stateS(as)(v) via the rela-
tion

S~as!~v!52p (
m52`

`

uPm~V,A!u2d~v2mV!. ~2.11!

The two quantities that have been examined in the literature
to investigate SR are the power amplitudeh1 in the first

FIG. 6. Amplification vs temperature of the
semiclassical amplitudeh̃ 1

sc for different driving
frequenciesV ~solid lines!. For comparison, the
classical power amplitudes are also plotted
~dashed lines!. The inset shows that the tempera-
ture maximumTh1

* (V) of h̃1 is approximately

determined by the conditionḠ(Th1
* )'V, over a

range of four orders of magnitude spanned by
V.
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frequency component ofS(as)(v) @3,6# and the ratioR of
h1 to the power spectrumSN

(0)(v) of q(t) in the absence of
signal evaluated at the external frequency, the so called
signal-to-noise ratio~SNR! @2,3,8#, i.e.,

h1~V,A!:54puP1~V,A!u2,

~2.12!

R:54puP1~V,A!u2/SN
~0!~V!.

By definition, h1 has the dimension of a length squared,
while R has the dimension of a frequency. Thus, to investi-
gate the interplay between noise and the coherent driving
input giving rise to the phenomenon of stochastic resonance,
we shall consider the two dimensionless quantities, the
scaled power amplificationh̃1 , and the scaled signal-to-
noise ratioR̃. They read

h̃1~V,A!5
h1~V,A!

~Aqa
2/Vb!

2 , R̃5
~R/vb!

~Aqa /Vb!
2 . ~2.13!

Which one of the two quantities is the most appropriate to
investigate SR depends on experimental realization@2,3,19#.

A. Linear-response theory for SR

Because the main theme of SR is the stochastic enhance-
ment of the response to aweak coherent input, we shall
develop in this section a theory for SR based on Kubo’s
linear-response theory and on fluctuation-dissipation theorem
~FDT! @28#. The results for the spectral amplificationh1 and
for the SNR are expressed in such a way as to be indepen-
dent of the precise dynamics of the system~being dominated
by quantum tunneling transitions or/and by thermally acti-
vated hopping events!, assuming that the resulting escape
rates atthermal equilibrium~i.e., for the undriven dissipative
bistable system! are known. This will enable us to compare
the predictions for SR above the crossover temperatureT0
which would be obtained using a ‘‘classical approximation’’
for the rates@cf. Eq. ~1.1!#, with those obtained using decay
rates corrected for quantum tunneling as in Eq.~3.1! ~see
below!.

In the linear-response approximation, only the harmonics
0,61 of P(as)(t) in Eq. ~2.9! are different from zero,P0
being just the thermal equilibrium valuePeq in the absence
of driving, andP615 (A/2) x̃(6V) being related by Ku-
bo’s formula to the linear susceptibilityx̃(V),

x̃ ~V!5
1

i\E2`

1`

dt eiVtu~t!^@q~t!,q~0!#&b , ~2.14!

where^ &b indicates the evaluation of correlation functions in
thermal equilibrium, that is, in the absence of driving. Fur-
ther, i ^@q(t),q(0)#&b /\ becomes in the classical case the
correlation function2b^q(0)q̇(t)&b . Finally, because the
linear susceptibility is related to the power spectrum in ther-
mal equilibrium by the fluctuation-dissipation theorem@28#,
we end up with

h1~V,A!5pA2ux̃~V!u2, ~2.15!

R5pA2
1

\ coth~b\V/2!

ux̃~V!u2

Imx̃~V!
. ~2.16!

Thus, for weak external signals, computation of the power
amplitudeh1 or of the signal-to-noise ratioR reduces to the
evaluation of correlation functions in thermal equilibrium. It
should be noted that the above relationships are valid inde-
pendently whether the relaxation occurs via quantum or via
classical decay.

In order to evaluate the linear susceptibility, a knowledge
of the equlibrium dynamics is required. In doing so, we shall
derive our results within a two-state description of the sys-
tem dynamics, introducing the probabilitiesnL,R for the sys-
tem to be in the left (n L) or right (nR) well of the bistable
potential. For a continuous system,nL,R are defined in terms
of the probability densityp(q,t) for the particle’s position as

nL~ t !512nR~ t !5E
2`

qb
dq p~q,t !. ~2.17!

