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Abstract 

We study directed motion of a Brownian particle in a periodic “ratchet”-potential due to a periodically oscillating 
temperature of the thermal environment. Precise numerical results are compared against analytical approximations for 
asymptotically slow and fast temperature oscillations. This “diffusion-ratchet” tends to resist carrying a current for slow and 
fast temperature modulations, while showing a maximal current at moderate frequencies. 
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1. Introduction and model 

Directed Brownian motion induced by non-equilib- 

rium noise in the absence of macroscopic forces and 
potential gradients is presently under intense investi- 
gation [ I]. While in thermal equilibrium such an ef- 
fect is ruled out by the second law of thermodynam- 
ics, in the non-equilibrium case it apparently can be 

realized always by a suitably tailored “Brownian mo- 
tor” [ 2,3]. Besides interesting technological applica- 
tions like novel mass separation methods, this trans- 
port mechanism may also be of relevance for intra- 

cellular processes [ 41. 
In this letter we study a one-dimensional over- 

damped Brownian particle in a periodic potential, 
V(x + L) = V(x), subject to thermal fluctuations 
with a periodically modulated temperature, 

k(t) = -V/(x(t)) + J2Dol(t), (1) 

’ Present address: EijtvBs University, Puskin-u. 5-7, H-1088 Bu- 

dapest, Hungary. 

where D(t + 7) = D(t) and D(t) > 0 for all t. The 

friction coefficient has been absorbed into the time 

scale, D(t) and 7 = 21r/w stand for the correspond- 
ingly resealed temperature and period, respectively, 

and t(t) is Gaussian white noise of zero mean and 
variance (c(t) t(s)) = 6( r - s). This model will be 

valid under the (very weak) assumption of local (or 
accompanying) thermal equilibrium, i.e., provided the 

thermalization of the immediate environment of the 
Brownian particle is much faster than the time scale 7 
of the temperature oscillations. In practice, these os- 
cillations may be realized by periodically adding and 

extracting heat, or alternatively, e.g., by modulating 
the pressure. From a different point of view, one may 
also consider t(t) in ( I ) as an externally imposed 
Gaussian white noise of oscillating intensity D(t). 
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2. General properties 

The probability density of the noisy dynamics ( 1) 
is governed by the Fokker-Planck equation 

$Ix. t) + &, t) = 0, 

.i(X.f) := - ( V’(x) +D(t)& P(x,t). > (3) 

Restricting ourselves to the long time limit, the solu- 

tion P (x, I) will be periodic in time and space, P ( x + 
L,r) = P(x,f + 7) = P(x,t), and is conveniently 

* normalized on the unit interval, JO” P(x, t) dx = 1. 

The quantity of central interest is the time-averaged 
probability current 

7 

J := -+ 
J’ 

j(x.t) dt, (4) 

0 

where the x-independence of J can be readily veri- 
fied by exploiting (2) and P(x, t + 7) = P(x, t). 
Note that the average particle velocity (i) := 

lim ,-,( l/t) J;(W))d s is related to the probability 

current (4) according to* 

(i) = LJ. (5) 

Obviously, a non-vanishing current J is only possible 
for a periodic potential V(x) with broken spatial sym- 
metry (“ratchet”). Even then, in the fast oscillation 
limit w = 2n/7 t 00, the Brownian particle ( 1) will 

behave like in the presence of a time-averaged con- 

stant temperature. Since this corresponds to thermal 
equilibrium, we conclude that J + 0 when o -+ 0;). 
Similarly, in the adiabatic limit 6~ -+ 0 each parti- 
cle experiences a quenched realization of the temper- 

ature, yielding again J --+ 0. It is therefore not ob- 
vious at first glance whether directed motion J # 0 
can be generated at all by our “diffusion ratchet” ( 1) . 
This is in clear contrast to a similar model, but with 
a sparial rather than a temporul periodic temperature, 
where J # 0 is a trivial consequence of the so-called 

“blowtorch” effect [ 51. 

