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We consider a single-mode dye laser with colored pump noise and white quantum noise. An analytical
approach is applied to study the statistics of the intensity fluctuations for arbitrary correlation times of the
pump noise. Full numerical solutions are compared with our approximation and previous approximations
schemes. The present approximation scheme compares favorably over wide regimes in parameter space with
the numerical data.
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I. INTRODUCTION

The single-mode dye-laser equation@1# has been estab-
lished as a paradigmatic system for colored-noise theory@2#.
It has been shown to describe experimental results very well
@3#, but is yet simple enough to allow for analytical methods.
In contrast to the single-mode laser equation, the dye-laser
equation includes a term describing the fluctuations of the
pump parameter being imposed on the system by the pump
mechanism. To account for the experimental results, the
pump noise has to be exponentially correlated@1,3#.

Well above threshold, the fluctuations due to
spontaneous-emission processes~quantum noise! can be ne-
glected and the dye-laser equation reduces to a Langevin
equation with multiplicative colored noise. This reduced
equation has been solved analytically for small correlation
times in@4# and later on for the entire range of small to large
correlation times in Ref.@5#. Full numerical solutions for
arbitrary values of the correlation time have been presented
in @6#.

Closer to threshold, the quantum fluctuations cannot be
neglected and one has to deal with a Langevin equation with
two noise sources, the colored pump noise and the white
quantum noise. Theoretically, this problem is much more
challenging since, e.g., the standard small correlation time
expansion yields non-Fokker-Planck terms in third order.
Full numerical solutions have been presented in@7#. While
approximations for small correlation times have been put
forth in @8,9#, we present in this paper the applications of an
alternative approach@10#, valid over anextendedregime of
pump noise color.

In Sec. II we present the approximation scheme for the
dye-laser equation with colored pump and white quantum
noise. In Sec. III we compare the resulting stationary prob-
ability density for the laser intensity with full numerical re-
sults @7#. In Sec. IV we summarize our results.

II. DYE-LASER EQUATIONS
AND APPROXIMATION SCHEMES

An adiabatic elimination of polarization and inversion in
semiclassical laser theory yields an equation for the laser-

field amplitude. In the presence of white quantum noise the
dye-laser equation for the photon intensityĪ assumes the
Stratonovitch stochastic differential equation@7#

IG52~ ā2B̄Ī ! Ī1
D̄

2
12 Ī ē~ t̄ !1A2D̄ Ī j̄1~ t̄ !, ~1!

where the pump noiseē( t̄ ) is exponentially correlated
Gaussian noise, i.e.,

eG 52
ē

t̄
1

A2Q̄
t̄

j̄2~ t̄ !. ~2!

The fluctuationsj̄1,2( t̄) denote uncorrelated white Gaussian
noise forces of vanishing mean, obeying
^j̄ i( t̄) j̄ j ( s̄ )&5d i jd( t̄2 s̄ ). The pump noise is exponentially
correlated as

^ē~ t̄ !ē~ s̄ !&5
Q̄

t̄
e2u t̄ 2 s̄ u/ t̄ , ~3!

with variancê ē2&5Q̄/ t̄ and noise correlation timet̄. Real-
istic values of the pump parameterā, the saturation param-
eter B̄, and the noise intensitiesD̄ and Q̄ of the dye-laser
model @1# have been obtained in@3# by comparing experi-
mentally obtained, switch-on time distributions with simula-
tions of the model. Operating the laser far above threshold, a
typical set of parameters is given byā50.73106 s21,

B̄50.1143106 s21, D̄5831023 s21, Q̄54.93103s21,
and t̄5531027 s.

For further analysis we adopt a dimensionless form of the
laser equation@2#. With use of a dimensionless pump par
ameter a, we scale as follows: time t5(ā/a) t̄;
t5(ā/a) t̄; Q5(a/ā)Q̄; D5(a2/ā2)B̄ D̄; I5(a/ā)B̄ Ī ;
j i(t)5Aa/āj̄ i~ t̄ !; i51,2, ande(t)5(a/ā) ē( t̄ ). This in turn
precisely yields the dimensionless equations~1!–~3! without
any overbars and withB̄→1. Most importantly, the scaled
correlation timet typically, e.g., ata 5 1, ranges between
t50.1 and 1. This selects approximation schemes for small
and moderatet, presented below, as most relevant for the
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photon statistics of the dye laser. For example, the above
value of the noise correlation time yields a scaled value of
t50.35.

