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For the statistical behavior of macrovariables described in terms of Langevin equations 
with a in general colored random force we deduce useful formulas which simplify the 
calculation of correlation functions. Utilizing these results and the stochastic properties 
of the random force we derive an exact time-convolutionless masterequation for the 
probability hereby showing the mathematical equivalence of the formally different 
approaches of a Langevin description and a masterequation description. We study in 
detail the class of time-instantaneous Langevin equations and the important class of 
retarded (Mori-type) Langevin equations with both, Gaussian and general colored 
random forces. Using the generalization of the nonlinear Langevin equation for con- 
tinuous Markov processes with white Gaussian noise and white generalized Poisson 
noise we show that the resulting masterequation can be recast in the Kramers-Moyal 
form. Interpreting this Langevin equation in the Stratonovitch sense we deduce the 
fluctuation induced drift (spurious drift) which can be divided up into two parts, the well 
known part induced by white Gaussian noise and the one induced by white generalized 
Poisson noise. 

1. Introduction 

In the last years an ever increasing interest is paid to 
the modelling of statistical problems in equilibrium 
and nonequilibrium mechanics in terms of stochastic 
differential equations for the macrovariables (general- 
ized Langevin equations). In principle all properties 
of the fluctuations are implied by the microscopic 
equations for all degrees of freedom. Using the 
powerful projection operator technique Mori [1] de- 
veloped a formalism which leads to an exact stochas- 
tic differential equation, but with a random force 
whose properties are known only in the vicinity of 
the thermal equilibrum state. An attempt to states far 
from equilibrum has been put forward by various 
people [2-4 I. In particular, Grabert [4] developed an 
exact equation for the fluctuations around the time- 
dependent mean values. In all of these exact equa- 
tions the non-Markovian character shows up clearly 
by the occurence of so called memory terms and 
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random forces with a colored correlation. In practice 
however, these exact Langevin equations involve 
many technical difficulties connected with the eva- 
luation of the various transport quantities in such 
equations. An approach on an intermediate level, 
more detailed than the deterministic picture but less 
detailed than the microscopic one appears to be most 
fruitful. The way of computing fluctuations on such 
a "mesoscopic" level consists in approximations for 
the quantities in the exact equations but retaining the 
correct structure. 
A well known approximation is the description of 
macrovariables in terms of continuous Markov pro- 
cesses modelled by Langevin equations with Gaussian 
white random forces [5, 6]. The equivalence of such a 
description and the corresponding masterequation, 
the Fokker-Planck equation is well known and repre- 
sents a widely used concept [-5,6]. However, the 
physical justification for such an approximation is 
often dubious and not well understood. For example, 
even a modelling of physical system with a Langevin 
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equation which is mathematically equivalent to a 
masterequation of a Markov process x(t) in the form 
of an infinite order differential operator (Kramers- 
Moyal expansion [7]) has not been considered in 
detail so far. Because of the large variety of factors 
responsible for the fluctuations, more satisfactory is 
that approach implying for the description of the 
system continuous or discontinuous sample paths 
generated from colored Markovian or non-Mar- 
kovian driving forces. 
In order not to complicate the main ideas we restrict 
in the following the discussion to statistical systems 
described in terms of a single collective variable z(t) 
driven by one stochastic (in general non-Markovian) 
random force. For the stochastic differential equation 
we have in general a structure of the form 

t 

i(t) = ~(t) z(t) + fi(z(t), t) ~ z(s) dF(t, s) + f(t), 
0 

t>0.  (1.1) 

Here the random force f ( t)  may depend in general on 
the macrovariable z(t) itself. For example the fluc- 
tuating force in the Mori-theory [1-2] for the ther- 
mal equilibrium is orthogonal only to the first power 
of the macrovariable and thus includes terms non- 
linear in the collective variable. Note that with the 
choice F ( t , s ) = O ( t - s  +) we obtain a time-instan- 
taneous stochastic differential equation with the 
structure 

i(t) = a(z, t) + f(t) .  (1.2) 

Setting dF(t,s) equal to 7( t -s )ds  and fl(z,t) equal to 
1 we obtain from (1.1) the linear non-Markovian gener- 
alized Langevin equation of the Mori-type. A third 
class of dynamical systems modelled by (1.1) is ob- 
tained setting F(t, s) = O ( s -  ( t -  T)) with T a fixed 
time-lag. This class of systems plays an important 
role in biophysical problems [8], e.g. for the behavior 
of the dynamics of antigen-antibody reactions [8, 9]. 
Our concern in this paper will be to investigate the 
calculation of correlation functions of the process z(t) 
described by a stochastic differential equation of the 
form in (1.1) and to derive an exact masterequation 
describing the rate of change of the macroprobability 
function p(z, t). 
The paper is organized as follows. Noting that the 
solutions of (1.1) are functionals of the random force 
f ( t)  we deduce simple formulas for the calculation of 
a correlation function 

(z(r) g({z(s), 0 < s < t})}. (1.3) 