’ Proof: Exploiting ( I ) one can see that (a) = (l/T) X 

i: dt,~:d.uP(x,t) [-V’(r)]. With (3) and (4) it then fol- 

lows that (i) - LJ = (l/7) S,;d&dxD(t) dP(x,r)/3x = 0. 

W 

Fig. 1. Probability current J versus oscillation frequency w for 

the “diffusion ratchet” ( 1). (6). (7) at the parameter values 

Do = 0.1 and A = 0.7. The solid line shows numerical results 

from a matrix continued fraction calculation and the dashed line 

is the theoretical large-o asymptotics ( 16). The dotted straight 

line of slope 2 corresponds to the w?-asymptotics for small w. 
predicted in Section 4.3. The used ratchet potential t 6) is plotted 

in the inset. 

If the periodic potential and the oscillating tem- 

perature can be expressed in terms of a few Fourier 
modes, one can evaluate the current J very efficiently 
and with high accuracy by means of matrix continued 
fraction techniques, see e.g. in Ref. [ 61 (note the ap- 

plications) and further references therein. As an ex- 

ample we choose 

V(x) = v,(x) 
:= [ sin( 2nx) + 0.25 sin( 4rx) ] /27T, (6) 

D(r) = Do[ I + A sin( wr>]*. (7) 

In Figs. 1 and 2 the numerically determined current J 
is plotted for various representative values of the pa- 
rameters w, A, and Do in (7). In agreement with our 
prediction, J(w) vanishes for asymptotically small 
and large W, but is definitely non-zero inbetween, with 

a pronounced maximum at an A- and Do-dependent 
o-value. For fixed DO, this maximal current is mono- 
tonically increasing with [A(. On the other hand, for 
a fixed parameter A, the maximal current is obvi- 

ously zero for DO = 0, reaches an absolute maxi- 

mum at a Do-value comparable to the barrier height 
max, V(x) - min, V(x), and, not unexpected, van- 
ishes again for Do + co. For weak noise DO, the lo- 

cation of the current maximum J(w) depends only 
weakly on A, cf. Fig. 2a. For moderate-to-large noise 
DO, this maximum shifts to larger w-values with de- 
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Fig. 2. The probability current J for the “diffusion ratchet” (I), 

(6). (7 ) as a function of the temperature modulation frequency 

w and amplitude A at different noise intensities Do = 0.1 (a) and 

D,, = 0.5 (b). Numerical matrix continued fraction results (solid) 

are compared with the fast modulation theory in ( 16) (dashed). 

creasing A-values, cf. Fig. 2b. A natural question, 
which is difficult to answer numerically and thus rep- 
resents an analytical challenge, is whether the current 
will have the same sign for all finite w-values what- 
ever ratchet potential V(x) and diffusion coefficient 
5(t) is chosen, or not. 

3. Transformation into a flashing ratchet 

One can get rid of the unusual time-dependent 

diffusion coefficient in the Langevin equation ( 1) 

by means of the common transformation y(t) := 
x(t) [D(t)]-‘/*, yielding 

(8) 

Unfortunately, the transformed potential (9) now de- 
pends periodically on time and, worse, is not even peri- 

odic in space anymore. Hence, we are not able to draw 
any useful conclusion from (8). However, prominent 

insight is gained by the time transformation [ 7 ] 

i(t) := s 5(s) ds, (10) 

0 

which has a well-defined inverse t(i) due to the pos- 
itivity of 5(r). One readily sees that this transforma- 
tion is equivalent to considering the noisy dynamics 

i(i) = - V’(x(f) 1 
D(t(f)) 

+ JzsctL 

instead of ( 1) . Moreover, one finds that the averaged 

currents J are equal for the processes ( 1) and ( 11). 
In particular, one recovers J -+ 0 for o 4 0 and 

o + cc from (11). The dynamics (11) describes 
a Brownian particle in a fixed thermal environment 
but with a spatially homogeneous time-periodic mod- 
ulation of the ratchet potential, i.e., a variant of the 
so-called “flashing ratchet” or “fluctuating potential 

ratchet” [ 3 1. While this equivalence of ( 1) and ( I I > 
considerably extends the scope of our present work, it 
does not lead to significant simplifications and there- 

fore is not used in the subsequent analytical approxi- 
mations. 