One then finds that the average value in Eq.~2.6! is simply
P(t)5qa@nR(t)2nL(t)# and obeys, for a classical or a semi-
classical dynamics, the Markovian rate equation

Ṗ~ t !52Ḡ@P~ t !2Peq#, ~2.18!

with Ḡ5G11G2 being the sum of the forward and back-
wards rates G1 and G2 , respectively, and
Peq5(G12G2)/Ḡ. Information about the detailed form of
the potential isstill contained in the averaged rateḠ. In the
deep quantum regimeT!T0 ~cf. Fig. 2! the same set of
equations holds whenever incoherent tunneling dominates
the dynamics, as it always holds true for strong enough
damping or sufficiently high temperatures@29,30#. Corre-
spondingly, in the limit\bV/2!1, the ~classical or quan-
tum! linear susceptibility x̃(V) exhibits a quasielastic
Lorentzian peak of amplitudeb(T)54(qa

2/kBT)G1G2 /Ḡ2

and widthḠ. It reads

x̃~V!5b~T!
1

12 iVḠ21
1O~\bV!2. ~2.19!

Finally, whenever the backward and forward rates are related
by the detailed balance conditionG25G1exp(2e/kBT), we
obtain for the scaled power amplitudeh̃1 the result

h̃1~V!5pS Vb

kBT
D 2 1

cosh4~e/2kBT!

Ḡ2

V21Ḡ2
. ~2.20!

Likewise, consistent with condition\bV/2!1, the cotan-
gent hyperbolicus in Eq.~2.16! can be approximated as the
inverse of its argument, and the scaled signal-to-noise-ratio
R̃ becomes effectively independent of the external frequency
V. One finds

R̃5
p

2 S Vb

kBT
D 2 Ḡ/vb

cosh2~e/2kBT!
. ~2.21!

Several features of the results in Eqs.~2.20!, ~2.21! are worth
commenting on.
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~i! Within a two-state description of the incoherent~un-
driven! dynamics, the linear-response theory developed in
this section effectively reduces the study of SR to the com-
putation of the transitions ratesG1 or G2 in thermal equi-
librium.

~ii ! By construction, a linear-response approximation
holds independent of whether the coherent applied signal
A cos(Vt) involves adiabatic or nonadiabatic frequencies.
Hence, Eqs.~2.15! and~2.16! hold foranydriving frequency
V. On the other hand, while the expression~2.19! for the
linear susceptibilityx̃(V) becomesexact in the classical
limit, the condition \bV/2!1 requires some care in the
semiclassical and deep quantum regimes and may lead to
restrictions on the values of the applied driving frequency
V, as discussed in the next section. Whenever the condition
\bV/2!1 is not fullfilled, the linear susceptibilityx̃(V)
~and henceh̃1 and R̃) exhibits a more complicated depen-
dence on the frequencyV, as determined by the fluctuation-
dissipation theorem@28# and by the Kramers-Kronig rela-
tionships between its real and imaginary parts@see Refs.
@22,23# for a discussion of SR in the deep quantum regime#.

~iii ! Because Eqs.~2.20!, ~2.21! hold independent of
whether the escape mechanism is classical or quantum, some
general features of SR can be discussed. For the case of weak
external signals considered in Eqs.~2.20! and ~2.21!, both
the scaled amplitudeh̃1 and the scaled signal-to-noise ratio
R̃ are independent of the external strengthA, but only h̃1 is
still a function of the external frequencyV. Hence, the po-
sition TR* of the temperature maximum of the scaled SNR
effectively depends only onintrinsic parameters of the
bistable system, such as the barrier heightVb , the asymme-
try e, the frequenciesvb and va , and the friction coeffi-
cient. By contrast, the temperature maximumTh1

* of the

scaled power amplitudeh̃1 is roughly determined by the
condition Ḡ(Th1

* )'V ~cf. inset of Fig. 6!. This implies that

SR for h̃1 can beexternally controlledby varying the ap-
plied driving frequencyV.

