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1. INTRODUCTION

Processes in which a particle must overcome an intervening potential barrier are
ubiquitous in science, occurring in such fields as chemical kinetics, diffusion in
condensed matter systems, biological transport, nuclear reactions, ar d possibly even
describe the birth of the Universe. At high temperature-, the rate of such processes obeys
the law by Van’t Hoff {1] and Arrhenius {2], according to which the rate of escape k (rate
coefficient) 1s proportional to the Boltzmann factor for thermal activation up the barrier
top (see Fig. 1), i.e. with k, the Boltzmann constant and T the temperature

ko<exp— (AU [ k;T) (D

As one continuously lowers the temperature, this law predicts an exponential
- decrease of the rate, with no action taking place at absolute zero. However, at low
temperatures the roie of quantum mechanics provides a new mechanism by which a
classically stable state can become unstable via quantum mechanical tunneling.
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Fig.l. Barrier crossing in a metastable potential. The particle can leave the metastable well either via
thermal acuivation (high temperature regime) or via quantum mechanical tunncling through
the classicaily forbidden regime.
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Reactive processes usually take place while in contact with random interactions
between the system and its environment. The situation that a reaction proceeds essentally
as a "free flight" over the barrier, which leads to simple Transition State Theory (TST),
with no dynamical influence arising from the environment (solvent, solid, etc.) is rather
exceptional. The article written by H.A. Kramers in 1940 [3] represents a milestone in the
quantitative analysis of dissiparive reaction processes. Up to this date, it continues to
serve as a source of inspiration in an ever growing community of chemists, physicists,
biologists and engineers [4]. Kramers investigated a model of nonlinear Brownian motion
coupled to a thermal bath in such a way that the particle experiences a frictional force
being proportional to its velocity. As just mentioned above, the original article contains a
series of real gems: Most of all, it gives the description for the reaction rate for the "low
friction” and the "high friction” regime. With B=(k,T)” denoting the inverse
temperature the barrier crossing rate k can be cast into the form

k= K% exp(-BAU) )

<

where AU is the barrier height (see Fig. 1), @, is the angular frequency inside the
metastable well, and x denotes the "transmission coefficient" which corrects the simple
transition state theory result for the effects of dissipation. The key results in Kramers
work [3,4] have been the analytic estimate for the transmission factor in the weak fricton
regime, or energy-diffusion (ED) controlled regime, i.e. [3,4]

Kep = ¥BI, ; if Bl << 1 (3)

wherein y denotes the (Ohmic-like) friction coefficient, and /, is the (abbreviated)
classical action of the escaping particle at the barrier energy. In the opposite regime, i.e.
the spatial-diffusion (SD) controlled regime, Kramers found

Ko =147 1402)" = y/20, —22o 2 @

Y
where w, is the (unstable) angular frequency at the barrier top. In recent years there has
been a tremendous activity aimed at extending and superseding the original Kramers
theory {4, 10b, 20e]. In here we shall focus on two major extensions: The first one is the
theory for the "turnover”, i.e. the theory which bridges between the above two limiting

regimes, while the second extension refers to the effects induced by quantum mechanics
at low temperatures, where quantum tunneling events contribute to the reaction rate.

2. THE TURNOVER THEORY

It should be pointed out that no nonlinear potential possessing a well and a barrier is
known for which the Kramers equation governing the (Markovian) nonlinear Brownian
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motion can be solved analytically. In his original work [3] Kramers does confess that he
has not found the solution for the transmission coefficient that bridges the regime of
weak-to-moderate-to-strong friction on a unified level ("Kramers turnover problem"). A
large number of authors have addressed this problem with varying level of success [4, 5-
11]. Generally, all the previous attempts contain an element of arbitrariness, such as "ad
hoc" assumptions used in the process of "button up" improved results obtained within the
two limiting regimes. Inspired by Pollak s normal mode approach to the barrier crossing
problem {12, 13], Pollak, Grabert and Hinggi [14] put forward a solution of the turnover
problem wirhout the need to resort to "ad hoc” assumptions. The result! of the turnover
theory then reads [14] in virtue of kg, in Eq. 4

K=Kgp CXp{%ld}’ 1 +1y2 ln[l B Cxp{—5(1 + yz) / 4}]} . &)

Here, 6 = AEf is the (dimensionless) average reduction of the energy in the unstable
normal mode [14] when the particle starts at the barrier top, traverses the potential well
and returns to the vicinity of the barrier top. Note that for § >> 1, Eq. 5 approaches kg,
whereas for 6 <<1 it reduces to the weak friction limit in Eq. 3. Quite recently, this
turnover theory has been tested against numerical simulations by several groups {15a,

15b]: Given the situation in Fig. 1, Linkwitz et al. [15a] consider a cubic metastable
potential for the reaction coordinate x, i.e.