Such correlation functions play a major role in the 
calculation of various transport coefficients. Mo- 

reover, the study of the correlation functions in (1.3) 
specify to a certain degree the nature of the stochastic 
process under consideration. Section3 contains the 
main results of this paper. Given the knowledge of 
the initial probability P0 and the stochastic properties 
(cumulants) of the random force f ( t)  we derive an 
exact time-convolutionless equation for the rate of 
change of the probability p(z, t) having the form of a 
masterequation with a in general po-dependent gener- 
ator F(t) 

~(t) = F(t) p(t). (1.4) 

In particular, we study in detail the stochastic opera- 
tor F(t) for generalized Langevin equations of the 
form in (1.2) and for linear generalized non-Mar- 
kovian Langevin equations of the Mori-type. Under 
special assumptions stated in Section 3, the generator 
becomes even a linear operator (i.e. po-independent). 
But this does not mean that the process z(t) is now a 
Markov process [10]. The limiting case of a non- 
linear generalized Langevin equation of the form in 
(1.2) with in each point independent continuous and 
discontinuous increments is shown to be equivalent 
to the master-equation of a Markov process z(t) in 
the form of the Kramers-Moyal expansion [7]. Using 
the Stratonovitch interpretation for this generalized 
Langevin equation we derive the fluctuation induced 
drift terms (spurious drift) of both, the well known 
part induced by the continuous increments and the 
part induced by the discontinuous increments. 

2. Characteristic Functionals 
and Correlation Functions 

Let us first expand the concept of usual probability 
theory a little bit further. We permit to ask the 
following question: What is the probability of obtain- 
ing the particular time history of a physical phenom- 
enon described by an equation like (1.1). Thus we are 
led to consider the probability of functions in a 
certain class (the probability of a single realization 
has a vanishing measure). Hence, we write for the 
probability of finding the function in a specified class 
A of functions with help of a probability functional 
p(z(t)) 

S p(z(t)) ~z(t). (2.1) 
A 

In an analogous fashion to usual probability tech- 
niques the mean value of a functional Q(z(t)) is writ- 
ten as 

(Q(z)} = ~ Q(z(t))p(z(t)) ~z(t)/S p(z(t)) ~z(t) .  (2.2) 
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A very useful mean value of a functional is the 
moment generating functional, the characteristic 
functional ~b[v] [11] defined by 

¢ [ v ] = ( e x p i ~ d s v ( s ) z ( s ) ) ,  ~b[v=0]=l .  (2.3) 

The expansion of ~b[v] in a functional Taylor series 
determines the n-(time) point moments 

co (i)" 
~b[v] = =o~n(.~dtm"(tl . . . .  tn) V(tl) ... v(t,), (2.4) 

n =  • 

rn, =- m,(t a . . . .  t.) = (z(tl) ... z(t,) ) 

fin 
= (i)-" ~b [v ] ] .=  o. (2.5) 

~o(tl)  .. .  ~ v(t.) 

The notation ~dt in (2.4) denotes the multidimen- 
sional integral S . . . ~ d q  . . .dr n. We remark that the 
moment m, is a symmetric function with respect to its 
time-arguments. It is often convenient to work with 
the cumulant generating functional T[v]  

T Iv] = In ~b Iv]. (2.6) 

An expansion in a functional Taylor series defines the 
n-point cumulants K,  

T[v] = @ ( i )n fd tK , ( tD  ... t , )v( t l ) . . ,  v(t,), (2.7) 
,T1 n! ~ 

with 
fin 

K ,  = K , ( t l , . . .  tn) = (i)-" T[v]l,= 0. (2.8) 
6 V(tl) ... 6 V(tn) 

The main purpose in this section is to derive some 
practical formulas for the calculation of a general 
correlation function of the form 

(z( t )  g({Z(Q, 0 =~ Z ~ t f } ) ) ,  (2.9) 

where g(z) is some functional of the stochastic pro- 
cess z(t). For the evaluation of (2.9) we make use of 
the well known trick of the introduction of a auxilia- 
ry functional g(z+tl) with t/ a determined arbitrary 
function which is set equal to zero in the final for- 
mulas. Expanding g(z + t/) in a functional Taylor se- 
ries in z we obtain for the correlation in (2.9) 

( z(t) g(z + ~) ) 

=~0 n ~ d t  b" g(t/) (Z( t l ) . . . z ( t , ) z ( t ) )  (2.10) 
= = . b q ( t l ) . . ,  btl(t,) 

co 1 ~dt 6" g(t/) 
= . ~ 0  (0 ";-1 n!  ~ ( q )  . . .  ~ ( t . )  

c5 n ~T 
• [,=o (2.11) 

~V(tl)... 6v(t,) 6v(t) 

~ x ~ ,  1 fi"g(q) 
=.~o  s= j I ( n - j ) I .  ~dt c S t l ( t ~ . ~ t l ( t ,  ) 

• K j+ l(t, t l . . .  t )  m,_ j(tj+ 1,... t,). (2.12) 