4. Asymptotic analysis 

After a couple of unsuccessful attempts it becomes 
apparent that a closed analytical solution of (2) - (4)) 
like for most non-equilibrium problems, is probably 

impossible. In the following we focus on an asymp- 
totic analysis for fast and slow oscillations. For conve- 
nience we will work throughout this section with the 

resealed time f := tw and the correspondingly resealed 

B(0 :=D(t(Fj) and W,(x,i) :=P(x,t(tl)).where 
t(I) := i/o. Finally, we use for this new time i again 
the previous symbol t. Hence, n(t) is now a 2a- 
periodic, w-independent function given by 

B(t) = 5( r/w,, (12) 

while Ww(x, I) = P(x, t/m) is also 2r-periodic in 
time but still parametrically o-dependent. 
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4.1. Fast oscillations 

For fast oscillations w > 1 we expand the resealed 
density W,( x, t) with respect to the parameter o as 

Wu(x,t)+~-‘Wt(x,t)+....Forphysicalreasonsitis 
clear that in the limit w = 03 the density W,( x, t) and 
therefore WO( x, t) is time-independent, WO( x, t) = 
WO ( x) Further, the normalization and periodic bound- 

ary conditions on W,,,(x, t) imply Wi(x + L, t) = 

W,(X,~ +2~) = Wi(x,t) and JoLWi(~,t)dx = 6i,c, 
whet-e i > 0 and 8~ is the Kronecker delta. From 
the Fokker-Planck equations (2)) (3) the functions 

W, (a-, t) can now be readily determined by comparing 
the coefficients of equal order oei. We briefly exem- 
plify the typical line of reasoning for the order w”- 

terms. The corresponding coefficients in the Fokker- 
Planck equation (2) lead to the identity 

aw, (x, t) J2Wo(x) 

dr 
-A(t) dx2 

= $ V’(x) +D& We(x), ( > (13) 

where D and A(t) denote the averaged and the oscil- 
lating parts of D(t), 

27r 

D := & 
.I 

D(t) dt, A(r) := d(t) - D. ( 14) 

0 

Clearly, both sides of (13) are equal to a time-inde- 
pendent, spatially periodic function. Hence, [V’(x) + 
L%,Jax 1 Wa( x) must be equal to an unknown function 
f( .I-) satisfying f(x + L) = f(x). Upon integration 
this yields 

x 

WO(X) = e- vcr,/b 

( J C + dy evcy)/‘,f( y) /D 
> 

, 

0 

(15) 

where C is an integration constant. Exploiting the x- 

independence of the time-averaged current (4) one 
can conclude that f(x) must be a constant. Further, 
WO(X + L) = Wa(x) implies f(x) = 0 and C is fixed 

by the normalization condition Jo” WO( x) dx = 1. For 
the current (4) this finally yields J = 0 in leading 
order w. Proceeding in the same way up to the next 
order w’ still gives a zero result for the current! The 

first non-vanishing contribution is obtained in order 
w* and reads 

J= 2S,2”dt[SddSA(s)12SOLdXV’(x) V”(x)’ 

w2 62 71.SOLdXeV(x)/f)SoLdXe-V’“‘/D 

+ O(d). (16) 

As expected, the current vanishes for D -+ 0 and 

B ---f 00 as well as for potentials V(x) with spa- 
tial inversion symmetry. For small d the integral 
$dXeV’“)iDJ; dx e-v(*)/b becomes comparable to 
the inverse transition rates between adjacent potential 
minima of V(x) and, together with we2, dominates 
the magnitude of the current J. The invariance under 

w I--+ --w is not obvious and indeed is broken in the 

higher-order terms O(w-‘) unless this symmetry is 
already present in the underlying dynamics ( I ). The 

integral JF dt [ sd ds A(s) ] * alludes to an effective 

time correlation of D(t) and, surprisingly, the fac- 

tor sd_ dx V’(x) V”(x) 2 also arises in the completely 
different context of a “correlation ratchet” [ 81. Yet, a 
reasonably convincing intuitive explanation of these 
terms seems impossible to us. The comparison of ( 16) 

with the numerical results in Figs. l-3 is excellent. 

