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Precise Numerics versus Theory for Correlation Ratchets
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Fluctuation-induced transport in a correlation ratchet driven by both additive Gaussian white
additive Ornstein-Uhlenbeck (colored) noise is studied numerically and interpreted against theo
predictions. The current, as well as the current-load curve, exhibits a different behavior depend
the scaling of the colored noise strength. This archetypal correlation ratchet is capable of chang
direction of current (passing through zero at a particular value of noise color) if only theshapeof the
ratchet potential is chosen appropriately.

PACS numbers: 82.20.Mj, 05.40.+j, 87.10.+e
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The ability of a Brownian particle to extract use
ful work from nonequilibrium fluctuations when
rattling in a periodic structure with broken spatia
symmetry (“ratchet”) has recently attracted much atte
tion [1]. Apart from the general effort of understandin
this novel nonequilibrium phenomenon, it entails in
teresting technological applications such as novel m
separation and trapping schemes [2] and, likely, is a
of relevance for intracellular transport processes [1–
In the simplest case, such a “Brownian rectifier” is
modeled by an overdamped particle moving in a period
ratchet potentialV sxd ­ V sx 1 Ld of period L under
the simultaneous action of Gaussian white,d-correlated
thermal noisejstd, kjstdjssdl ­ dst 2 sd, of strength
2D and an additionalstate-independentfluctuating force
estd of vanishing meankestdl, i.e.,

Ùx ­ 2
≠V
≠x

1 estd 1
p

2D jstd . (1)

Equation (1) describes acorrelation ratchet[4–6]. If the
additive fluctuationestd is a second Gaussian stationar
white noise, the dynamics in (1) obeys detailed balan
hence the stationary currentJ ­ k Ùxl is zero in accordance
with the second law of thermodynamics. Our focu
here is on the simplest, nontrivial colored noise drive
correlation ratchet: With Gaussian noise being abund
in physical applications [7], we choose forestd an
Ornstein-Uhlenbeck (OU) process, which is the archety
model for free Brownian motion [7]. This Markovian
Gaussian processestd satisfies the Langevin equation

Ùe ­ 2
1
t

e 1

p
2Qstd

t
hstd , (2)

with hstd Gaussian white noise,khstdhssdl ­ dst 2 sd,
which is independent ofjstd. Its stationary correlation
reads

kestdessdl ­
Qstd

t
e2jt2sjyt . (3)

With Qstd ­ Q a constant,estd describes for small
noise correlation timet a deviation from the white noise
limit, yielding a constant integrated intensity2Q. In
contrast, the case with a constant varianceke2l ­ Q̃
implies the different scalingQstd ­ Q̃t. In this latter
0031-9007y96y76(7)y1166(4)$06.00
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case, the noise intensity vanishes ast °! 0. Both
scalings are of practical relevance, but entail differe
physical consequences. WithQstd ­ Q the colored
fluctuations approach zero amplitude in the adiaba
limit t °! `, whereas in the second case the Gauss
stationary fluctuationsestd explore a continuous spectrum
of amplitudes, which extends over the whole real axis a
is independent oft.

Equation (1) together with (2) provide our setup for d
rected transport generated by colored nonequilibrium fl
tuationsestd. The problem at hand is challenging from
several points of view: First, the dynamics of the par
cle motionxstd is non-Markovian in nature. This mean
that the application of familiar tools from the theory o
stochastic processes is met with distinct difficulties [7
These queries become even more pronounced in the p
ence of two noise sources, with one being nonwhite
Second, a finite stationary currentJ occurs only when in-
ternal forward and backward transitions do not cancel “
average.” Hence, good approximations for the individu
internal transition rates do not necessarily guarantee g
results for the overall currentJ, which at weak noise is
sensitive to thedifferenceof the two exponentially small
rates (see below).

