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Motivated by recent work on stochastic ratchets, we consider the effect of finite inertia onto
the directed motion in a deterministically rocked, periodic potential lacking reflection symmetry.
Characterizing the motion by cumulants of the contracted, time-dependent solution of the Liouville
equation, we can distinguish regular from chaotic transport. The first cumulant describes a stationar
current that exhibits multiple reversals versus increasing driving strength, whereas the secon
cumulant yields a measure for its variance. Chaotic transport exhibits universal (Gaussian) scalin
behavior. [S0031-9007(96)00064-6]
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It is generally appreciated that—in accordance with
second law of thermodynamics—usable work cannot
extracted from equilibrium fluctuations. Devices and ph
nomena that are only in apparent contradiction with t
second law have been discussed by Feynman, Leigh
and Sands [1] and even much earlier in the heyday
Brownian motion by Smoluchowski [2]. In the presen
of nonequilibrium forces the situation changes drastica
Then, directed transport of Brownian particles in asy
metric periodic potentials (ratchets) can be induced by
application of nonthermal forces [3–8] or with the he
of deterministic, periodic coherent forces [4,9,10]. The
nonequilibrium models recently gained much interest
view of their role in describing the physics of molec
lar motors [5,6] and their potential for novel technolog
cal applications on nanoscales and microscales [11].
previous literature on these schemes is characterized
the limitation of using an overdamped ratchet dynam
throughout. A particular challenge thus presents the st
of finite inertia for the ratcheting mechanism in the abse
of thermal and nonthermal forces. With finite inertia, t
dynamics is allowed to become more complex, exhibit
both regular and chaotic behavior. Using the model o
periodically rocked ratchet, we shall investigate the m
tual interplay of regular and chaotic dynamics for direct
transport, in particular, to what extent deterministically
duced chaos mimics the role of noise. In doing so, we
novel diagnostic tools, such as the behavior of cumul
averages for the phase-space probability, whose time
lution is governed in the deterministic limit by a dissip
tive, nonautonomous Liouvillian. Nonstationary effec
such as the broadening of the phase-space probabili
a measure for the fluctuations of the net-flux (on a coa
grained scale)—are taken into account by not applying
riodic boundary conditions.

As a working model, we use an underdamped parti
periodically driven in an asymmetric periodic potential,
0031-9007y96y76(18)y3436(4)$10.00
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eẍstd 1 Ùxstd  2
d

dx
Vmsxd 1 A sinsVtd , (1)

with the potential shown in Fig. 1 (see also [10])

Vmsxd  2sinsxd 2 m sins2xd . (2)

All variables in (1) and (2) are scaled dimensionless andm

is set tom  1y4 throughout this work.
We first briefly discuss the case of massless partic

(e  0), i.e., overdamped motion. The motion is boun
for driving amplitudesA , A0sVd; i.e., the solution of
Eq. (1) approaches a function which is periodic in time f
large times. ForA0sVd , A, the motion can become
unrestricted. The average velocity assumes an asympt
value (that is independent of the initial conditions) of th
form

ynm 
xst 1 nT d 2 xstd

nT


m
n

V , (3)

with integers m and n. A direct consequence of the
overdamped motion is that the net flux is directed towar
the shallow side of the ratchet (positive current), i.e
m, n . 0 in Eq. (3). For finite masse, the situation is

FIG. 1. The ratchet potentialVmsxd  2 sinsxd 2 m sins2xd
for m  1y4, as used in the text.
© 1996 The American Physical Society
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different. The trajectories described by (1) can becom
chaotic; i.e., the trajectories are erratic on a time scale la
against the largest Liapunov coefficient and the net flux c
go in both directions. This raises the key question stud
in this paper: How does intrinsic chaotic motion resemb
noise driven motion in ratchets?

Equation (1) has a variety of solutions which can b
obtained by numerical integration. We are using the
transport properties as a classification criterion. Re
ular trajectories are described byxst 1 nT d  xstd 1

2pm with n [ N andm [ Z . Regular, nontransporting
trajectories are being characterized by tuplessn, m  0d.
Regular, transporting solutions are characterized by
tuples sn, m fi 0d. These trajectories are periodic with
period n (subharmonic forn . 1) on a toroidal phase
space obtained by using periodic boundary condition
i.e., x is identified with x 1 2p. In contrast to the
overdamped case the transport can now be due to the ine
in either direction; i.e., the average velocity can assume
values given in Eq. (3) withm  0, 61, 62, . . . . Given
a fixed set of parameters, it is important to note that
depending on the initial conditions—different classes
trajectories have been observed by numerical simulati
For example, atA  0.624, V  0.1, e  20, asymptotic
trajectories are either periodic, (1,0), or current carryin
s2, 21d. This situation calls for interesting technologica
applications, since it allows for the separation of particl
starting with different initial conditions (a detailed discus
sion will be published elsewhere [12]).

