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Abstract

The path integral approach is used to formulate the interaction time for a
classical as well as for a quantum mechanical, structureless object which
interacts with a time-dependent force acting in some prescribed region in space.
In doing so, we establish an adiabaticity criterion, both for classical stochastic
motion and quantum motion. The quantum case involves two complex-valued
time parameters with analogues for the classical Brownian motion. Both
parameters reduce semiclassically in magnitude to the well known expression,
representing the time of motion along the stationary classical path. By use of a
series of distinct observations and other arguments we show that the quest of

finding a unique tunneling time seems to be without hope.

1. Introduction

In physical sciences the role of time-scales, particularly the concept of a clear-
cut separation of various time scales plays an ubiquitous role in describing
physical processes. In the following we shall address the role of quantum
mechanics and interaction times from a path integral point of view. This work
is based on a previous collaboration! with Dr. Sokolovski, and closely related
work by the latter?3, In the first part we shall focus on complex-valued
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interaction times, whereas in a second part the concept of a "tunneling time"
will be critically discussed.

In section 2 we first start with the description of the time spent by a classical
particle traversing a prescribed interaction region. We note that for an
extended classical object there already exists no unique time scale for the
"traversal time". By use of two distinct time-averaging procedures we obtain a
useful theorem, Eq. (8d). For a classical diffusion process in presence of a
coordinate-dependent sink we apply the theorem to obtain a classical adiaba-
ticity theorem for diffusive motion. To deal with the quantum case we rotate
time to imaginary values, whereby the diffusion equation goes over into the
Schrédinger equation. The classical adiabaticity theorem is then readily
generalized to the quantum case. The application of the above theorem then
reveals that the result for the interaction time scale can be cast into a product of
two different quantum mechanical time scales. It is then natural to ask, what is
the correct time for traversal of a quantum mechanical interaction region?
This, therefore renders the problem of a quantum tunneling time which we
address in section 3. We demonstrate by use of a series of distinct arguments
that the quest of finding a unique prescription for the object "quantum tunne-
ling time" is without hope.

2. Interaction Times

Here we consider the time-scale a particle spends in some region of interest,
wherein it can interact with a potential, other degrees of freedom, and alike.
For the sake of clarity only we assume a one-dimensional configuration space
3 and a time axis 7, describing the dynamics of a particle. A point X = (x, t)
out of the direct product space 2 x T then locates in a unique way a
structureless classical particle. Given some interaction region I' within ¥ x fI:
see Fig. 1, the characteristic functional O of a certain prescribed path Q(t), ie.

A
1 ,X=® el

8- [X()] =
ri* 0 . X=R el

(D
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then defines an interaction time t. for a structureless point particle moving
A
along x(t) given by

A tf A tf x> A
t[xl= [6. [x ()] dt= [dt [ dx8 [x—X(®)] . )
% b X
X
classical path

nonclassical path

(XO’tO)

Figure 1: Various paths and the region [" which are part of the definition of the (path-dependent)
time spent in the interaction region, see Eq. (2).

Here t, denotes the starting point (in time) for Q(t) and t; the final time,
respectively. Given a point particle, moving along its classical trajectory x_(t),
the above expression yields the classical time tﬁl spent in the interaction region
I'. Already at this classical level we encounter a first difficulty in defining
uniquely the interaction time. Suppose we deal with an extended classical
object; then the time scale defined as the interaction time which the center-of-
mass (c.m.) spends within the region I" does not equal the time difference for
the rear of the object to leave the region I' at a later time and for the front to
enter I' (see Fig. 2). Given the quantum mechanical uncertainty to measure the
coordinate for a point particle it should not come as a surprise for the reader
(see below) that no exact, and nonfluctuating value exists for the interaction
time of a structureless quantum mechanical object.
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X< x> X< X
(a) (b)
Figure 2: Different possibilities of defining the traversal time for an extended classical object:

@ = 5 7 0) by = 67 7

A. A useful theorem

Following Reference 1 we shall next consider random classical trajectories of a

diffusion process governed by the Fokker-Planck equation for the probability

P[, i.e.

: o%P,
P = e ux,ne.x)p, , 3)

t

I —

where the initial probability F, obeys Ro (x) = 6(x — x,). The propagator
R(x, t2| x,t,), which equals the conditional probability, obeys with t, 21 2
.. 2 t; 2t  the relation

R(x,te I x 1) = J'l= dx; R(x; telx )R t1x ).

~ Rt Ix t). G

Within an infinitesimal checker-board discretization the above result can be
recast as a path integral,
Xple
Rtelx )= [ Dx()exp(-Sx() (5a)
xo"o

where
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t 2
sll= [ {Z+U 08 x®1} dr . (5b)

I

The interaction time t_ presents a functional of the corresponding trajectory
Q(t). In terms of the two conditional averages defined in (I) and (II), namely
given a functional F{x(+)] we define the first average as

Xf,lf
() <Fx)]>= [ Dx() Flx()] exp(-S (DRt x 1) (6)

x0'[0

and given a function f(x, t) we define the second average

(1) f(x,r)s[f(x,t)du/[du , (Ta)

r r

where d|l denotes the measure

dp = R(xgtg; xtlx t)dxdt

=R(xp ;I xt) R(xt 1 x 1)) dx dt . {7b)