Given these theoretical challenges, it is an importa
task to test analytical predictions vs precise numeric
results. In fact, it is only very recently that the theoretic
qualifications for this class of two-noise driven colore
flows have been developed [8–12].

Before we engage in our objective of calculating bo
the stationary current as well as the current-load char
teristics, we comment on the general features of the arc
typal correlation ratchet in (1) and (2): When the noi
color t approaches zero, the currentJ vanishes since for
both scalings of the noise strength the stochastic dyna
ics is driven byadditive Gaussian whitenoise only. This
result holds true also for the constant intensity scali
Qstd ­ Q in the adiabatic limitt °! `. The latter fea-
ture is validindependentlyof the Gaussian statistics ofestd.
In contrast, for constant variance scalingQ̃ we encounter
in the adiabatic limit a Gaussian distribution of arbitra
large barrier heights. In this limit a rate description fai
© 1996 The American Physical Society
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[9]. Nevertheless, there exists a limiting adiabatic av
age transition time and current as well [9,12]. Moreov
it should not be overlooked that with our form in (1) w
implicitly use a scaling of physical timet, which is in-
versely proportional to the physical friction strength [7
Hence, instead of varyingt in (1) and (2), one could keep
t “fixed,” and vary instead the friction in the original (un
scaled) system. This feature calls for interesting con
quences when the current changes sign as a function o
noise colort (see below).

Starting from the Fokker-Planck equation (FPE) for t
probability densityWtsx, ed,
≠Wtsx, ed

≠t
­

"
≠

≠x

√
≠V
≠x

!
2 e

≠

≠x
1

1
t

≠

≠e
e 1 D

≠2

≠x2

1
Qstd

t2

≠2

≠e2

#
Wtsx, ed , (4)

we evaluate by use of the matrix-continued fracti
(MCF) method (see [7,10,13]) thex-periodic station-
ary probability Wstsx, ed ­ Wstsx 1 L, ed, normalized
to unity within a spatial period, i.e.,

RL
0 dx

R`
2` deWst 3

sx, ed ­ 1. With the probability current in thex direction
given by Jxsx, ed ­ s2≠Vy≠x 1 e 2 D≠y≠xdWstsx, ed,
the total fluctuation-induced nonequilibrium currentJ is
obtained as

J ­
Z L

0
dx

Z `

2`

deJxsx, ed . (5)

In applying the MCF, we expand the potentialV sxd as
well as the solutionWstsx, ed into Fourier series inx, and
the e dependence into a series of Hermite functions. F
the ratchet potential we use two different shapes,

V sxd ­ V2sxd ­ 2fsins2pxd 1 0.25 sins4pxdgy2p ,

(6)

and a model with three Fourier modes,

V sxd ­ V3sxd ­ 2 sinhs2pxd 1 0.2 sinf4psx 2 0.45dg

1 0.1 sinf6psx 2 0.45dgjy2p . (7)

Both these ratchet potentials exhibit a smalleraverage
force in forward direction, see Fig. 1. Hence, the curre
in a correlation ratchet is intuitively expected to flo
always towards thepositivedirection. Nevertheless, the
characteristic quantity [see (9) below]

2
Z L

0
dx V 0sxdfV 00sxdg2 ; c2 2 c1 (8)

is positive forV2sxd, but negativefor V3sxd. This differ-
ence will be of crucial importance for the phenomenon
current reversal inOU process driven ratchets.