To simplify the notation within our colored-noise ap-
proximation to Eq.~1! we set

f ~ I ![2~a2I !I1D/2, g~ I ![2I , h~ I ![AI . ~4!

In constructing a theoretical approximation to the colored-
noise dynamics in Eqs.~1! and ~2! we attempt to cover a
large regime of correlation timest. Hence we focus on a
nonsystematic approach that globally covers a wide regime
of parameter values. In contrast, the previous theories in
@8,9# are of an asymptotic nature covering the limiting re-
gime of small noise colort!1. To construct an approxima-
tion that covers a wider regime we follow the reasoning of
the theory put forth in Ref.@10#.

An effective Markovian approximation to Eq.~1! is based
on the principle of adiabatic elimination. At smallt, a
simple adiabatic elimination of thee process yields the
white-noise Markovian approximation to Eq.~1!. Thus, in
order to cover noise correlation timest of small to interme-
diate order a more judicious choice is needed for the process
that is to become adiabatically eliminated. This procedure in
turn will yield a one-dimensional Markovian approximation
to the joint process in Eqs.~1! and~2! for which the station-
ary probability can be expressed in terms of quadratures. In
doing so, we shall transformnonlinearly the pair process
(I ,e) to a new pair process (I ,u̇). This comes at a price; the
new auxiliary processu̇ no longer has a simple physical
meaning, but it leads to an effective Markovian approxima-
tion that covers also moderate values of noise color; see be-
low in Eq. ~11!. For our dye-laser system this auxiliary pro-
cessu̇ is given by

u̇5e1
f ~ I !/g~ I !

A~ I ,t!
, ~5!

with

A~ I ,t!511
h2~ I !

Rg2~ I ! F12tg~ I !S f ~ I !g~ I ! D 8G . ~6!

HereR[Q/D equals the noise ratio and the prime denotes
differentiation with respect toI . In terms of u̇, Eq. ~1! is
recast as

İ5gu̇2
12A

A
f1hA2Dj1 . ~7!

Because the processu̇ doesnot contain white-noise forces,
we can perform a derivative with respect to time, yielding

ü5 ė1S ~ f /g!

A D 8
İ ~8!

52g~ I ,t!u̇1
~ f /g!

At F12tg~12A!S ~ f /g!

A D 8G
1

A2Q
t

j21S ~ f /g!

A D 8
h~ I !A2Dj1 , ~9!

with the ‘‘effective friction’’ g(I ,t) given by

g~ I ,t!5
1

A H F1t 2g~ f /g!8G S 11
h2D

g2QD1 f
A8

A J
5

~114RI!~4tI 212I1tD !

t@~8R14t!I 212I1tD#

2
8RI@4I ~a2I !1D#~ I1tD !

@~8R14t!I 212I1tD#2
. ~10!

The prerequisites for an effective adiabatic elimination of the
auxiliary processu̇ are as follows@5#. ~i! The effective fric-
tion must assume large values, implyingü'0. ~ii ! The re-
duction to a single process requires a smooth forceK(I ,t),
given by the second term on the right-hand side in Eq.~9!.
This means that@K(I ,t)/g(I ,t)#8 shall not assume large
values. ~iii ! The stationary probabilityp(I ,u̇) should ap-
proximately separate, i.e.,p(I ,u̇)'p(I )p(u̇). In applying
the resulting approximation, conditions~i! and ~ii ! must be
checked self-consistently as a function of the parameters; see
below Eq. ~22!. With our choice foru̇, the latter property
~iii ! holds true exactly for a linear dynamics@10#.

With t<1, the effective frictiong(I ,t) takes on large
values. Settingü50, one finds the Stratonovitch stochastic
differential equation

İ5
1

tg~ I ,t! H 2~a2I !I1
D

2
1A2D~4RI21I !j~ t !J ,

~11!

with j(t) being a Gaussian white noise, obeying
^j(t)j(s)&5d(t2s). Its stationary solution can readily be
obtained in terms of quadratures, i.e.,

p~ I ,t!5
Z21

@Deff~ I ,t!#1/2
exp@2F~ I ,t!/D#, ~12!

whereZ21 is a constant of normalization.Deff is the effec-
tive diffusion coefficient, reading

Deff5
D~ I14RI2!