~iv! On the same basis as~iii !, the generality of Eqs.
~2.20, 2.21! implies that the differences between classical,
semiclassical or quantum SR~cf. Fig. 2! are determined

solelyby the explicit temperature dependence of the escape
ratesG6 . In particular, the classical@cf. Eq. ~1.1!# and the
semiclassical@cf. Eqs.~3.1!, ~3.2!, ~3.3!# transition rates de-
cay exponentially as the temperature decreases. This, to-
gether with the ~classical and semiclassical! condition
Vb@kBT necessary for a separation of time scales, implies
that the SR maxima are determined by the competition be-
tween this exponential decay and the algebraic divergence
(kBT)

22 in h̃1 or in R̃ as the temperature is decreased.
Hence, the detailed balance factor cosh22(e/2kBT)<1 only
plays a minor role, and always suppresses the SR phenom-
enon ~cf. Fig. 7!. With exp(2e/kBT)!1, i.e., Ḡ.G1 the
power amplificationh̃1 is exponentially reduced proportion-
ally to @exp(2e/kBT)#

2; likewise the SNR is exponentially
~but more weakly! reduced proportionally to exp(2e/kBT).
This finding is in accordance with prior studies of SR in
nonequilibrium systems@31#.

~v! On the other hand, in the deep quantum regime, the
decay rates exhibit a smoother~non-Arrenhius! temperature
dependence and remain finite even at zero temperature@17#.
Further, within a two-state description of the incoherent tun-
neling dynamics, the energy splitting of the two discrete en-
ergy levels is of the order of the asymmetry energye. Hence,
the detailed balance factor represents the relative occupation
of the energy levels and plays a crucial role. Whenever
e!kBT the energy levels are almost equally occupied, so
that the limite50 yields no SR phenomenon@22,23#.

III. QUANTUM ENHANCEMENT OF SR

We now apply the linear-response results discussed in the
preceding sections, valid for weak external signals, to the
study of the semiclassical SR. Hence, the study of SR in the
temperature regime where quantum corrections to the classi-
cal rate of activation are important reduces to the evaluation
of the semiclassical escape ratesG1 or G2 at thermal equi-
librium. The thermal escape rateG out of asinglemetastable
state can be evaluated using the thermodynamic method~the
quantum transition-state theory! first proposed by Langer
@32#, or by an equivalent periodic orbit approach@16#. Fol-
lowing Langer, aboveT0 the escape rate is related to the

FIG. 7. Semiclassical amplitudeh̃ 1
sc vs the

asymmetry of the potential~solid line! compared
to the classical power amplitude~dashed line!. As
in the classical case,h̃ 1

sc is maximal for a sym-
metric bistable potential (e50).
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imaginary part ImF of the free energy of the metastable sys-
tem by the relationG52(2/\)(T0 /T) ImF, and belowT0
by G52(2/\) Im F. This method is, in fact, not restricted
to the classical regime, because one can study as well the
quantum partition function of the system. When the potential
is not metastable but consists of two wells, as in Fig. 1, the
Langer method will yield the backward and forward rates as
long as there is no phase coherence between the ‘‘reactant’’
and ‘‘product’’ states. In particular, as shown in Ref.@30#,
the ImF method can be justified for dissipative quantum tun-
neling as long as only incoherent tunneling occurs. However,
because Langer’s method requires thermal equilibrium with
the environment, it does not extend to the region of energy-
diffusion-limited classical escape, occurring for extremely
underdamped systemsĝ(vb)<vbkBT/Vb with ĝ!vb . Such
an extension is possible by use of the quantum kinetic turn-
over approach put forward in@17#. In the following, how-
ever, we shall restrict the discussion to moderate-to-large
friction such that the quantum transition-state theory always
holds.