4.2. Current inversion 

The sign of Jo” dx V’(x) V”(x)* and thus of J in 
( 16) is positive for the specific ratchet potential V?(x) 
from (6)) but may be negative for other examples like 

V(x) = b(x) := {sin(2?zx)+0.2sin[47T(x-0.45)] 

f0.1 sin[6r(x - 0.45)]}/2~, (17) 

see the inset of Fig. 3. By continuously deforming the 
potential Vz (x) into \/[1 (x) it follows that there must ,. 
exist certain V(x) = V(x) for which J changes sign as 
a function of OJ, where we tacitly excluded the highly 
ungeneric possibility that J identically vanishes for all 
w. An example for such a potential p(x) is V,(x) it- 

self, see Fig. 3. Recalling that in (1) we already ab- 
sorbed the friction coefficient of the Brownian particle 
into the time scale, it follows that in the original (un- 
scaled) system, particles with different friction coef- 
ficients will move in opposite directions for the same 
properly chosen ratchet potential and the same peri- 
odically varying thermal environment. Similar conclu- 
sions apply for a periodically oscillating ratchet and a 
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Fig. 3. Same as Fig. 1, but for the ratchet potential y(x) from 
( 17). Note that the current inversion is not a consequence of the 
slight extra “shoulder” of I$ (x) as compared to V2 (n) from Fig. 1, 
but rather of the proper interplay of V’(x) and V”(x) in ( 16). 

fixed thermal environment, cf. ( 10) and ( 11). Inter- 
esting applications of this effect like friction-sensitive 
separation methods for Brownian objects seem likely. 

4.3. Slow oscillations 

Finally, we briefly turn to the analytic treatment of 

the slow oscillation limit w -+ 0. By a similar line of 

reasoning as for 0 + cc one can rewrite Ww(x, t) 
under the form WO(X, t) + wW1 (x, t) + . . . and by 
comparing powers of w in the Fokker-Planck equation 
(2) one finds for the current (4) that 

x [(0(x - y) V(Y,)t - (@(x - Y))t(V(Y>L] 

+ O(w2L (18) 

where O(X) denotes the Heavyside step function and 

the time-dependent average (f(x, y)), of a function 
f( X, y) is defined as 

(f(x?Y))t 

exp{[V(x) - V(.v)l/@f)) 

J,“dxJoLdy exp{lV(x) - V(v)l/&f)) 
(19) 

The leading-order contribution in ( 18) vanishes if the 
dynamics is invariant under spatial inversion V(x) H 
V( -x) but also if time-inversion symmetry w H --w 
is respected, as for instance for the example (7). In 

the latter case one has to proceed to second-order per- 
turbation theory. Though the calculations are straight- 
forward, the resulting expression is quite lengthy but 
not very illuminating and is therefore not given here. 

We, however, observe that the numerical results from 
Fig. 1 indeed show the expected 02-asymptotics for 
small w-values. 

5. Conclusions 

We studied the overdamped Brownian motion in a 

one-dimensional ratchet potential in the presence of 
an oscillating temperature. By means of matrix con- 

tinued fraction methods we obtained accurate numer- 
ical results for the current in the long time limit. For 
asymptotically fast and slow oscillations we derived 
analytical approximations which compare very well 
with the numerics. In particular, we demonstrated that 

for properly chosen ratchet potentials V(x) a current 
inversion as a function of the oscillation frequency w 
arises. 

Apparently, our “diffusion ratchet” tends to resist 
carrying a finite current: It starts only proportional 

to w-* for fast oscillations and, in many cases, van- 
ishes again like U* for slow oscillations. A further re- 
markable observation is that such a diffusion ratchet is 
equivalent to a “flashing ratchet” as given in Eq. ( 11). 

We finally note that a modulation of the diffusion typi- 
cally yields a current in the opposite direction as com- 
pared to that induced by applying a modulated force 
(“rocking ratchet”) (see Fig. la in Ref. [9], where 
the ratchet potential V(x) = -V2 (x) is used.). 
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