@tg~ I ,t!#2
, ~13!

andF(I ,t) is given by

F~ I ,t!52E I
f ~y!F12tg~y!S f ~y!

g~ I ! D 8Gdy
Rg2~y!A~y,t!

2tE I f 2~y!A8~y,t!dy

A2~y,t!@h2~y!1Rg2~y!#
. ~14!

In the opposite limitt@1, the auxiliary variableu̇ goes to
zero ast→`. Then the first term on the right-hand side of
Eq. ~7! goes to zero while the second term approaches
f (I ). An approximative Markovian stochastic differential
equation for large noise color hence reads

İ5

f ~ I !F12tg~ I !S f ~ I !g~ I ! D 8Gh2~ I !
A~ I ,t!Rg2~ I !

1h~ I !A2Dj1 . ~15!
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The stationary solution is given by Eq.~11! with Deff(I ,t)
substituted by

Deff~ I ,t!5Dh2~ I !5DI . ~16!

The correspondingF(I ,t) coincides precisely with the first
contribution in Eq.~14!. On observing that thisF(I ,t) ap-
proaches the correct limit both att50 and ast→`, one can
concoct a crossover approximation. With the drift part taken
from Eq. ~4! one then finds

İ5 f ~ I !1A2DC~ I ,t!h~ I !j~ t !, ~17!

where

DC~ I ,t!5
DRA~ I ,t!g2~ I !

F12tg~ I !S f ~ I !g~ I ! D 8Gh2~ I ! . ~18!

Its effective diffusion coefficient equalsDC(I ,t)h
2(I ) and

F(x,t) coincides again with the first term in Eq.~14!.

III. STATIONARY PROBABILITY

In this section we shall compare our approximation
schemes put forth in the preceding section versus precise

numerics of the exact stationary probability as given by the
corresponding two-dimensional Fokker-Planck equation; cf.
Eqs. ~1! and ~2!. This exact stationary probability is evalu-
ated by the method of matrix continued fractions detailed in
@7#. In the following we compare the quality of the colored-
noise approximation in Eq.~11! ~for small t), in Eq. ~15!
~for large t), and for the crossover approach in Eqs.~17!
versus numerically precise results. In addition, for small val-
ues of t, we compare the results with the previously ob-
tained small-t theories by Aguado and San Miguel (A) @8#
and by Peacock-Lo´pezet al. (P) @9#. The corresponding ap-
proximations for the stationary probability read

p~ I ,t!5
Z21AI

ADA,P~ I ,t!
expF E

0

I 2y~a2y!dy

DA,P~y,t! G , ~19!

where the diffusion coefficientDA(I ,t) refers to the small-
t theory in Ref.@8#, i.e.,

DA~ I ,t!5DI ~28tRI214RI1122tRD!, ~20!

andDP(I ,t) in @9#

FIG. 1. Stationary probabilityp(I ,t)[Pst shown ata50, R51, andD50.1 for different values of the correlation timet. In ~a! we
compare the results of Peacock-Lo´pezet al. @9# ~dashed! and Aguado and San Miguel@8# ~dotted! at t50.1 with numerical results~full line!.
~b! shows the comparison of our approach~small-t approximation! ~dashed! with numerical results~full line! for t50.1. In ~c! we compare
the small-t ~dashed!, large-t ~dash-dotted!, and crossover approximations~dotted! with numerical results~full ! for t51. For t510 the
large-t approximation~dashed! is compared with numerical results~full ! in ~d!.
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DP~ I ,t!5DI F112RS 24t~122ta!I 212~124t2a2!I2tD~112ta!

~124t2a224t2D ! D G , ~21!

respectively. These effective diffusion coefficients are not
positive asI assumes very large values. Nevertheless, the
effective diffusion is positive valued within the regime of
validity of the small-t theory, t<0.1 within the physically
relevant range of laser intensities.