Starting from a path-integral formulation, the free energy
can be evaluated semiclassically using a steepest-descent ap-
proximation wheneverVb@\vR @13–15,30#. The crossover
temperatureT0 is then just the temperature below which the
lowest energy fluctuation mode around the classical path
q(t)5qb in the invertedmetastable potential2V(q) be-
comes unstable. This instability indicates the appearance of
an additional solution that becomes the dominant~stable!
one belowT0 . Just belowT0 , this new solution is a periodic
~with period \b) oscillation of small amplitude about the
minimum of the inverted metastable potential, called
‘‘bounce.’’ As the temperature is further lowered, the bounce
solution evolves in a way that depends on the nonlinearity of
the potential. For the double-well potential, the bounce solu-
tion evolves far belowT0 into trajectories called ‘‘instan-
tons’’ where the particle starts from the bottom of one well,
traverses the classically forbidden region between the two
wells repeatedly, and finally returns to the starting point
@30,17#. Hence, the appearance of the bounce solution is in-
terpreted as the appearance of a new channel for barrier
crossing~quantum tunneling! which dominates at very low
temperatures. AboveT0 , the presence of the additional
quantum channel for barrier crossing at thermal equilibrium
results in a quantum correction factorf q that merely multi-
plies the classical rate of activation@13–15,33#,

G5 f qGcl , ~3.1!

where

f q5 )
n51

`
1va

21n2n21nnĝ~nn!

2vb
21n2n21nnĝ~nn!

~3.2!

and n52pkBT/\. The factor f q approaches unity for
T@T0 and diverges exactly at the crossover temperature
T0 . This divergence can be regularized taking into account
the deviation of the barrier top from the parabolic form
@14,17#; however, the regularization is only necessary in a
very small region in the vicinity ofT0 ~crossover region in
Fig. 2!. Because, as we shall see, the maxima in the SNR and
in h1 appear well aboveT0 , for our purposes the regulariza-

tion is not needed. At temperaturesT@\va /kB , the leading
quantum corrections are found to be given by the high-
temperature approximation@14#

f q5expF\2

24
~va

21vb
2!/~kBT!2G , ~3.3!

being independent of the dissipative mechanism. Thus, the
overall effect of the quantum fluctuations is to facilitate the
escape because they increase the average energy of the par-
ticle in the metastable wells@the va

2 contribution in ~3.3!#
and because, for a particle that is almost thermally excited up
to the barrier top, they allow for tunneling through the re-
maining barrier region@vb

2 contribution in~3.3!#. As shown
by Eq. ~3.3!, both effects result in an effective reduction of
the barrier and, correspondingly, in an exponential enhance-
ment of the relaxation rate.

So far we have considered arbitrary frequency-dependent
damping. In the following we shall focus on the case of
frequency-independent Ohmic damping where the product
~3.2! can be evaluated exactly in terms of gamma functions
G @33#:

f q5
G~12l0

1/n!G~12l0
2/n!

G~12la
1/n!G~12la

2/n!
, ~3.4!

where, introducing the dimensionless coupling parameter
a5g/2vb , the frequenciesl0

6, la
6 are

l0
652va@a6~a211!1/2#,

~3.5!

la
652vb@a26~a22~va /vb!

2!1/2#.

It is now interesting to observe that for strongly damped
systems a@$1,va /vb% and intermediate temperatures
T0!T!4a2T0 , the above Eq.~3.4! simplifies to@15#

f q5~4a2T0 /T!~11va
2/vb

2
!T/T0, ~3.6!

so that the rate can be enhanced substantially even well
above the crossover temperature. For temperatures
T@4a2T0 , the factorf q is again approximated by the high-
temperature expression Eq.~3.3!. A final remark concerns
the conditionsVb@\vR andVb@kBT that ensure the valid-
ity of the semiclassical approximation and of separation of
time scales, respectively. BecausevR'vb for weakly
damped systems andvR'vb /a for strongly damped sys-
tems @cf. Eq. ~1.4!#, it is apparent that the potential barrier
can be very small compared to the scale\vb when the sys-
tem is heavily damped. On the other hand, for strongly
damped systems the condition of well separated time scales
amounts toVb@(T/T0)(\vb/4pa). The fulfillment of these
conditions has been checked self-consistently in our numeri-
cal results. Further, because, as shown by Eq.~3.3!, the lead-
ing quantum corrections at high temperatures are of order
(\b)2(va

21vb
2), to be consistent with the semiclassical ap-

proximation to the linear susceptibility of Eq.~2.19! we have
to require that 2V2!va

21vb
2 .

