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A macroscopic description for the thermal equilibrium dynamics of systems in terms of non-markovian processes is given

and the classical fluctuation—dissipation theorem is derived.

In recent years the description of fluctuations in

( ;cerms of stochastic processes has found wide applica-
-tion. In principle any macroscopic law should be de-

rived from the microscopic equations for all degrees

" of freedom. In practice, however, one often sets up

the macroscopic evolution laws in a phenomenological
way. Usually the irreversible macroscopic behaviour
which represents the global feature of the exact dy-
namics is described in terms of Markov processes [1—

. 3]. But there may exist situations in which a clear-

cut separation of the macroscopic time scale and the
microscopic time scale, given for instance by the aver-
age time between collisions, is not possible. For ex-

‘ample the motion of a particle in a fluid whose parti-

cle size lies between the macroscopic and atomic do-
mains is subject to memory effects. Then a satisfactory
description is possible in terms of non-markovian
stochastic processes for the coarse-grained macrody-
namics [4—6].

The fluctuations occurring in asystem at equilib-
rium are related to the dissipation effects by the fluc-
tuation—dissipation theorem of the first kind [7—-11].
In special cases [7,8] this has been recognized on the
basis of solely macroscopic concepts and thermody-
namics a long time ago. The theorem has been derived
generally by explicit use of microscopic dynamics {9,
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10]. In terms of the linear response tensor x(7) and
the correlation matrix C(r) of equilibrium fluctua-
tions it can be written, for classical systems, in the
form [10,11].

x(r) = —6(r)B(d/dr)C(7). &)

Here §~! denotes the temperature and 0(r) the unit
step function. It is worthwhile to investigate if the
same functional relationship can be derived on a mac-
roscopic level if the system undergoes a non-Markov
process [4—6]. Such an investigation is also desirable
because of van Kampen’s objection [12] to the micro-
scopic derivation of linear response theory.

The macroscopic dynamics of non-markovian sys-
tems generally depends on the preparation of the ini-
tial state [4,5] . An important class of initial states con-
tains those which are prepared by applying constant
extlernal fields F; to a system of a given temperature
gt

In the linear approximation (denoted by <) these
initial states have the form

P(ak) = pﬁ(ak)(l * ﬁF]‘aaj) > A 0]

if the fields F; couple linearly to the macrovariables.
Here pﬁ(ak) is the thermal equilibrium distribution at
temperature !, and 84; = a; — {a;) 5 denotes the
deviation of the macrovariable a; from its thermal
equilibrium value (g;).
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If the external fields are switched off at time ¢, the
initial distribution relaxes towards thermal equilibrium.
For all states in the class considered above this relaxa-
tion is governed by the same master equation [5]:

t
b= + [ Ay(t-)p(s)ds. 3)
to

Note that the external fields F; have only been used to
construct,an appropriate class of initial states and that
the stochastic operators £25 and A p are independent
of these fields.

It is clear that the equilibrium distribution rg has
to be a stationary solution of eq. (3), hence

D0, =0, 4
Ay ()pg=0. ()

Further the kernel G, (a, @', 1) of the Green’s function
GB(T) of eq. (3) defined by

6,1 =2,6,0+ [ A -G, ()ds,
. 0

©)
G,(0)=1,

coincides with the time-homogeneous conditional
probability p, (a, 7la") of the stationary equilibrium
process [5,6].

Let us now study the linear response of the equi-
librium system to time-dependent external forces
F;(t) at times|z > . The effect of this perturbation
leads to additional terms in the master equation (3)
which now takes the form

t .
b@=Qp)+ [ Aft-s)p(s)ds
to

(7

t
QP+ [ A 9)p(s)ds.
o

Qext(r) describes an instantaneous effect, linear in the
external forces, whereas AXt(¢, 5) generally is a com-

~ plicated nonlinear functional of the history of the ex-
ternal forces F}('r) in the time interval s <7 < t. These
retardation effects are due to the non-markovian behav-
iour of the system.
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Splitting p () into
p()=p; +8p(D), (®
we find from eq. (7) with eqgs. (4), (5):
5p(1)= f Gyt~ [ne’“(s)p 6]
to ©)

+ f A (s, 1)p(7) dT} ds

to

where we have used the Green’s function (6) and

p(tp) =py- (10)
In the linear approximation we put
t . .
Q¥ Op(0) + [ A%, )p(s)ds
fo
(11)

. t
= Q™ (n)p, + f A (2, 5)pyds,
fy

where A$*! means the linearization of At with re-
spect to the forces Fy(#). The right hand side of eq.
(11)is a linear functlonal of the past history of F; (t)
and may be written as

t
Q™()p, + [ AU, 5)pyds
to

(12)
t
= A;F () + f B/t - 5)F(s).
to

To determine 4, and B; we consider the master equa-
tion (7) in the case of constant external forces F,(t)

= F;. Then, in the linear approximation (11), the dis-
tribution (2) has to be a stationary solution of eq. (7).
This requirement leads to

A "_B Pﬁ j? B](f)=—5AB(t)P554 (13)
Inserting eq. (13) into eq. (12), we find from eq. (9)

in the linear approximation (11):
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()26 f F(s){ Gy(t - )9,
(14)

+ f ) dTGB(t —5~—7T) AB(T)} (BajPB)ds .
0

F rom eq. (6) we obtain, for instance by Laplace trans-

form,
+

T
Gy(N =GN, + [ Gy7— ) Ay(s)ds, (15)
0
which combines with eq. (14) to

t

G

5()= B [ F6)3:Gt - )Gapds.  (16)
. P

Hence, the linear deviation §{a; (1)) = fdag;é p(r) from

the thermal equilibrium value (g; ), due to the exter-
nal forces F]-(t) reads:

t
8 (1)) =~ [ F6) s faba, Gyt - 5)(Beypp)ds.(17)

to

so that the response tensor emerges as

X4y (7) = ~0()B < fdada Gy (r)oa,). (18)

Since the kernel of Gg coincides with the stationary
conditional probability, we immediately find eq. (1).
In frequency space eq. (1) takes the more familiar
form

X (@) = 30BG(w), (19)

where x L (w)= (1/21)(ij (w) — x]k( w)) is the dis-
sipative part of the response tensor.

We would like to emphasize that eq. (19) has been
derived without use of a detailed balance condition or
special choices of the transition probabilities, and in-
dependently of the magnitude of the fluctuations.
There is only one essential point. By applying con-
stant external fields F; to the equilibrium system we
prepare a certain class of nonequilibrium states. The
relaxation of these nonequilibrium states towards
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equilibrium is governed by the same master equation
(3). This can be viewed as a version of Onsager’s re-
gression theorem [13] in the non-markovian case since
eq. (3) governs also the time evolution of equilibrium
correlation functions. However, in contrast to the re-
gression theorem for markovian systems, its non-
markovian version applies — even in the linear regime
— only to the above-mentioned class of initial states.
Now consider a steady nonequilibrium state.
There is always a certain class of initial states relaxing
towards this steady state according to the same master
equation that governs the time-evolution of the station-
ary correlation functions. If the linear effect of the ex-
ternal forces disturbs the steady state in such a way
that the new state belongs to this class, we obtain a
fluctuation—dissipation theorem even for nonequilib-
rium states. The importance of the appropriate cou-
pling of the external forces in this context has recent-
ly been pointed out by Graham [14] for markovian
systems. However, while the appropriate forces are
known for an equilibrium system (they couple linear-
ly to the macrovariables), they are not generally
known for non-equilibrium systems, and further in-
vestigation is needed.

Orie of us (H.G.) wishes to thank D. Forster who
read and commented on the manuscript.
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