The results at thresholda50 are depicted in Fig. 1. For
t50.1, both small-t theories essentially agree within line
thickness with the precise numerics; cf. Fig. 1~a!. The
present small-t approximation is shown in Fig. 1~b!. The
agreement with the exact result is of the same quality as for
the theories in@8,9#; cf. Fig. 1~a!. The valuet51 lies be-
yond the regime of validity of the small-t theories in@8,9#.
With g (I ,t51) being positive valued, the small-t theory
in Eq. ~10! still yields reasonable agreement with the precise
result; cf. Fig. 1~c!. The crossover approximation yields even
better agreement. Fort510 @see Fig. 1~d!#, the large-t and
crossover approximations agree within line thickness, yield-
ing good agreement with the precise numerics.

The behavior near threshold ata51 is depicted for typi-
cal laser operation values in Figs. 2~a!–2~d!. At t50.1, the

theory of Aguado and San Miguel@8# is compared with the
approach by Peacock-Lo´pezet al. @9# in Fig. 2~a!. Small de-
viations occur nearI'0. The theory of Peacock-Lo´pezet al.
approaches the exact result for large intensitiesI somewhat
faster than the theory in@8#. The small-t theory based on the
adiabatic elimination of the auxiliary variableu̇ in the Eq.
~10! is depicted in Fig. 2~b!. The agreement at finite intensi-
ties is superior if compared with Fig. 2~a!. At very small
intensities aroundI'0, however, a systematic deviation oc-
curs. This difference is not of numerical origin~see below!.
It becomes even more pronounced att51; see Fig. 2~c!. The
behavior at large correlation times can very well be charac-
terized within the large-t approximation Eq.~14!. For a typi-
cal set of parameters the behavior is exhibited in Fig. 2~d!.
Characteristic for the intensity statistics is the observation
that the maximum becomes shifted monotonically to larger
intensitiesI<a with increasing noise colort.

Overall, we find good agreement between precise numer-
ics for the exact stationary probability and the global
colored-noise approximation schemes in the Eqs.~10!, ~14!,

FIG. 2. Stationary probabilityp(I ,t)[Pst shown ata51, R55, andD50.1 for different values of the correlation timet. In ~a! we
compare the result of Peacock-Lo´pezet al. @9# ~dashed!, Aguado and San Miguel@8# ~dotted! at t50.1 with numerical results~full line!. ~b!
shows the comparison of our approach~small-t approximation! ~dashed! with numerical results~full line! for t50.1. In ~c! we compare the
large-t ~dashed! and small-t approximations~dotted! with numerical results~full ! for t51. Fort55 the large-t approximation~dashed! is
compared with numerical results~full ! in ~d!.
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and~17!. The effective frictiong(I ,t) assumes positive val-
ues over an extended regime of the correlation timet<1. Its
asymptotic behavior at smallt behaves as

g~ I ,t!5H 4RI

~t12R!
, I@1

1

t
2

4RDI

~tD14I !
, I!1.

~22!

The above-mentioned systematic deviations between theory
and exact results at very small intensitiesI is rooted in the
breakdown of the condition~ii ! stated below Eq.~9!, i.e.,
@K(I ,t)/g(I ,t)#8 assumeslarge values nearI'0. Thus the
regime of validity of the adiabatic approximation begins to
break down asI→0; cf. Figs. 2~a! and 2~c!. In terms of laser
operation, the approximation thus fails to describe accurately
the photon statistics asI→0.

IV. CONCLUSION

In summary, we have studied the probability distribution
of a dye-laser system driven by both colored pump noise of

small to moderate to large correlation times and white quan-
tum noise fluctuations. A global approximation scheme
aimed at covering a wide regime of correlation times has
been tested against precise numerical results, obtained by the
matrix continued fractions method applied to the exact two-
dimensional Fokker-Planck equation. The present approxi-
mation schemes compare favorably over wide regimes in the
parameter space of realistic laser operation values for the
pump parametera, noise ratioR5Q/D, and the pump noise
correlation timet. At intermediate noise colort;O(1) the
approximations still provide qualitative correct predictions
where no other theoretical estimates are presently available.
At very small correlation time, the theory yields essentially
the same qualitative predictions as previously developed
small-t theories@8,9#.
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