In (2.12) we made use of the Leibnitz rule for the 

(functional) product differentiation [~b [cST~ ](n) \g~v]J . I f  we 

change the order of summation in (2.12) and observe 
the expression for the Taylor expansion of g(z+t/) 
in z we find by setting t/--0 the useful expression 

1 
( z ( t )g (z ) )= • n~.SdtK,+x(t , t~. . . t~)  

n = 0  • 

\ & ( t , )  .. .  &(t°)/ (2.13) 

This result can be rewritten in compact form by use 
of the auxiliary functional f2t[v ] 

6T 
G i r l  = i &(t) 

(i)"- 1 
=,=~l (~---- i)  ! SdtK~(t,  tl ,  ... t ,_ 1)V(tl)"'" ~)(tn-- 1) 

oo i m 
= ~= 0 ~ !  ~ dt Kin+ l(t, t I , ... tm) v(t 1) ... v(t m) (2.14) 

yielding* 

As a byresult of (2.15) we obtain for the functional 
g(z )=z( t l ) . . ,  z ( t ,_ l )  a recursive relationship between 
the n-point correlation ran(q, ... t ,_ 1, t) and the cu- 
mulants of z(t) 

( z ( t l ) " '  Z(tn- 1) z ( t ) ) - -  ( z ( t ) )  ( Z ( t l ) . . .  Z(tn_ 1)5 

, -1  / 6  i z( t l ) . . ,  z(t ,_ 1) \  
. . . .  

Note that from a physical point of view the history of 
the sample functions generated by the stochastic dif- 
ferential equation is known only in the interval [0, t] [ 
For the description of the statistical process z(s), 
0_<s < t it is therefore oppertune to introduce for the 
following the "tr imed" characteristic functional ~t [v] 

~ t [ v ] = l e x p i i d s v ( s ) z ( s ) ) '  o ~t[v=0]  = 1' (2.17) 

and correspondingly 

[v] = in ~t Iv]. (2.18) 

• In case that z(t)=z is a random variable the result in (2.15) 
yields many practical formulas, e.g. for 

, , ,  ~. 1 /d 'g(z) \  
zg~z,= G;. '~.+~\~7.  / 
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These functionals are obtained from the old ones by 
the substitution v(s) ~ O(s) O ( t -  s) v(s). O(s) denotes 
the usual unit step function. 
For all correlations (z(t')g(z)> in which O < t ' < t  the 
above results remain true, i.e. for t '< t  and z(s), 
O < s < t  we can write for (2.13) 

<z(t') g(z)> 
co, / a"g(z) ; 

= ~=o~ . !d tK ,+ l ( t ' , q  . . . .  t , ) \ b z ( t , ) . . . 6 z ( t j /  (2.19) 

But now the case where t '=  t needs in general (e.g. 6- 
correlated processes) a special investigation. Expand- 
ing again g(z + rl) in a functional Taylor series in z we 
obtain with (2.17) 

<z(t) g(z +rl)> 

1 ' , .  6" g(t/) 
= ~ n !  (i)-" ] at - - - - -  

. = o  • o & / ( t l ) . . . a t / G )  

a 8 . 1 

By virtue of the auxiliary functional X t [v] 

1 (9 
X r [v] - In q~[v] 

iv(t) 8t 

(i)" ' 
- Z - -  S dt C,(t, q . . .  t,) v(h).., v(t,) (2.22) 

n = 0  F/!  0 

(2.21) becomes 

<z(t) g(z + ,0>  
t 

, : o k : o k ! ( n - k ) ! o  6r l ( t j . . .&l( t , )  

• C k (t, q , . . .  tk) m,_ k(tk + a .. . .  t,) (2.23 a) 

o~ 1 6 k 

~o 1 6" g(t/) m,(s 1 . . . .  s,) (2.23 b) 

oO 1 t t 

(/ a kg(z+~/) ; (2.23c) 
" \ 6rl(tl) ... c~rl(tk) /"  

Whence by setting t/=O we have for t ' = t  the final 
result 

- ~ X t [  6~] g(z)>. (2.24) <z(t)g(z)-- \  [ ibz]  

The deduced formulas in (2.19), (2.20) and (2.24) 
simplify considerably the calculation of correlation 
functions of the process z(s) with a functional g(z). As 
we shall see, they play an important role for the 
derivation of masterequations of stochastic processes 
described by generalized Langevin equations. Appli- 
cations of the derived formulas for a general Gaus- 
sian process, for the generalized Poisson process and 
for white Gaussian and white generalized Poisson 
processes are given in the Appendix. The latter class 
of white processes plays an important role for the 
description of Markov processes in terms of Langevin 
equations. 