Ux) = legxz(l —i] | ©)
2 Xy

with a minimum at x = 0 and the maximum at x =(2/3)x,, and where M denotes the
mass of the reactive particle. This yields a barrier height E, of

2
EbEAU=§7MCO§x§ (7)

and the (positive valued) angular barrier frequency , equals the angular well frequency
w,. For the energy loss § one finds explicitly [14, 15a]

36 2 2 2 172
§=BAE = B2 AU Lk | 1+ L || 1460 L1+ | &3 =
5 @, 4wy @, 4o,

! For a potential with two metastable wells the ransmission factor k in Eq. 5 must be modified to include the energy

loss inside both wells, i.e. k — K, E(6,)E(,)/ E(6, +6,), where E(...) denotes the exponential function in Eq. 5,
see Eq. 6.11 in Ref. [4].
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X [y/f(;c;f,)—xﬁ,,-K;D/z—xgb/ﬁ] ] } , (8)

where w’(z) denotes the trigamma function. For ¥/ @, <<1 one finds

"
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The comparison between the turnover theory [14] and the numerical simulations [15a] is
depicted in Fig. 2.

Fig. 2.
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The transmission factor x is depicted versus the inverse dimensionless friction y = v/ w, (afier
Ref. 15a). The dots give the results of the simulation for the Kramers equation with Ohmic
friction in the metastable cubic potential in Eq. 6 at SAU = 8. The simulation is compared with
the turnover theory [14] in Eq. 5 (solid line}, the approach due to Melnikov [10) (short-dashed),
the (weak-friction) bridging expression (BHL) in Ref. [7] (long-dashed) and the simple
interpolation (SI) result, i.e. ™= x;.l) + x;l‘), (dotted). The error bars indicate the statistical
uncertainties of the numerical simulation.

As can read off from Fig. 2, the turnover theory [14] very well coincides with the

simulation. The result due to Melnikov [10] overestimates the transmission factor within
the turnover region. The simple interpolation (SI), i.e., k™' = kg, + K5p is qualitatively
correct in the whole regime. Thus, seen from a practical point of view — when high
precision predictions are of no necessity — the simple interpolation (SI) estimate suffices
in many cases. (Note that the SI-estimate can fail considerably, however, for different
potentials and — most importantly ~ for the case of srong memory friction [4, 20d, e]).
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Before we proceed with the discussion of the rate coefficient at low temperatures we
emphasize for the (high temperature) classical rate the following features:

(1)

(ii)

(ii1)

(iv)

(v)

The dissipative mechanism enters not the exponential part of the rate, but
influences the prefactor (the transmission factor) only.

The turnover result for the ransmission coefficient in Eq. 5 depends not only
on the actual dissipative friction mechanism but involves as well — via the
energy loss 6 — a dependence on the potential shape.

The srong-friction regime is characterized by the fact that the transmission K
does not involve the actual potential shape, but only depends on the
corresponding values of local quadratic curvatures at the well bottom, @,, and
at the barrier top, w,, respectively.

The transmission factor depends generally on the dimension of the metastable
potential landscape [4] (note in particular the contributions in this book by
Nitzan and Schuss, and by Han, Lapointe and Lukens).

The transmission coefficient in Eq. 5 is evaluated to leading order within the
steepest descent approximation. The fact of a finite barrier height AU
necessarily implies higher order corrections. Such higher order corrections to
the transmission coefficient are both of srazic [16-19] (i.e. due to the potential
nonlinearity) and dynamic (i.e. due to friction-induced) origin. By use of the
reactive flux expression for the rate [4, 20a-e, 21] and expanding about the
parabolic barrier limit one finds an improved result for kg, [22]. It explicitly
reads for a cubic oscillator in Eq. 6, cf. Fig. 1, (see Eq. 4.12 in Ref. [22a])

1 a1
= Eq.4
o= i B.8) [ o | { 1o a0y L
' 2 2
X[2~3x -%(Z+l)3+%(x_1) (75;22(3_11 “2%“)” . (100

Here,

}/2 1/2
xzzwb(1+4w2j /}/

b

(10b)

denotes the nonlinearity parameter [22]. The term within the large angular
brackets accounts for the nonlinearity corrections within the metastable well,
with Z, being the (nonlinear) partition functon of the metastable well.
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(vi) The turnover theory in Eq. 5 can now be considerably improved for dynamic
and static finite barrier corrections: If we substitute kg, from Eq. 4 by the
new, corrected expression in Eq. 10a, and in addition correct for nonlinearity
corrections inside the small friction regime, we set (by following the
reasoning in Ref. [8])

k(Eq. 18 in Ref. [8]) B

¥BI, 75 exp(—BE,) (11)

Kep (Eq. 4) — Kep (Eq. 10a) 1+8[1— yﬁlb]

wherein 8 denotes the unit-step function. Alternatively, we could set instead
of the rate k (Eq. 18 in Ref. [8]) the inverse of the exact mean first passage
time to reach the threshold energy E = E,, cf. Eq. (5.41) in Ref. [4]. With
Eq. 11 we include — via the quadrature expressions for the improved energy-
diffusion rate in Ref. [8] — the effect of the nonlinear energy-diffusion D(E)
induced by the potential nonlinearity inside the well region below barrier
top.

We conclude this section by further pointing out that the effect of both a nonlinear
metastable potential and a nonlinear bath-coupling (i.e. a nonlinear friction) has recently
been studied via reactive-flux simulations by Voth et al. [23].