For the potentialV2sxd the behavior of the currentJ
in the (OU) ratchet is depicted in Figs. 2(a)–2(c) as
function of the noise parametershD, Q, tj. Figure 2(a)
is for the constant intensity scalingQstd ­ Q, where
the current Jstd for fixed Q starts out from zero at
t ­ 0, reaches a maximum, and approaches zero agai
r-
r,
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FIG. 1. Shape of the two ratchet potentialsV2sxd (solid) and
V3sxd (dashed) used in this work.

t ! `. We note that this increase and decrease occ
monotonically ast is varied. For fixed variance scaling
Qstd ­ Q̃t, the current is depicted as a function ofQ̃
and noise colort in Fig. 2(b). We note that for fixed̃Q,
the currentJstd is maximal in the adiabatic fluctuation
limit t ! `, and alwaysmonotonicallydecreases to zero
as t ! 0. The global adiabatic maximum occurs nea
Q̃ . 3. With t held fixed, the currentJsQ̃d exhibits

FIG. 2. Numerical (MCF) results for the currentJ in V2sxd
are depicted in (a) and (b) for the two different noise scalin
Qstd ­ Q and Qstd ­ Q̃t at fixed thermal noise strength
D ­ 0.1. The dependence on both noise sources is exhibited
panel (c) att ­ 1. The prediction forJst ! `d of the familiar
adiabatic approximation [1] agrees within line thickness wi
the MCF results in (b).
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a bell-shaped maximum as̃Q is varied within f0, `g.
Moreover, we note that this maximum doesnot occur
at a fixed valueQ̃, but moves towards larger̃Q values
as t ! 0. For t ­ 1 (i.e., Q̃ ­ Q) the influence of the
thermal noise strengthD is depicted in Fig. 2(c). Ove
most parts of the parameter regimesQ̃, Dd the effect of
increasing the thermal noise intensityD yields asmaller
current. An exception occurs for smallQ̃ values&0.5,
where small thermal noise can increase the current.

For this class of two-noise driven colored flows a gen
alized unified colored noise approximation (GUCNA) h
been developed in Ref. [10]. The upshot of this theo
is that the non-Markovian dynamics is approximated b
white-noise driven effective Fokker-Planck equation w
a color and state dependent diffusion. Given this, the c
rentJft, Qstd, Dg itself can be evaluated readily in term
of two quadratures; see, e.g., Refs. [6,13]. Notably,
GUCNA is not restrictedto small noise intensities only
The path integral approach is another tool for obtain
approximative results; however, it is restricted to sm
noise intensities. Within this restriction, the currentJ can
be approximated byLfk1std 2 k2stdg, whereink6 are
the forward and backward transition rates between a
cent minima of the ratchet potentialV sxd. The Arrhenius
factors for these rates can be evaluated by invoking
“small-g” path integral theory put forward in [12]. With
a constant intensity scalingQstd ­ Q, the regime of va-
lidity of this approximation is governed by the expa
sion parameterg ­ sQyDtd1y2 , 1, see Ref. [12]. At
small noise colort, yet a different path-integral analys
[8,10,12] for weak noiseD and Qstd similarly predicts
for the current

J ø L
jV 00sx0dV 00sx#dj1y2

2p
exp

"
2

DV
D 1 Qstd

#

3 exp

(
2

t2Qstdc1

fD 1 Qstdg2

)

3

√
1 2 exp

(
2

t2Qstd
fD 1 Qstdg2

sc2 2 c1d

)!
. (9)

Here, x0 is the minimum of the ratchet potentia
with the left- (right-) sided transition statesx2 sx1d,
obeyingV 00sx2d ­ V 00sx1d ; V 0sx#d. The quantityc6 is
dependent solely on the potential shape,c6 ­Rx6

x0
dxfV 00sxdg2V 0sxd . 0, and DV ­ V sx#d 2 V sx0d

denotes the Arrhenius energy of the periodic ratch
At large noise colort ! `, with D fi 0 but small, an
adiabatic approximation yields for the current a limitin
behavior of the form