3. Masterequations for General ized 
Langevin Equations 

The single-event masterequation for the process z(t) 
provides a powerful tool for the calculation of a 
general relaxationfunction <F(z(t))>. Moreover, the 
concept of the masterequation elucidates the problem 
of the equivalence of a statistical description either in 
terms of a masterequation or a generalized Langevin 
equation. To start with, suppose we deal with the 
general stochastic differential equation for z(t) in 
equation (1.1) with the random force in the form 
f ( t)  --* b(z, Of(t) 

~(t): ~(t) Z(t) + 13(z(O, t) 
t 

• ]7(t ,s)z(s)ds+b(z(t) , t) f( t) ,  t>O 
0 

z(0)=z o. (3.1) 

The probability density p(z, t) can be written in terms 
of the expectation 

p(z, t) = <6(z(t) - z)>. (3.2) 

Note that the average in (3.2) is over all the re- 
alizations of the stochastic driving force f ( t)  and over 
the initial probability po(z) of the distributed starting 
value z o. By differentiation of the equal time cor- 
relation (3.2) with respect to the parameter t we 
obtain 

[~(z, t) = - cz(t) ~ z p(z, t) 

SzP(Z, OIi ds~(t,s)z(s)a(z(t)- z)> 

~z b(Z, t) < X, [&] 6(z(t)- z) >. (3.3) 

Because the process z(t) is a functional of the random 
force f(s) we could use the result in (2.24) for the 
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correlation (f(t)b(z(t), t )6(z(t)-z))  that occurs in the 
last term of (3.3). Equation (3.3) is an exact kinetic 
equation for the probability p(z, t) of the non-Markov 
process z(t). Let us comment some more about the 
structure of (3.3): It is not a closed expression for the 
probability due to the memory expressions in the last 
two terms. The equation is also nonlinear in the sense 
that the average in the second and third term may be 
explicitly dependent on the chosen initial probability 
Po. Even the random force f(t) may in general have 
different stochastic properties for different chosen 
preparation procedures for the physical system [-12] 
and choice of the initial probability po(Z). For exam- 
ple, if ( f ( t ) )  is zero for one choice of Po it is not, in 
general, for a different choice P0. Henceforth, the 
functional Xt represents in general a process-depen- 
dent operator. Note also, provided (3.1) is supplemen- 
ted by a deterministic part 

~(t) = c(x, t), (3.4) 

where x denotes the vectorial process x(t)=(y(t), z(t)) 
the masterequation for the process x(t) has the struc- 
ture of (3.3) augmented simply by the term 

- r e ( x ,  t) p(x ,  t). (3.5) 

In order to discuss the kinetic equation for p(z, t) in 
more detail we consider the following classes of gener- 
alized Langevin equations. 

3.1. Time-Instantaneous Generalized 
Langevin Equations 

In case that 7(t,s) in (3.1) is of the form 

7(t, s) = 7(t) b(t-- s +) (3.6) 

we obtain the time-instantaneous generalized Lan- 
gevin equation in (1.2) 

~(t) = a(z, t) + b(z, t) f (t). (3.7) 

It is worth emphasizing at this stage the following: 
As long as the stochastic force in (3.7) is not specified 
further the memory-less (often called "markovian") 
form of (3.7) does of course not imply that we deal 
with a Markovian process z(t)! For the master- 
equation of the processes described by (3.7) we obtain 
from (3.3) 

[~(z, t)= - ~ z  a(z, t)p(z, t) 

~--zb(Z,t)(Zt[i@f ]6(z( t ) -  z)) .  (3.8) 

This masterequation can be converted into a closed 
equation for p(z,t) if we rewrite (3.7) with a rede- 
finition for the fluctuating force 

2(t) = ~(t) z(t) + ~(t), (3.9) 

with the redefined random force 

~(t) =a(z, t ) -  ~(t) z(t) + b(z, t) f (t). (3.10) 

As a consequence, this random force v(t) contains 
macroscopic processes through the nonlinear terms. 
Thus, the correlation @(t)v(s)) has in general a 
macroscopic longlived time-scale. For linear systems 
this random force may often be well approximated by 
a 6-correlated random force v(t). By use of the in 
general process dependent auxiliary functional X~ ~) 
formed with the cumulants of v(t) (3.8) becomes 

p(z, t) = - ~(t) ~ z p(z, t) 

8 {Z(~)[ 6 ] 6(z( t)-z)) .  (3.11) 

Observing the dynamical nature of z(t) in (3.9) we 
obtain for the functional derivative 

6 ~ ( z ( t ) - z )  = - (,~z(t)~ ~.(s~ \~v(s)! ~ ~(z(t)- z). 