3. QUANTUM RATE THEORY
3.1 Traditional Approach: Simple Quantum TST

As can be noted from the classical rate formula of Van’t Hoff (1884) and Arrhenius
(1889), cf. Eq. 1, one finds a vanishing rate as the temperature is lowered to absolute
zero. A crude, but frequently employed rate formula for the total rate k is obtained by
adding to the classical rate, k,, a Gamow-type tunneling rate, k_,, at zero temperature,
1.e. the total rate is then written as

qm?

k=k,+k, (12)

see e.g. Ref. [24]. The basic philosophy behind this formula is that quantum effects open
a new channel for barrier crossings, thus enhancing the rate above the corresponding
classical value. Moreover, following the reasoning of Wigner [25], temperature effects
have been incorporated into the quantum rate in the absence of dissipation by averaging
the (non-dissipative) quantum transmission t(E) with the canonical equilibrium proba-
bility [24, 26, 27]. This procedure is analogous to simple transition state theory and will
therefore be termed "simple quantum TST"; i.e. with Z, denoting the quantum partition
function of the metastable state one obtains
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kf=Z&‘(Zﬂh)_lJt(E)CXP(—/BE)dE ; (13)
0

wherein we measure energy from the well bottom. The inclusion of dissipation is
certainly more subtle: With the reactive particle being coupled to the environment during
the whole reactive scattering process it can gain or lose energy at arbitrary instances.
Thus, the concept of a transmission factor for the reactant becomes ill-defined in
presence of dissipation. A convenient approach which overcomes this difficulty has
recently been put forward on the basis of the functional integral formalism. Following the
reasoning of Langer [28] (which he originally invented to study the classical nucleation
problem) the approach to the dissipative tunneling rate can be based on the imaginary-
time functional integral approach (imaginary free-energy method). This method itself is
not exact within the full time-dependent quantum approach, but is restricted to the
semiclassical limit. The essence of the approach consists in a semiclassical steepest
descent evaluation of the free energy. This latter approximation leads to the so called
"dissipative bounce solution” as the primary object of the theory. At zero temperature this
approach has been pioneered by Caldeira and Leggett [29, 30]. The method has been
extended by the Augsburg-Essen-Polytechnic-Stuttgart - group and the Moscow School
to finite temperatures, covering all temperatures in the range from T = O up to the
classical regime [31, 32, 33, 34, 35, 36]. We shall not further belabour this approach
herein, because there exists a convenient multi-dimensional WKB-approach based on
periodic orbits [37] which - if applied to the dissipative case [38] — yields identical
results (see Chapt. 4). ‘

3.2. The Exact Quantum-Rate: Flux-Flux-Autocorrelation Integral

The beginning point for the discussion of the quantum rate is a formally exact rate
expression, which is rooted in previously derived formally exact correlation function
results [39, 40]. Let Z, denote the quantum partition function of system plus bath for the
metastable state located inside the well minimum, see Fig. 1. Further, let s(ql,...,qf)
denote the surface separating reactants from products in full configuration space
{qp,--q,) . x(qy,....q ;) 1s the reaction coordinate, and let p be the momentum operator
of the reactive particle in configuration space. The derivative Vs, is the derivative normal
to the surface. Then, with M being the reduced mass of the reactive system, the flux-
through-a-surface operator has the form

F=6(5)Vs-p/M (14)
The thermally averaged tunneling rate k is formally given by [39, 40, 41, 42]

k=Re{Trexp(~B#)FP|}/ z, (15)
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where Re denotes the "real part”, Tr indicates the trace, % is the time-independent
- . -1 . .

Hamiltonian operator of the total system, and 8 = (k,T)  again is the inverse tempera-

ture. The operator Preads

P - lim exp(iH1/ R)h(p)exp(—i#t/ k) (16)
with h(p) =1, if p > 0 and A(p) = 0, if p < 0. The operator P projects onto all states that
have positive momentum in the infinite future (r — o). By use of a few formal manipu-
lations the exact rate in Eq. 15 can be recast in terms of a time integral over a flux-flux
autocorrelation function, i.e. with the symmertrized flux operator

ol p+p- 17)
F= 2M[5(s)Vs p+p-Vs 6(s)] (

and

t, =1—ihf3 /2, Eq. 15 can be written in the form [42],

kzézg‘IC(t)dt , (18)
where

C =Tr{Fe)FO)] - (19)
with

F(1,) = exp(=iz(t, | R)E(Q)exp(iz(r /#) - (20)

Miller et al. [42] have further demonstrated that the rate in Eq. 18 is fully equivalent with
the quantum-correlation function formalism due to Yamamoto [39]. Nevertheless, the
correlation function in Eq. 19 distinctly differs from Yamamoto’s one, and in fact only
their integrals agree. Moreover, note that the correlation function formalism in Eq. 18
presents a dynamical approach. Therefore, the formally exact expression covers both, the
quantum energy-diffusion limited as well as the quantum spatial-diffusion limited rate
regime.

The correlation function result in Eq. 18 is analogous to the Green-Kubo formulas for
transport coefficients. For a simple situation, such as for a one-dimensional barrier, i.e.