Jst ! `d ­ C

(
1 2 exp

"
Qstd
2D2t

sL2
2 2 L2

1d

#)
, (10)

whereC is positive valued andL6 ­ jx6 2 x0j.
The predictions of the various theories are compa

in Fig. 3 for constant noise intensityQstd ­ Q for the
ratchet potentialV2sxd. The small-g theory (dashed line)
yields qualitatively the correct behavior over the wholet
1168
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FIG. 3. The numerical result (solid line) is compared t
theories of Eq. (9) (dotted line), GUCNA of [10] (dash-dotte
line), and small-g theory in [12] (dashed line) for the noise
parametersD ­ 0.1 and Q ­ 0.025. The inset shows the
current in the tilted potentialV2sxd 1 xF, which flows “uphill”
for small F. D andQ are as above,t ­ 1.25 (solid line),t ­
0.25 (dashed line), andt ­ 0.05 (dotted line). Ast ! 0, the
numerics of the small-g theory become increasingly intractable

regime, predicting correctly the location of the maximum
although being off forJ by a factor&10. In contrast,
the GUCNA (dash-dotted line) is limited in the regim
of validity to small t values. There, it predicts rathe
correctly the current, and is in agreement superior to t
small-t path integral result in (9) (dotted line).

The two theoretical predictions in (9) and (10) call fo
interesting effects: First, we observe that withL1 . L2

(i.e., a forward ratchet), the current isalways positiveas
t ! `, independent of the noise scaling (cf. Fig. 2). F
Qstd ­ Q, it vanishes exponentially inversely propor
tional to t. Turning to the behavior at smallt, the rub is
that the quantitysc2 2 c1d in (8) can assume for afor-
ward ratchet both positive as well asnegativevalues. In-
deed, forV2sxd, c2 2 c1 . 14.8, and forV3sxd, c2 2 c1 .
26.19! Hence, withsc2 2 c1d , 0, the current in (9)
starts out fromt ­ 0 with negative values. Upon noting

FIG. 4. The current reversal inV3sxd is depicted forD ­
0.05 and Qstd ­ Q ­ 0.025: Numerical results (solid line)
are compared to GUCNA (dash-dotted line), small-t (dotted
line), and small-g (dashed line) theory. The inset gives
magnification of the behavior at smallt.
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(10), i.e.,Jst ! `d $ 0, this implies at least one curren
reversal ofJ vs t for the OU noise drivenV3sxd ratchet.
Moreover, this reversal occurs independently of the cho
form of the noise scalingQstd. The vanishing (!) ofJstd
itself typically occurs at moderate noise colortR , which is
outside the regime of validity of the small-t path integral
approach as given in (9). Figure 4 depicts this new curr
reversal [14], where precise numerics (solid) are compa
with the GUCNA (dash-dotted line), the “small-t” theory
in (9) (dotted line), and the small-g theory (dashed line).
The reversal occurs neartR . 0.037, while the small-g
theory—being presently the only theory that captur
the change of sign—yields tR . 0.16. At small t, the
GUCNA again exceeds in accuracy the prediction (9),
inset in Fig. 4. It is worth mentioning that the current r
versal isnot caused by the slight extra “shoulder” of th
potential V3sxd in comparison withV2sxd (cf. Fig. 1) as
can be demonstrated by examples; rather it is the pro
interplay of the higherx derivatives ofV sxd in (8) which
matters.

The inset in Fig. 3 displays the current forV2sxd in the
presence of an additional constant biasF (“current-load
curve”) for differentt values. For small bias, the particl
can move uphilluntil a critical valueFs (the stopping
force) is reached, whereJsFsd ­ 0. This phenomenon
of uphill motion against an external gradient has be
observed recently for the directed motion of ions in
biological system [15]. The stopping forceFsstd on the
almostlinear load curve depicted in Fig. 3 exhibits abell-
shaped behavioras a function of noise colort.

In summary, we have presented the first precise num
ical (MCF) calculations over extended parameter regim
(cf. Fig. 2) for the simplest Gaussian colored noise driv
correlation ratchet. We compared the results vs rec
nontrivial theoretical predictions. The discovered nov
features of the stopping forceFsstd and—most surpris-
ingly—the simple scheme of current reversal calls f
intriguing applications in the natural sciences in both m
crotechnology and biophysics.
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