A third class is chaotic trajectories. Their behavior h
been studied by numerically simulating the time evolutio
of an initial probability density insx, Ùxd space (see below
for details). ForV  0.1, e  20, and those values ofA
in 0 , A , 10, where the system is living on a chaoti
attractor, there was always a net drift to the right or
the left; i.e., particles move on average either to the l
or to the right. The chaotic attractor can be observed
a stroboscopic plot insx, Ùxd space after mapping the un
bounded dynamics in space onto one period of the p
tential, i.e., xstd ! xstd smod2pd. We did not observe
coexisting chaotic attractors in our working model (1). F
chaotic maps with periodic forces, the onset of diffusiv
behavior caused by the memory loss due to chaotic
namics has been studied some time ago [13].

By integrating Eq. (1) numerically, one realizes th
the drift of a single chaotic trajectory exhibits stron
fluctuations. An appropriate tool for describing transpo
is therefore a time-dependent probability measure. Giv
the initial probability densityr0sx, Ùx, td, its time evolution
is given by

rsx, Ùx, td 
Z

dx0
Z

d Ùx0 dsssx 2 xdsx0, Ùx0, tdddd

3dsss Ùx 2 Ùxdsx0, Ùx0, tdddd r0sx0, Ùx0d . (4)

Here xdsx0, Ùx0, td is the solution of (1) with initial con-
ditions xdst  0d  x0 and Ùxdst  0d  Ùx0. In contrast
to the conventional treatment, we donot apply periodic
e
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boundary conditions. This allows us to study the broa
ening of the probability density as a function of time [12

As an example for the chaotic regime, we depict
Fig. 2(a) the time evolution of the contracted probab
ity density r̄sx, td 

R
d Ùx0 rsx, Ùx0, td for A  0.79, V 

0.1, e  20 andm  1y4. Thex axis has been partitioned
so that one partition ranges over one period of the
tential. The initial probability density was chosen Gaus
ian with a width of1y2 in space andÙxst  0d  0. On
a short time scale the probability density becomes m
complicated, but approaches asymptotically a Gauss
shape; cf. Fig. 2(b). Because we are not interested in t
scales of a single period, where one observes the osc
tory contribution of the driving force, we switch to a coar
grained description by looking at the system strobosco
cally st  nT  2pnyVd. Time t will therefore denote
these stroboscopic times. In Fig. 3, we show the first a
second cumulants of the probability density as a funct
of time. Apart from initial transients, we observe a line
mean and a linear variance—typical for Brownian motio
The third cumulant and higher cumulants contain more
the detailed structure of the density, and are therefore m

FIG. 2. Snapshots of the probability density, obtained
simulating 50 000 trajectories, are shown in (a) forA 
0.79, V  0.1, ande  20. The universal, normalized scalin
function p̄sx̃, td, Eq. (7), obtained from the same densities
shown in (b).
3437
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FIG. 3. The first two cumulantsC1std and C2std for A 
0.79, V  0.1, and e  20 are shown stroboscopically as
function of time (tn  nT).

complicated functions of time. As a common feature w
find that their modulus increases slower thant3y2.

Based on the observations above, we will show
the following that the probability density will becom
effectively Gaussian.Thus the first and second cumulan
are sufficient to describe the time evolution and transp

The characteristic functionFssd  kexpf2isxstdgl of
the contracted probability densitȳrsx, td is written in
terms of its cumulantsCkstd as

Fssd  exp

√
2isC1std 2

1
2

s2C2std 1
X̀
k3

s2isdk

k!
Ckstd

!
.

(5)

Making use of the numerically observed behavior f
large times, i.e.,C1std  yt, andC2std  s2t as t ! `,
we can analyze the long time behavior of the probabil
density. First, we introduce the integration variableu 
s
p

t, and define the relative positioñx  x 2 yt. The
scaled probability densitȳpsx̃, td  r̄sx, td can then be
written as

p̄sx̃, td 
1

p
t

Z `

2`

exp

"
iu

x̃
p

t
2

1
2

s2u2

#

3 exp

"X̀
k3

s2iudk

k!
t2ky2Ckstd

#
du . (6)

In the scaling limitt ! ` with x̃y
p

t kept constant, the
termsCk$3std in the second exponential become irreleva
(this, of course, relies on the observation that fork $ 3
Ckytky2 ! 0 ast ! `).