U= E, - L i (x-x,) @1)

-



276

the exact result for Eq. 18 becomes

1

Zok = —2 IthTcxp(—ﬁEb}ﬂ (22)
. (1 ]

sm(:}—hﬁwbj

h
In other situations, however, with generally non-separable potential fields it becomes
essentially impossible to evaluate analytically the result in Eq. 18.

Recently the feasibility of an evaluation of the rate expression in Eq. 18 has been
demonstrated for a series of different non-dissipative reactions via a numerical evaluation
of the corresponding quantum flux-flux autocorrelation function. By use of a variety of
methods, the research group of Light et al. has impressively calculated quantum rates for
the collinear A + H, reaction [43], the three-dimensional H + H, reaction scheme [44],
as well as for the exchange reaction of hydrogen isotopes [45,46]. The authors have
found good agreement with the experiments for temperatures between 300-1000 K.

We like to point out again that the appealing flux-flux-correlation expression in Eq. 18
is not unique, but there exist a whole number of different but equivalent correlation
function expressions [42]. In particular, a quantum version of the reactive-flux [5, 20, 21]
has been put forward by Voth et al. in Ref. [47].

3.3 Muliidimensional Quantum Transition State Theory (QTST)

There is presently no universal agreement on the correct form of a quantum
generalization of classical transition state theory [37, 40, 41, 48, 49, 50, 51]. An intuitive
appealing form of quantum-TST is obtained if we replace the projector Pin Eq. 15 by
the step function A(p) alone [40]. This approximation however, invokes an ordering
problem for the flux operator {37, 40]. In effect, the difference between such a QTST and
the exact time-dependent approach is that in the exact approach the projection of the flux
onto positive momentum states is performed for all times t on [0,ec] while in QTST the
projection is carried out at t = 0 only. Therefore, the QTST cannot — in distinct contrast to
Egs. 15 and 18 - account for the flux recrossing! A different form of QTST is based on
the path centroid-density. With x(t) denoting the reaction coordinate, and the constrained
partition function reading {50]

O(x") EJ@X(T)Dq(z‘)&i—x')exp(—S[x(z‘), q(D/h) (23)

wherein S[x(7),q(7): non-reactive bath coordinates] is the Euclidean time (T = it) action,
and X is the zero-frequency component, or “centroid", i.e.
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17 (24)
X =[3—h‘([x(r) dt -

this QTST rate is defined by [50, 51}
kOTST - %EZ;‘Q()C' —x) (25)

where X, is the transition state location at the barrier top. At present, it is not totally
clear how these different approaches to the QTST-rate compare among each other. This
author suspects, however, that within a semiclassical description of QTST all these
different QTST-theories [40,41,48,49,50] become equivalent. For reactions in condensed
phases it is evident from Eqgs. 15 and 18, that all these quantum rate expressions become
rather complex to evaluate, due to the huge number of degrees of freedom modelling the
system-environment interaction. Thus, we definitely have to make further concessions,
such as e.g. the description within a semiclassical limiz. In this context, we should point
out, however, that the effect of dissipation generally forces the system to behave "more
classical” [4,35]. Put differently, a semiclassical description likely is an appropriate
starting point to model quantum-dissipative effects.

Armed with the results derived in this section we are now ready to tackle the quantum
generalization of the dissipative (Kramers) reaction-theory presented in section 2.

4. PERIODIC-ORBIT APPROACH TO THE DISSIPATIVE QUANTUM RATE
4.1  Unified Quantum-Kramers Rate

In order to obtain explicit results for a coupled many degrees of freedom metastable
system we use QTST together with semiclassical methods. By use of the semiclassical
approximation for the propagator, exp(—# J, cf. Eq. 15, one finds after a first stationary
phase approximation a periodic trajectory in configuration space which represents a
continuum of stationary phase points. This periodic trajectory, being unstable with
respect to small perturbations, just is the bounce solution (often also denoted as the
“instanton-soiution”) in full configuration space of (N + 1)-degrees of freedom of the
metastable system, x, which is (bi-linearly) coupled to a thermal bath with coordinates,
G,----qy - This bounce solution describes tunneling at fixed total energy E. The dividing
surface will next be chosen so that the periodic trajectory crosses it perpendicularly, i.e.
g, is the reaction coordinate which measures distance along the unstable periodic
trajectory, with the other N coordinates being orthogonal displacements away from it. In
contrast to the remaining N orthogonal coordinates, — which can be evaluated by the
stationary phase approximation -, the integral over the ¢,- coordinate cannot be
performed in such 2 way. The latter, however, is trivially accomplished in virtue of the
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0 -function in Eq. 14, see in Ref. [38c]. Making use of similar calculations (periodic orbit
theory) originally put forward by Gutzwiller [52], one ends up with the result [37]

1 LT _ : (26)
k=2Z; 27m£dEk(E)exp( BE)

Here, we have measured the energy from the well bottom, with U (xg,) = E,. The quantity
k(E) is the microcanonical, cumulative semiclassical reaction probability at the total
energy E, i.e. [37]

k(E)=Y (-1)"" exp[-n¢(E) / k] x

n=1

N -1
x H{2 sinhB—nT(E)a)‘.(E)]} ; (27)
i=1
with
T(E)
9(E)= [p(ng(r)de (28)
0
being the abbreviated action integral along the periodic orbit in complex time t = — it

(Wick rotation) of period T(E) that rocks forth and back through the saddle point region
on the upside-down potential energy surface in (N + 1) dimensions. The parameters
{a)‘.(E )} are the stability frequencies (Hill-Floquet coefficients) characterizing the
unstable periodic orbit with period T(E) = —¢’(E). Upon expanding the sinh-functions in
Eq. 27 into geometric series, one obtains a well-behaved result for k(E) , i.e.