2 = exp ~ e(r) dr 6(z(t) - z), (3.12) 
8 

which combines with (3.11) to an exact time-con- 
volutionless closed masterequation 

~(z ,  t) = - ~(t)  a z  ~ p(z ,  t) 

8z s 

This closed masterequation is a first central result of 
this work. The fact that the operator 27} ~) is generally 
process dependent (i.e. depends via the cumulants of 
v(t) on the chosen initial probability Po) clearly re- 
flects the non-Markovian character of the process 
z(t). Further, assuming that the random force ~(t) has 
statistical properties which do not depend on Po (e.g. 
if ~(t) is a z-independent colored Gaussian process) 
the masterequation in (3.13) becomes a linear closed 
operator equation for p(z, t) 

D(t) = F(t) p(t), (3.14) 

with 

r ( t ) =  -c~(t)~ ~-ozz  ~ 



412 P. Hiinggi: Generalized Langevin Equations 

Thus, the solution of (3.14) can be written in terms of 
a linear propagator set {G(tls), t > s}. 

p(t) = G(tls) p(s), t > s, (3.16) 

with 
t 

G(tls) = Y exp ~ F(r) dr. (3.17) 
8 

J -  means the usual time-ordering operator. The ker- 
nels of these propagators satisfy a (pseudo-) Kolmo- 
gororov equation 

G(tltl)=G(tls)G(slt,) , t>_s>_t 1 . (3.18) 

Note that for the special time set [0, t] the kernel of 
the propagator G(tJO) coincides in this case with the 
initial conditional probability R(t[0) of the process 
z(t) (for details of this conclusion see Ref. [10]): 

G(z tlz o O) = R(z tlz o 0). (3.19) 

As a consequence, the linear closed masterequation 
(3.16) determines over R(t]0) the dynamics of initial 
correlation functions C(t, O) 

C(t, 0) = (f(z(t)) H(z(0))), t > 0. (3.20) 

In contrast to the Markov case, this does not hold for 
aged correlation functions C(t, s), s >0  [10, 12]. 
As one example for (3.15) we consider the stochastic 
differential equation in (3.9) with a colored z-inde- 
pendent Gaussian random force defined by 

(v( t))  = re(t), (3.21) 

and 

( v( t) v(s) ) = a( t, s) + re(t) re(s). (3.22) 

Using the result in (A.3) for Z t we obtain immediately 
for the masterequation the "Fokker-Planck type" 
equation 

0 
[~(z, t) = - c~(t) Ozz z p(z, t) - m(t) ~zp(Z, t) 

t t 0 2  

Another class of processes yielding always a closed 
operator expression for the rate of change of p(z,t) 
without utilizing the concept in (3.9) is obtained if 
f ( t )  in (3.1) is for all cumulants K, ,  n > 1 (K n may be 
still p0-dependent) a b-correlated random process. 
Then we have in a handy-dandy notation 

and 

b(z, t) 6 ~  6(z(t) - z) = - b(z, t) b(z, t) 6(z(t) - z). 

(3.25) 

Here we made use of the exact relation 

t 

6 z(t) ! dZ {~zza(Z, ~ ) 6 ~ )  = b(z(s), s) + 

} 6z('c) (3.26) 
b(z, z) f(z)  6f(s) 

for the parameter choice s = t. 
Observing (3.25) the masterequation in (3.8) can be 
rewritten in a closed form 

D(z, t)= -~Ta(z ,  t)p(z, t) 

This equation represents a second main result. The 
assumption of b-correlated noise in nonlinear statisti- 
cal problems can be justified in many cases after a 
partial coarse graining in space and time has been 
performed [1-2].* 
As a special application we consider those processes 
for which z(t) is composed of in each time-point 
independent increments. Only in this case it is 
guaranteed that z(t) is a Markov process [16]! This 
point has not been paid attention in a recent paper 
[13] showing a possible equivalence between a gener- 
alized Langevin equation and the masterequation 
for Markov processes z(t). Decomposing the random 
force in (3.1) into the two terms 

b(z, Of(t)  = 7~(z, t) ~a(t) + 7p(Z, t) iv(t), (3.28) 

where ~G(t) denotes a normalized white Gaussian 
process, (A.6), and ~e(t) a white generalized Poisson 
process, (A.16), the solution of (3.7) describes a Mar- 
kov process z(t). For the masterequation we obtain by 
use of the expressions in (A.8) and (A.18) the general 
Kolmogorov-Feller equation 

0 
D(z, t)= -•za(Z,  t) p(z, t) 

+ 1/2 ~zz ~G(z, t) ~ 7~(z, t) p(z, t) 

S z { 2 + ~  dxq(x) i duexp [ -uTp(z , t )  ~z]}  

• 7e(z, t)p(z, t), (3.29 a) 
2 

- o z S a ( z ' t ) P ( z ' t ) + l / 2 ( ~ z T G ( Z ' t ) )  p(z't) 

~o ( _  D" 1 6 h \'~ 

(3.29b) 

• Though the stochastic properties for the higher cumulants are 
set up beyond all physical intuition they are often a consequence of 
the nature of approximation used for the lower cumulauts 



P. Hiinggi: Generalized Langevin Equations 413 

Here q(x) denotes the probability of the statistically 
independent jump random variables in the general- 
ized Poisson process and 2 is the parameter in the 
Poisson counting process. This masterequation can 
be recast in the Kramers-Moyal form [7] 

%'zZ 
+ l/2~zZ 72(z't)P(Z't)+ 2 ~ (-1)k 3zz 

k = l  

(3.30a) 