The first two terms, which are relevant in the scali
limit, describe a Gaussian density with the scaling fo
t21y2fsx̃y

p
td, while the other terms describe correctio

to it. With the knowledge of all coefficients, thos
corrections to scaling can be obtained by expanding
second exponential, leading to an asymptotic expans
of p̄,

p̄sx̃, td 
1

p
t

f

√
x̃
p

t

! "
1 1 t23y2C3stdh

µ
x̃
p

t

∂
1 · · ·

#
,

(7)

whereh is an analytic function describing the leading co
rection to scaling, andfsyd  exps2y2y2s2d. Therefore,
3438
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for large times, the probability density approaches a sh
which allows rescaling to a (universal) Gaussian dist
bution; see Fig. 2(b). The long time evolution does n
depend on the choice of the initial probability. It is inte
esting to comparēpsx̃, td to the time-dependent probabil
ity density of a Brownian particle in a symmetric period
potential (see, e.g., in [14]). For large times it show
apart from the vanishing drift, the scaling form (7).

In case of a single regular attractor, i.e., all traject
ries are regular and obeyxst 1 nT d  xstd 1 2pm with
the same tuplesn, md, the probability density for large
times approaches a positive normalized function of t
form r̄sx, t ! `d  fsx 2 ytd with y  mVyn. The
characteristic function offsx 2 ytd, given byfsy, sd 
exps2iytsdf0ssd, wheref0ssd is time independent, im-
plies a first cumulantC1std  yt and constant higher cu-
mulantsCk$2 (see Fig. 4). For nontransporting regula
attractors, i.e.,y  0, all cumulants are time independen
corresponding to a stationary probability density. We r
mind the reader that the time scalet is actually a coarse
grained time scale, on which periodic variations of th
probability density withinnT are not visible.

In the case of coexisting regular attractors diffe
ent trajectories, corresponding to different setssn1, m1d
and sn2, m2d, are drifting with different average veloci
tiesy1  m1Vyn1 andy2  m2Vyn2, respectively. The
probability density consists of several moving pea
with constant widths each (for large times), but gene
ally different velocities,y2 fi y1. The cumulant generat-
ing function, gssd  ln fssd  lnfexps2iy1tsdfs1d

0 ssd 1

exps2iy2tsdfs2d
0 ssdg yields cumulants of the formCkstd ~

tk . The first cumulant is again linear in time, i.e.,C1std 
at  sAy1 1 By2dt, where A and B are the relative
weights of the two coexisting attractors. The second c
mulant C2std is, in contrast to the cases above, quadra
in time. Such a case is realized, for example, with t
parameter valuesA  0.624, V  0.1, ande  20.

With the above developed tools, we will now analyz
the transport properties in the asymmetric periodic p
tential. In Fig. 5, we depict the currenty as a func-
tion of the driving amplitude ate  20. In the range
0 , A , 1.00, where the overdamped system (e  0)

FIG. 4. The first two cumulantsC1std and C2std for A 
1.1, V  0.1, and e  20 are shown stroboscopically as
function of time (tn  nT ).
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always exhibits either zero or positive current, we o
serve a variety of transport phenomena: in situations w
zero transport, i.e.,y  0, the system has a single reg
ular attractor with periodn  1. The transport in the
interval 0.61 , A , 0.64 is regular for most parts. In
this region we find a negative current. Applying our d
agnostic tools above, we conclude from the depende
C2std ~ t2 that there are coexisting regular attractors [1
As a check, a stroboscopic plot yields a regular beha
that does not match with any of the valuesynm  mVyn,
because the transport is regular with contributions fr
several coexisting regular attractors. ForA . 0.7, the
motion is typically chaotic. As an example we sho
Fig. 3 (A  0.79). The linear dependence of the first tw
cumulants as a function of time implies chaotic motio
This is confirmed by a stroboscopic plot. The transpor
negative, which is towards the steep side of the poten
(cf. Fig. 1), for all trajectories. At some parameters (e.
A  0.615), we observe behavior which resembles reg
lar transport for small times, with a clear-cut transitio
to diffusive chaotic transport for large times (see [12] f
a detailed discussion). For larger amplitudesA . 1, one
finds regular regimes and chaotic regimes. The curre
in the chaotic regimes are directed in either the posit
or the negative direction. The linear time dependence
the first and second cumulants, the observation that
higher cumulantsCn$3std increase slower thant3y2, and
the resulting scaling laws, as presented above, apply in
tested cases inA , 10.

In summary, we have presented novel results for
inertia ratchet. The system can exhibit a current flow
either direction (multiple current reversals). The directi
can be controlled by adjusting the amplitude of t
external, periodic driving (cf. Fig. 5); furthermore,
depends sensitively on the strength of the inertia a

FIG. 5. The transport coefficienty  ÙC1st ! `d is shown as
a function of the driving amplitudeA for e  20 andV  0.1.
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friction [16]. This makes it especially interesting for
technological applications. The system’s dynamics
characterized by the time dependence of cumulants
the particle distribution. In the case of directed chaoti
transport, the second cumulant is a measure for th
intrinsic current fluctuations,and thus for the reliability
of the ratchet mechanism. Our diagnostic tools allow
distinction between different forms of regular and chaoti
transport; these enable a systematic description of cha
induced currents in terms of a universal Gaussian scalin
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