-1

b N
kKE)y= Y (HCXP{P(E)—W(E)Z(n,.+%)hw,.(E)}/h}j .29
=0 i=1

(R ety

With the solution of
ud 1
ET =F- igl (n‘. +E) hw‘(ET) y (30)

being the energy E; left in the tunneling mode while crossing the saddle point, we
approximate the answer in Eq. 29 by the more appealing expression [38b,38c]

©o

kKE)y= Y {1+exp[oE)/a]}" 31)
(n,stip)=0
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wherein we have "unexpanded” the first two terms in the Taylor series in Eq. 29. The
form in Eq. 31 becomes exact for tunneling in a multidimensional, separable inverted
parabolic-like potential landscape.

It should be noted that the quantity in Eq. 31 involves a summation over all the
orthogonal states {n;} within the barrier region; i.e. the cumulative reaction probability
k(E) can exceed unity. Thus, despite its appealing form, the result in Eq. 31 is quite
distinct from the familiar uniform-WKB expression :”(E) for the transmission
probability of a parabolic-like barrier, i.e. [53, 54]

t™(E)={1+exp[¢(E)/ n]}” - (32)

In absence of dissipation the generalization in Eq. 31 reduces, of course, with E; = E to
the single-term equation in Eq. 32.

With Eq. 31, the evaluation of the thermally averaged, dissipative tunneling rate
follows after the integration in Eq. 26. The remaining problem in obtaining an analytical
result consists in the determination of the small action ¢(E;), the Hill-Floquet
coefficients {w;,(E;)}, and the period T(E;). In particular, it should be stressed that the
result in Eq. 26 combined with Eq. 31 presents an expression for the dissipative quantum-
Kramers rate, or the equivalent semiclassical multidimensional quantum TST, that holds
true for all temperatures!

4.2 Results for the Quantum-Kramers Rate

In this subsection we follow the reasoning of Hinggi and Hontscha [38b, 38c] to
derive explicit results for the dissipative tunneling reaction rate in various temperature
regimes, in a metastable potential field of the form sketched in Fig. 1 containing a single
metastable well.

4.2.1. Dissipative Tunneling Above Crossover
Let us first address the high temperature regime 7 > T,,, where
T, = hA*(2k,)™ (33)
is the "crossover temperature” to thermally-activated dominated escape [31,55]. The

quantity A* denotes the friction renormalized barrier frequency of Grote-Hynes [56] and
Hénggi-Mojtabai [57], i.e.

A2, ne 172
r=(7‘4“+w:) —%?(m : (34)
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with 7 being the Laplace transform of the corresponding memory friction. For Ohmic
damping we have y(r—s)=270(t—ys); i.e.y(A") = 7. In this high temperature regime
T > T, we can use a harmonic, local adiabatic approximation, in which the period T(E)
equals a constant T(E;)=2m/ 4", and the Hill-Floquet coefficients can be approximated
by the normal mode (angular) frequencies of the orthogonal coordinates at the saddle
point. Moreover, with imaginary-valued coordinates q(t) and momenta p(t) when
E; > E, the abbreviated action in Eq. 28 becomes ¢(E;)=(E, — E;)2x/ A" <0. Then,
interchanging the integration in Eq. 26 with the summations in Eq. 31 yields, by virtue of
an identity due to Pollak [58] — which relates the product of the (unknown) normal mode
frequencies at the saddle point and at the well bottom, respectively, to the (known)
Laplace transform of the memory-friction ¥ —, the central result

* oo 2 252 Sf
kz[j) (?i)exp(—ﬁEﬂHH w? +n2 + nE(nl) } rs1, . G5
T

b ot =@y + 18+ nly(nd)

where { =2x/(1f3). This high temperature dissipative quantum limit was obtained first
by Wolynes [59], and has been subsequently re-derived along quite different lines of
reasoning by various authors [55,58,60,61].

The first term inside the square brackets denotes the classical generalized Kramers
rate for memory friction [56,57]. We recall the definition of wg' =U"(x=0)/ M, being
the (angular) frequency in the well bottom. For temperatures T >> T, the quantum
correction Q, given by the curly brackets in Eq. 35, approaches unity. Moreover, this
quantum correction always exceeds unity, i.e. the quantum-Kramers rate theory always
enhances the classical rate. In particular, for weak-to-moderate damping strengths 7(4%),
there exists an accurate and quite simple approximation to the quantum correction Q in
Eq. 35, which in leading order is independent of the dissipation 7, i.e. [553],

2
0~ exp{%ﬁz(wg + wf)} : (36)

Thus, for temperatures T > T, the Arrhenius factor undergoes a temperature-dependent
renormalization towards smaller values, i.e.