= ( -  1)"/n ! [c,(z, t)p(z, t)], (3.30b) 
n = l  

where the moments are given by 

c 1 = a(z, t) + 1/2 7~ OTG 
#z 

+2  ~ 1/n! (x")TeD" 117;-1], (3.31) 
r t = 2  

c 2 = 72 + 22 ~ 1/n ! 7e D"- 2 [7~- 1], (3.32) 
n = 2  

c , = n ! 2  ~ 1 /m!(xm)  TeDm-"[7~- i  ], 
m = n  

n>2.  (3.33) 

Hereby we made use of the functional D J introduced 
by Bedeaux [-13] 

D J [7~,(z, t)] 

i l , . . . i j  + l 

i I + ... +ij+ 1 =n, O<=ik<n (3.34) 

Note that this functional acts only upon the functions 
between the square brackets yielding as result a func- 
tion. Hence, we have Shown that a generalized Lan- 
gevin equation of the form in (3.7) with the random 
force in (3.28) is mathematically equivalent to a mas- 
terequation in (3.29) or (3.30) for the Markov process 
z(t). Furthermore, the kernel of the propagator for 
(3.30), G(xt]ys), t > s  coincides with the conditional 
probability R(x t[y s), t > s for arbitrary aged times t, s 
so that the full dynamics of the Markovprocess is 
contained in (3.30) with knowledge of the initial 
probability P0. The first two terms in (3.30) just make 
up the well known Fokker-Planck equation for con- 
tinuous Markov processes z(t) if we interprete the 
generalized Langevin equation, [-(3.7) with (3.28)], in 
the Stratonovitch sense. This is in agreement with the 
theorem of Clark [14] and Wong and Zakai [15, 16] 

saying that the limiting procedure from colored noise 
to white noise in the Langevin equation leads to the 
Stratonovitch definition. Equation (3.31) includes the 
fluctuation induced (Stratonovitch-) drift (or spurious 
drift) divided up into two parts, the well known part 
induced by white Gaussian noise and the one induced 
by white generalized Poisson noise. They naturally 
vanish if ~G and ~v are chosen z-independent. 

3.2. Linear Non-Markovian Generalized 
Langevin Equations 

An important role in the theory of statistical me- 
chanics play the linear non-Markovian Langevin 
equations of the Mori form [1-4]" 

t 

~(t) = - ~ y ( t -  s) z(s) ds + f (t) (3.35) 
0 

where the memorykernel ~( t -s)  may contain in gen- 
eral an instantaneous contribution 

a b( t - s+) .  (3.36) 

Though it is in practice no easy matter to obtain the 
statistical properties of the random force f ( t )  form 
first principles they are assumed to be known (at least 
formally) for the following. By use of the function Z(t) 
obeying 

~(t) = - i 7(t - s) )~(s) ds, )~(0) = 1, (3.37) 
0 

we obtain for the solution of (3.35) with the initial 
probability po(z) = 6(z - Zo) 

z(t) = Z(t) Zo + i Z(t - s) f (s) ds. (3.38) 
o 

We remark that only under the additional assump- 
tion 

( f ( t )  Zo) = O, (3.39) 

the function )~(t) coincides with the initial correlation 
function 

X(t) = <z(t) z(O)>/(z2(O)>. (3.40) 

By virtue of the equations (3.3), (3.20), (3.38) and the 
relation 

-x 

6 6(z(t)--z)= z ( t - U ) ; z 6 ( Z ( t ) - z  ) (3.41) 
6f(u) 

we obtain for the masterequation of z(t) under the 
initial condition po(z)= 6(z -Zo)  the closed equation 
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/}(z, t) = z o ~ 7(t -- S) Z(S) ds p(z, t) 
0 

+ ~ d s T ( t - s ) ~ d r z ( s - r )  ~zg2t,~ i2~z p(z,t) 
0 0 

~ L  [iz ;z] 
where ~(u) = )~(t - u). (3.42) 

This is an exact closed time-convolutionless master- 
equation for Mori-type Langevin equations which de- 
pends through the initial probability po(Z)=6(Z-Zo) 
explicitly on z o. The remaining terms may also de- 
pend on Po via the cumulants of f(t)  in the operator 
functionals Or, r and Z t (c.f. (2.19) and the Appendix). 

For the following we assume that in the exact Lan- 
gevin equation (3.35) a partial coarse graining in 
time has been performed such that the "correlation" 
)~(t) takes on only positive values for finite times t. 
Expressing z o with help of (3.38), the generalized 
Langevin equation (3.35) can then be transformed 
into an exact time-convolutionless form 

~(t) = (2(t)/Z(t)) z(t) - (2(t)/)~(t)) i Z(t - s) f (s) ds 
0 

t 

+ ~ ;~(t- s)f(s) ds +f(t), 
0 

dlnz(t) d t Z(t_s) 
= - - d t  z(t) + Z(t) d t !  ~ - f ( s )  ds. (3.43) 

Moreover, in presence of an external deterministic 
force F(t), coupled additively into (3.35), the per- 
turbed total generalized Langevin equation reads 

2(0 , .  d ' z ( t - s )  

+ Z(t) dt i ~ F(s)ds. (3•44) 