In Figs. 3–6 we discuss our results for a symmetric
double-well potential (e50), where the SR phenomenon for
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the semiclassical and classicalh̃1 ~but also forR̃) is maxi-
mal ~cf. Fig. 7!. The semiclassical scaled signal-to-noise ra-
tio R̃sc and scaled power amplitudeh̃1

sc are investigated in
Figs. 3 and 4, respectively, for strong Ohmic coupling
a550. We assume vb5va and barrier height
Vb50.2\vb . For comparison also the classical~i.e. \50)
quantitiesR̃cl and h̃1

cl are plotted~dashed line!. It is now
apparent that for strongly damped systemsand not too high
barriers, quantum fluctuations strongly influence the result-
ing output signal, as compared with the results of a classical
analysis. In particular, the amplitude of the maximum is en-
hanced by quantum corrections and the position of the maxi-
mum itself is shifted towards lower temperatures. As shown
in the insets of Figs. 3 and 4, in the proximity of the cross-
over temperature, the enhancement can even exceed two or-
ders of magnitude. As the coupling constanta is increased,
for fixed barrier height the position of the maximum ofh̃1

(R̃) is shifted toward higher temperatures. On the other
hand, because for strongly damped systems quantum effects
persist well aboveT0 @cf. Eq.~3.6!#, the semiclassical SR can
still differ appreciably from the classical SR. This is shown
in Fig. 5, where the power amplitudeh̃1 is depicted for dif-
ferent values of the Ohmic coupling constanta. We choose
a550, 75, 100~left to right!. The solid lines correspond to
the semiclassical power amplitudeh̃1

sc and the dashed lines
to the classical approximationh̃1

cl . For higher potential bar-
riers and fixed damping, the position of the temperature
maximum inh̃1

sc or R̃sc moves toward higher temperatures
and the system behaves classically. In other words, the
quantum-corrected lines merge into the classical approxima-
tion. As previously mentioned, the position of the tempera-
ture maximumTh1

* of h̃1
sc depends also on the applied exter-

nal frequency. This result is shown in Fig. 6, whereTh1
*

becomes shifted toward lower temperatures as the driving
frequencyV is decreased~the curves are forV/vb51026,
1025, 1024). In the inset, the ratioḠ@Th1

* (V)#/V is de-

picted for five chosen frequency values. It is remarkable that
within four orders of magnitude forV the ratio is approxi-
mately constant and of order unity. Hence, the semiclassical
SR maximum appears roughly at the temperatureTh1

* at

which the semiclassical rateḠ(Th1
* ) is at resonancewith the

driving frequencyV of the coherent external force. Finally,

as discussed above,h̃1 is plotted in Fig. 7 versus the asym-
metry e of the potential shown in Fig. 1, where we use
V9(qa)5V9(2qa)5Mva

2 . As in the classical case~dashed
line! @31#, the semiclassical power amplitude~solid line! is
maximal for symmetric systems.

IV. CONCLUSIONS

In conclusion, we investigated the phenomenon of SR in
relation to the complicated interplay between quantum and
thermal fluctuations. Because the thermal escape rate can be
strongly enhanced in the presence of the additional quantum
tunneling channel, we showed that both the signal-to-noise
ratioR and the power amplitudeh1 can be strongly ampli-
fied by quantum fluctuations~e.g., up to 300 times; cf. the
insets of Figs. 3 and 4!. As a difference compared to the
classical case, in a semiclassical analysis the effects of tem-
perature and dissipation on the escape rate have to be con-
sideredseparately. Hence, our analysis represents the quan-
tum generalization of SR for the Kramers equation@34#,
thereby covering moderate-to-large friction on a unified ba-
sis.

The value itself of the crossover temperatureT0 , where
quantum transitions dominate over tunneling events, strongly
depends on the friction coefficient, especially for heavily
damped systems. In particular, for strongly damped systems,
we showed that the effects of quantum fluctuations on SR
can extend well aboveT0 . At fixed friction, quantum effects
become successively washed out for systems with increasing
barrier heights.

Possibilities for observing the predicted tunneling correc-
tions to classical SR are abundant. These concern all those
systems where quantum corrections to the thermal escape
rate could be established~see Sec. XI of Ref.@17#!. Appli-
cation of a small periodic ac perturbation then allows one to
study these SR quantum corrections. A particularly suitable
experimental system is a SQUID, where quantum corrections
to the escape rate@20#, and very recently the phenomenon of
classical SR@19# itself, have been observed.
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