2

7
E, > E, —7—4-ﬁ(w§ +w?) - (37)

The effect of quantum tunneling has repeatedly been observed in a number of physical
systems such as in biophysical ransport [62,63], chemical conversion processes invol-

- ving proton exchange [64,65,66], or tunneling of magnetization in ferromagnetic systems
[67a-¢}, to name but a few. In particular, a very recent study of the diffusion of H2 and
HD molecules in molecular solids (zeolites) [68] beautifully confirmed the quantum
correction in Egs. 36 and 37, see Fig. 3.
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The measured quantum corrections to the temperature dependence of the diffusion coefficient D
of H2(o)and HD (e) sorbcd ip zeolites. Daghed lines denote the result in Eq. 36, i.e.
InD, =InDy - BE, + (1 1 24)B ’[’IU" |+|U;o"om1/ M fus convincingly the measured data (after
Ref. [68]) Note that the quantum correction Q, being proportional to B2, yields a characteristic

upward curvature in the Arrhenius plot which accounts for the temperature-dependent lowering of
the barrier height, cf. Eq. 37.

4.2.2 Dissipative Tunneling Near Crossover

At temperatures 7 ~ T, the integral in Eq. 26 becomes dominated by energies

E. <E,, where ¢(E;)>0. Setting for the abbreviated action more accurately with
iT"=lo”(E = E,), cf. Ref. [38b]

_ _ 2r 1 _ 2y eper
o(E;)=(E, ET)F-F-?:(EI, EHIT , (38)

we recover the result

where

k:( 27 )“2 90 @+ &7+ HE) Py @+ L+ nbnd)
AT w, a w2 — W, -r-nzé' +n5}’(ng)

(cxp[—ﬁE 7|hT| ﬂo-ﬁ)zD erfc{( gl)l/z(ﬁo—ﬁ)} , (39)
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_1 _
a=of +(3%)? 1+(¢9‘}'(z)/6z)lz=l¢], By =(kTp) . anderfe(x) = 27 12

T 2

Jchy exp( y )

For strict Ohmic friction ¥(z) = 2¥5(z), we obtain a = {,(2{, + 7)., with {, =27/ (hf,).
Note also that the result in Eq. 39 approaches for T > T, the previous answer in Eq. 35.
Moreover, Grabert and Weiss [69] have shown that near T ~ T, there exists a frequency
scale A and a temperature scale X that depend on the particular system under conside-
ration, so that within the crossover region the rate exhibits a universal scaling behavior.

4.2.3 Dissipative Tunneling Below Crossover

At lower temperatures the small action ¢(E;) in Eq. 38 must be evaluated by taking
the full nonlinearity of the potential U(x) into account! In that regime, however, the
contribution from multiple traversals of the classically forbidden regime with period
nT(E), n > 1, do not significantly contribute to the sum in Eq. 27. Hence, we can evaluate
Eq. 26 by keeping only the n = 1 term for Eq. 27, and the remaining integral can be
performed by the method of steepest descent. The steepest descent condition yields for
the period: T(E)=hf3 =60. With E, determined so that T(E = E,) = #f3, and the full
extremal Euclidean action §,, defined as the extremal action for the periodic orbit at
E=FE,e.

S, =6E, + ¢(E,) (40)

(41)

-

[}
- j[Wq(r))%q(r)p(n] g
0

wherein V[q=(x,g,,...,q,)] denotes the potential function of all degrees of freedom
(system plus bath), the low temperature dissipative quantum rate reads [38a, b, c]

k=Z;'12nhT"(E = E,)"* exp(-S, / h) x

N -1
x H{z sinhB hBw,(E, ):l} - (42)

i=]

By use of the identity derived in Ref. [38c], the prefactor in Eq. 42 can be related to
the eigenvalue spectrum around the dissipative bounce trajectoryx,(t) of period
hf3 = 6, to yield the result [31, 32, 33, 34, 35, 36]

172
M R i 12 Dex(8%S, / 8x*)._
SRy Lt x=0 s /n) - @3

{27[;'1 -J/z f[xg(T)] lDet’(52SE/6X2)x=x¢(r)| CXp( Sb/ ) )

Here, S, denotes the Eucledian, dissipative action which at the stable minimum x =0
equals SE[x,(t) = 0] =0 and SE[x = x,(t)] =S,, is the dissipative bounce action in Eq.
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41. Det” means that the eigenvalue zero has to be omitted. It should be noted that in pre-
sence of dissipation the part of the prefactor inside the curly brackets in Eq. 43,
— stemming from the zero-mode normalization —, differs from the dissipative bounce
action S,: Only for an undamped system (i.e. ¥ =0) at zero temperature, T = 0, does this
part equal the bounce action S,.