Thus, we have for the masterequation of the total 
perturbed system by use of (3.44) and the results in 
section 2 the closed equation 

P(z, t) = - (2(t)/Z(t)) ~-~ z p(z, t) 

+ } ds s)L at x(t) o Oz ,~[ i2~]p(z , t )  

- ~ d s 2 ( t - s )  Qt, s i2 p(z,t) 
0 

8 

z ~ - p ( t ) .  (3•45) 

The rigorous result in (3.45) becomes a linear master- 
equation if the cumulants of the random force f(t)  as 
well as z(t) do not depend on the choice for the initial 
probability Po. In such a case it is also reasonable to 
require that the random force does not depend on the 
external force F(t). Then, the effect of the external 
perturbation is represented in (3.45) by the last term 
only in the form of a linear functional which involves, 
in contrast to the Markov case, ()~(t)=exp-ct), the 
whole previous history of F(s) as well. The generator 
F(t) defined by (3.45) represents in general a differen- 
tial operator of infinite order• Only for the case that 
f(t)  is a z-independent Gaussian process, e.g. 

( f ( t ) )  = O, (3.46) 

( f (t) f (s) ) = a( t, s), (3.47) 

the linear generator F(t) reduces to a differential 
operator FG(t ) of second order 

~( t )  0 2( t )  tr 
rG(t) - z(t) Oz z z(t)6 

82 
• i dr 7~(t - r) a(s, r) 8z 2 

0 

* i 82 + ~ ds2( t - s )  dr)~(t-r)a(s,r) 
0 0 0Z2 

82 
+ i dr Z ( t -  r) a(t, r) Oz 2 

0 

[d t r , X(t--s)~, ,~ 0 
- Z(t) i ~  JoaS ~ - t ~ -  rts)] ~zz . (3.48) 

Here we made use of the explicit forms of ~2,,s and X, 
for Gaussian processes given in (A.2) and (A.3). The 
result in (3.48) can be simplified more if the random 
force in (3.46) and (3.47) is a stationary Gaussprocess 
which satisfies the 2-nd fluctuation-dissipation theo- 
rem introduced by Kubo [17 l 

( f ( t ) f ( s ) )  = (Z2)s, ~([t- s[). (3.49) 

Because of the independence of f ( t ) o n  z(t),Z(t) be- 
comes 

z(t) = (z(0 z ( O ) ) s j ( z e z , .  (3•50) 

The index (s t) in (3.49) and (3•50) denotes the average 
over the unperturbed, (F(s)=O), stationary non-Mar- 
kov Gaussprocess z(t) obtained from (3.43) when for 
the initial probability P0 a Gaussian with vanishing 
mean is chosen. A somewhat laborous evaluation 
(double Laplace transform) of the terms in (3.48) 
yields with (3.49) the simple result [10] 

rG(t) = 2(0 82 (zi)s~sT_2 
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4. Conclusions 

In this paper we have derived various formulas which 
simplify the calculation of stochastic quantities of 
non-Markov processes described in terms of a gener- 
alized Langevin equation. In particular, the results 
in section 2 elucidate how general correlation func- 
tions can be expressed via the cumulants of the 
process. The derivation of an exact time-convolution- 
less masterequation for different classes of general- 
ized Langevin equations (e.g. for the Mori-type form) 
shows the mathematical equivalence of the two for- 
mally different approaches of a Langevin description 
and a masterequation description. The derivation of 
the masterequation mainly uses the stochastic pro- 
perties of the random force f ( t )  via its cumulants. 
Note that two types of averaging are necessary in the 
final formulas. The first type is with respect to the 
stochastic random force whereas the second type of 
averaging is with respect to the distributed initial 
starting value z o of the collective variable. Whence, 
the resulting masterequation will depend in general 
on the explicitly chosen probability P0. The way how 
the higher cumulants of the random driving force 
enter in the operator expression for the master- 
equation is exhibited in transparent form via the func- 
tionals Z t and fat, s defined in Section 2. 
We stress that our method of derivation of the master- 
equation does not introduce formally questionable 
concepts like the inverse of operators which may not 
exist. Henceforth, our technique is substantially dif- 
ferent from the method of Stratonovitch for non- 
Markov processes [18, 19], where one starts from the 
Taylor series expansion for the characteristic function 
in terms of all higher unknown moments of the mac- 
rovariable itself and derives by use of the inverse of 
ap0-dependent operator a time-convolutionless master- 
equation. But this "nonlinear" masterequation is not 
equivalent to ours in general also Po-dependent mas- 
terequation in (3.13); simply because there exist many 
process dependent time-convolutionless master- 
equations for the non-Markov process z(t) [201. 
The generalization of the usual Langevin equation 
for continuous Markov processes to general Markov 
processes using white Gaussian noise and white gener- 
alized Poisson noise enables a treatment of the 
fluctuations which is mathematically equivalent to a 
masterequation description in the Kramers-Moyal 
form. For  example, the results of Leibowitz [21] for 
linear stochastic systems with &correlated shot noise 
are contained in equation (3.30) as a special case. As 
a consequence, van Kampens objection against the 
treatment of fluctuations with the Langevin method 
[6] is not justified, unless one utilizes the erroneous 
procedure to describe a discontinuous Markov pro- 

cess in terms of of a Langevin equation for a con- 
tinuous Markov process. 

