Erratum: Quantum tunneling and stochastic resonance

Milena Grifoni, Ludwig Hartmann, Sabine Berchtold, and Peter Hänggi

[S1063-651X(97)05410-X]

PACS number(s): 05.40.+j, 05.30.-d, 03.65.Sq, 33.80.Be, 99.10.+g

Five changes need to be made to the original article.
(1) The driving force introduced on p. 5891 is $f(t) = A \cos \Omega t$.
(2) The linear susceptibility $\tilde{\chi}(\Omega)$ should be multiplied in Eq. (2.14) with a minus sign.
(3) P_{eq} below Eq. (2.18) should read

$$P_{eq} = q_c (\Gamma_+ - \Omega_-)/\Gamma.$$

(4) Equation (3.5) should read

$$\lambda_0^+ = - \omega_b [\alpha + (\alpha^2 + 1)^{1/2}], \quad \lambda_a^\pm = - \omega_b [\alpha + (\alpha^2 - (\omega_a/\omega_b)^2)^{1/2}].$$

(5) The inset in Fig. 6 has been modified and the new Fig. 6 is shown below.

FIG. 6. Amplification vs temperature of the semiclassical amplitude η_1^c for different driving frequencies Ω (solid lines). For comparison, the classical power amplitudes are also plotted (dashed lines). The inset shows the ratio $\Gamma(T^*_{\eta_1})/\Omega$ of the rate evaluated at the maximum temperature to the driving frequency Ω. Significant deviations from the empirical law $4\Gamma^{-1}(T^*_{\eta_1}) = (2\pi/\Omega)^{1.2}$ are found, especially at low frequencies.