Dissipation was introduced first into the bounce formalism for the zero temperature
quantum decay rate by Caldeira and Leggett [29,30]. The result in the form of Eq. 43,
being valid for finite temperatures and dissipation, has originally been obtained within
the dissipative functional bounce-methodology in the papers by Grabert and Weiss [32],
Larkin and Ovchinnikov [33], and Riseborough, Hinggi and Freidkin [34]. For an
undamped system, the answer in Eq. 43 reduces to the low temperature, steepest descent
evaluation of simple quantum TST [27]. Because of quantum tunneling, the rate k does
now not decrease continuously as the temperature T is lowered, but flattens off at low
temperatures. In the high temperature (or classical) regime, the rate is reduced compared
to the gas phase rate (y=0, i.e. A" =w,) by the dissipative transmission factor
A"/ w, <1, cf. Eq. 35. In contrast, the zero temperature rate is exponentially reduced by
the dissipative action factor S, (T = 0) [29, 30]. For extreme weak damping 7(A%) =0,
the thermal fluctuations have little effect on the low temperature behavior of the rate, i.e.
the temperature dependence for the quantumn rate is essentially negligible below T . For a
damped system, however, there exists a large regime where quantal and thermal
fluctuations interplay. In this low temperature regime one finds a universal exponential
temperature enhancement in the form of a power law [31]

In{k(T)/ k(T =0)}=cT" - T,>T20 - (44)

where n = 2 for all systems with finite low frequency damping, i.e. y(w =0)=7y,>0.
This universal low temperature reaction rate enhancement arises from the thermally
excited low frequency states of the environment and not from the thermal excitations
among the states in the metastable well. An appealing re-derivation of Eq. 44 in terms of
quantum noise theory has recently been given in Ref. [70]. For Ohmic-like damping, this
characteristic low temperature T2-law, as well as the quantum corrections in Egs. 35, 36
and 39, have been observed in several experiments, cf. sect. XI in Ref. 4, and the reviews
in Refs. [71] and [72]. With n = 4 it has recently been observed by Careri et al. [73, 74] in
polycrystalline ice, and by Kleemann et al. [75] for phonon-assisted tunneling in
perovskites, see Figs. 4 & 5. The power n is directly related to the behavior of the
spectral density J(w) (for its definition see in Ref. 30) of the environment at low
frequencies, i.e. J(w)e< ", as @ — 0. The slope c in Eq. 44 increases with the
strength of dissipation, but depends further on the details of the model for the dissipative
mechanism and the metastable potential function U(x) [31].
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Fig. 4. The average relaxation times7,, of H,O polycrystalline ice (solid circles) as a function of

T”. The data marked by open triangles (4) are taken from O. Worz and R.H. Cole [J. Chem.
Phys. 51 (1969) 1546) and the open squares (O) are data from S.R. Gough and D.W.
Davidson [J. Chem. Phys. 52 (1970) 5442]. The data for the triangles are shifted vertically by
a factor 10 and the open squares by a factor 0.1, respectively. After Careri et al., [74].
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Fig. 5. The quadrapolar relaxation, measured via linear birefringence, in the perovskite
Kl_xLixTaO3, with x = 0.011. The relaxation of the birefringence follows a strechted
exponential e [1 - exp—(¢/ 1')'3 ] where both § and 7 are temperature dependent. The
relaxation rate T (solid circles with estimated error bars) follows a T -dependence (indicated
by the solid line) in agreement with the theory in Ref. [31]; after Kleemann et al. [75].

In contrast to the classical Kramers rate in Egs. 2 and 4, the exponential part of the low
temperature quantum rate, Eq. 42, and particularly, its prefactor are much more difficult
to evaluate. An analytical treatment of the prefactor is possible, but rather difficult [34,
76a,b]. In practice, one must therefore resort to numerical methods [36,77,78], or varia-
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tional approximations [79,80]. For the cubic metastable potential U(x)=<Mawdz?(1-x/x,),
and strict Ohmic friction ¥ = ¥, one finds with E, =2Mw}x? / 27 for the action S, and
with the quantum prefactor v=kexp(S, /), the following low-temperature results:
With weak friction and a dimensionless damping &= y(2w,)” one finds for the
dissipative action S, in terms of the zeta-function {(3) =1.202 ... [76a, b]

2 4
5, T20 =381, 356®)_ 5 (27T _z[27k,T) . Il 5,0 (45
5w, ©  2n\ hw, 12\ ho,

which agrees at T = 0 with the action calculated by Caldeira and Leggett [30]. For the
quantum prefactor we have [76a, b]

wWT =0) = 12w0[3E,,(27rhw0)—1]mcxp(2.860a) , a—=0, “)

which at zero friction @ =0 again agrees with Caldeira and Leggett [30]. On the other
hand, for very strong damping one obtains [33, 36) for T < T, = haw, (4 k) ™:

2
_ E, 1 2_4 o 2% - o (47)
S,(T=0) a(67r 0) !:1+4a 3@ (woh/}) } . a=(Y/20,)—

The quantum prefactor in this limit reads [33, 36]

6E,

172
v(T =0) = 8woa7’2(h ) [1+207% e +1107a7] , a—e - (48)

0

The same characteristic dependence on friction 7, i.e. v o a’/? is obtained for
strong friction in a titled sinusoidal potential [81]. In contrast to the exponential part of
the rate, cf. Eq. 44, the prefactor at low temperatures exhibits only a very weak
dependence on temperature [31, 36].