Appendix 

Applications of the results in section2 to some im- 
portant processes: 
For a general Gaussprocess with mean (z ( t ) )=a( t )  
and second cumulant a(t,s) the characteristic func- 
tional (bt[v ] reads [111 

gi Iv] = exp i i v(s) a(s) ds 
0 

t t 

• exp - 1/2 5 5 v(s) v(r) or(s, r) ds dr. (A.1) 
O 0  

Performing out the functional derivative a In q,,/i av(s) 
we obtain for the auxiliary functional ~2t, s Iv] 

t 

f2~, slY] = a(t) + i ~ dr a(s, r) v(r), (A.2) 
0 

and for Z t Iv] = 1/(i v(t)) ~ ~[v]  respectively 
U L  

t 

~, Ev3 = Q,,s Evl Is=, = a (t) + i ~ dr  a( t ,  r) v (r). 
0 

(A.3) 

Whence, the correlation in (2.9) emerges as 

(z(t') g({z(-c), o = ~ =< t } ) )  

= a(t') (g({z(z), 0 N z N t})) 

' , a g ( z )  
(A.4) 

Of interest in the theory of continuous Markov pro- 
cesses is the white Gaussian noise, i.e. 

(z( t ))  =0  (A.5) 

( z(t) z(s) ) = or(t) a(t - s). (A.6) 

From the above formulas (A.2) and (A.3) we obtain 

~?s[V] = i a(s) v(s) (A.7) 

X~ Iv I = (i/2) o-(t) v(t). (A.8) 

The discontinuity in (A.7) and (A.8) is because of the 
white spectrum for z(t). 
A further important process is the generalized Pois- 
son process (shot noise) [111 

n(t)  

z(t) = ~ x k g ( t -  tk), (A.9) 
k = l  



416 

where the r a n d o m  var iables  x k are  independen t  of  
each o ther  and  d i s t r ibu ted  with the p robab i l i t y  
q(x): n(0 denotes  the Poisson count ing  process  with 
p a r a m e t e r  2. The  funct ion g(s) descr ibes  the pulse 
shape and  is assumed to satisfy g(s)= 0 for s <0 .  F o r  
this process  the charac te r i s t ic  funct ional  has been 
ca lcula ted  by  F e y n m a n  and  H i b b s  [11] yie lding 

• t [ v ] = e x p { 2 i d ' c ( C [ i d s v ( s ) g ( s - ' c ) ] - l ) } ,  (A.lO) 

where  

+ c o  

C[v] = ~ dx q(x) exp i x v. (A.11) 
- c o  

Hencefor th ,  a s t ra igh t forward  ca lcu la t ion  gives 

s d r z 3 
f2t, s [v] = - i 21 dr g(s - r) dv C | ~ dr g(r - r) v(r) ] 

0 I- r 

+ c o  s 

- o 0  0 

{ } • exp i x 5 dr  g ( r -  r) v(r) (A. 12) 
0 

Z,[v]  = Qt, s[V]l,=,. (1.13) 

Thus, the cor re la t ion  (2.9) becomes  

$ 

- c o  0 

• ! dr g(r - z) g(z) (1 .14 )  

- - o 3  0 

• ( g [ z ( r ) + x g ( r - z ) ] ) ,  O<=s<=t. (A.15) 

F o r  a white genera l ized  Poisson process  the pulse 
shape becomes  indefini tely sharp  ( g ( t - s ) ~ a ( t - s ) ) .  
Then  we ob ta in  from (A.10) 

~t[v] = 2 i ds{ C[v(s)] - 1}. (A.16) 
0 

The  auxi l iary  funct ionals  f~t,~ and Xt are ca lcu la ted  to 
be 
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(2t,s[Vl = 2 S dx q(x) x exp i x v(s), (A.17) 
- c o  

x 

Xt[v]=2  ~ dxq (x )~duexp iuv ( t ) .  (1.18) 
- - o o  0 

Due to the d i scont inu i ty  in the formulas  (A.17) and 
(A.18) we have for the cor re la t ion  in (A.15) for s = t  in 
this case the expression 

(z(Og(z)) 
x 

= 2  ~ d x q ( x l ~ d u ( g ( z ( r ) + u f i ( t - r ) 3  ). (A.19) 
- - c o  0 
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Note Added in Proof. After completion of this paper I got aware of 
the work by V.E. Shapiro and V.M. Loginov, Physica 91A, 563 
(1978): Following a similar reasoning as presented in Section 2, 
they derive for the special class of processes with an exponential 
form for the covariance (e.g. the Kubo-Anderson processes) some 
very useful formulae for correlation functions of the type consid- 
ered in Equation (2.9). 