The result for the dissipative low temperature quantum Kramers rate in Egs. 42 and 43
has been tested repeatedly via several experiments, see above, as well as in section XI in
Ref. [4]. In the context of the quantum rate expression in Eq. 43, there has been
performed a particularly beautiful experiment by the Saclay group [82]. They have
measured the quantum rate out of the zero voltage state of a Josephson junction shunted
by a delay line terminated by a resistor. This experiment implies an Ohmic-like memory-
friction [83] which is monitored by varying the delay time ¢,, obtained by changing the
length of the transmission line. In Fig. 6 we depict the experimental results for the decay
time (inverse rate) which are compared with theory. Indeed, the agreement between Egs.
42 or 43, and the experimental results is striking.
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Fig. 6. The inverse quantum rate k_l(T) = 7 versus the delay time ¢, at T = 18 mK measured for

the decay of the zero voltage state in a Josephson junction shunted by a delay line whose
length is varied in situ. The change of ¢, implies a corresponding change for the frequency-
dependent friction, cf. Eq. (3.2) in Ref. [83]. The solid circles denote the experiments in Ref.
[82], and the solid line is the theoretical prediction based on Eq. 43 for T = 18 mK. The
crossover temperature in this system is around 50 mK.

5. CONCLUSIONS AND OUTLOOK

Here, we summarized the state of the art for the dissipative barrier crossing problem
with special emphasis set on the Kramers turnover problem and the low temperature,
tunneling-modified reaction rate behavior. Compared with the original paper by Kramers
[3], the field has witnessed a series of significant developments in recent years. Most of -
all we mention here the solution of the Kramers turnover problem [14], see section 2, and
the corrections to the transmission factor induced by finite barrier heights (i.e. the
reaction rate beyond steepest descent) [22]. It should be pointed out, however, that thus
far all of these finite barrier height corrections could be obtained only within the spatial-
diffusion limited regime, but not for the weak-to-moderate friction regime where
nonequilibrium effects for the energy population control the rate. In the weak friction
regime the potential nonlinearity can be accounted for by the inverse mean first passage

time expression, cf. Eq. 11, being explicitly known up to quadratures, cf. see sections
IV.D and V.B in Ref. [4].

Clearly, the study of quantum tunneling for the barrier crossing problem can hardly be
considered to completed, despite the many recent important developments [4]: For
example, the quantum corrections to the turnover theory have been determined in Ref.
[4], see section 9.E.2 therein. With quantum mechanics acting during the reactive
scattering process the classical rate becomes modified both via quantum transmission and
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quantum reflection. In particular, the effect of quantum reflection can at extreme weak
friction — under certain conditions — dominate the transmission, thereby yielding a
quantum corrected rate which does not enhance, but rather suppress the rate below its
classical value [84].

It should further be emphasized that all of the explicit dissipative tunneling work
considered herein has been restricted to a bi-linear coupling between the system and a
thermal bath, which essentially consists of mutually coupled linear oscillators. In other
words, while the nonlinearity of the metastable potential is fully taken into account
within the periodic orbit approach, see Eq. 38 and Eq. 41, the effect of

(i) nonlinear system-bath interactions
and
(i1) nonlinear bath degrees of freedom

are not taken care of with the dissipative quantum rate approach in section 4.2. A first
attempt into this endeavour has recently been put forward by Riseborough in Ref. [85],
who considered a bi-linear coupling together with a bi-quadratic coupling. Presumably,
the effects of nonlinear bath modes most likely become suppressed as the temperature is
severely lowered. Nevertheless, there is certainly a need to address in more detail other
realistic nonlinear coupling schemes and non-harmonic bath degrees of freedom. In this
context, a tractable generalization of the variational (classical) transition state theory for
condensed phases, as put forward by Pollak et al. [86, 87], (note also his contribution in
this book) into the quantum regime is much needed. Taking the analytical complexity of
nonlinear system-bath and/or bath interactions into account, the progress will greatly
have to rely on numerical studies. This author hopes that the combination of the quantum
TST, as put forward with the path centroid-density approach by Voth et al. [50, 51],
together with (stationary phase) quantum Monte Carlo simulations in imaginary time (for
the treatment within QTST) and in real time (to go beyond QTST) — which do make use
of filtering techniques [88-92] — will prove to be of use in future years.

There is also need to consider dissipative quantum rates in finite-dimensional
metastable landscapes without and/or with disorder, as well as extended metastable
systems (i.e. metastable fields). The latter is of course crucial for the study of friction-
modified quantum nucleation. A couple of studies in this difficult problem area have
already appeared [93, 94]; but due to the inherent difficulties characteristic for nonlinear
dissipative quantum fields, the progress on this front promises no smooth sailing, but lots
of cumbersome work instead. ’

Finally, we would like to mention another area carrying great potential for various
applications. In short, it can be characterized by the interplay among: Metastability —
Dissipation — Periodic Forcing. Both, within classical and quantum statistical mechanics
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the application of external periodic driving can manifestly alter the escape dynamics.
Classically, the novel phenomenon has been labelled "stochastic resonance" [95, 96],
whereas on the quantum level it is known as "resonantly enhanced quantum decay" [97].
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