Given (I) and (II) we readily can prove the following theorem

'f
< [ fx(), 1] 8. [x(0)] dt >

Y

b x>
=R (x t1x, t,) J D x(+) j dtf[x(+), +] j S[A — x(*)1d\ exp(- S[x(+)]) . (82)
[0 x<

WithZ=[ [ Rxt;! Ay R(At1x, t,) dA dt, one can write further
r
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=Rt [ x, to)Z{Z_l j j dA dt f(A, t) R(At [ x, t,) R(xftflkt)} . (8b)

r

Unfolding the term "Z" into a single path-integral again we find upon noting
that the term in the curly brackets yields the conditional average (II)

*plf o5
= fIx(), § |R7 (1%, 1) j D x(*) j dt j dA 8[A—x(+)] exp(= S[x(*)]) | (8¢c)
xo'[o lo Xe
which equals our main result
't
< [ f1x(, 1] 6, x(0)] dt > = fIx), g <t [x(1> . (8d)

t

In other words, the conditional average in Eq. (8a) separates into two
conditional averages where the 2-nd part in Eq. (8d) denotes the average of the
interaction time of a random trajectory x (t) = x(+) of the diffusive process in
Eq. (3); see Fig. 1.

B. Adiabaticity criterion for classical diffusion

As a first application of the theorem in Eq. (8d) we look for a criterion under
which we can substitute the time-dependent interaction U(x,t) by a time-
independent function l’}(x) =Ukx, t = ’t\) where we "freeze" the interaction at
some time point’f. If we treat the difference [U(x, t) — l’}(x)] as a perturbation

we find in leading order
R(x; t; | x, tue oy ~ Rt I'x, to){‘)
i

1- < [8, (x®) [Ux, 0 - 0x)]dt >l ©)

b
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Thus, in virtue of Eq. (8d) we find for the validity of the adiabatic
approximation the criterion

Y
v=|< [0, [U-01a>y |

Y%

=| (U, v -0 < tp [x()] > l<<t . (10)

The quantity "y" thus presents a measure for the validity of the adiabatic
approximation, which in turn involves the average over the random trajectories
of the classical time spent inside the interaction region. Note that the average
<t [x(+)] > is real valued in this case. For the special case of an oscillating
interaction U(x, t) = er Uo Cos W t we obtain withlf = t;, UpPON an expansion to
first order in U, and (t — t;) the result

y=m0U°| (t—t) <tp[x()] > I
Emohj;ff““” << . (11)

C. Adiabaticity criterion for the quantum dynamics

By use of a Wick-rotation in time, i.e. t = + i t, the diffusion equation is
closely related to the Schrodinger equation

4w 0 0%
in .- I SF+ UK DBV (12)

In contrast to the stochastic classical situation, we now have to deal with
complex quantities. The exponent in the corresponding path integration
formula for the Bropagator thus becomes a complex-valued expression, S —5S =
- (iff) rf {m 5 = Ux, 1) 6. (x) } dt=- (i/f) S. The corresponding quantum
adlabancuy criterion Yq m. €21 be readily obtained from the previous results in

Eq. (10) and Eq. (11). For the oscillating potential we thus obtain
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U, __
Tom. =wo-;°|(tf—t)< tr [x(@)] > | (132)
U, !
=, |<¥ J(tf—t)e [x(1)] dt>| (13b)
=o, | ™ l<<t (13¢)

This quantum mechanical "adiabatic time scale” t>:™ is therefore complex-
valued. The criterion involves its absolute value. From Eq. (13a) we note that
t:(‘im' involves two complex-valued time scales. The first one, (t;~t), involves
the complex-valued average of Eq. (7a) for the time argument of the
propagator, i.e. t; whereas the second time scale just coincides with the
complex-valued traversal time introduced by Sokolovski and Baskin?, i.e.

O = <t [x()]> (14)

In the context of tunneling through an oscillating barrier these two time scales
simplify considerably in the limit of an opaque barrier!. If the energy of the
incident particle is fixed at a value E = (fi k)2/2m, we find in terms of the
momentum inside the classically forbidden region

k() = {2m [Ux) -E]}Y? |

for the above two time-scales the semiclassical results!

>

>

e - L m& +OMm) |, 15

t(E) - t¢ 2XJ 0o M) (15)
and :

| @m | - mdx +OM) . (16)

t]" x{ TK(X) m

Hereby, {x_, x,} denote the classical turning points inside the barrier where
E < U(x).
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Interestingly enough, the values in Egs. (15, 16) are both related to the well-

known semiclassical (imaginary-valued) time for tunneling through a barrier.

Quantum Tunneling Time

The question which loosely formulated reads "how much time does tunneling
take" is intriguing and has quite a long history*%. The question has also been
part of textbook discussions (see page 95 in Reference 8.) and recently did
undergo a renaissance in the eighties after the popularization of the issue as
presented by works of Biittiker and Landauer?-12, All this has triggered more
intensive and systematic studies and discussions which cumulated in an
authoritative critical survey in the "Reviews of Modern Physics" by Hauge and
Stovneng!3, In the following, I shall present some more detailed observations,
together with a series of personal viewpoints on the subject of a (unique)
traversal- or tunneling-time.

As we have demonstrated, complex-valued quantities with the dimension of
time (or frequency) do represent useful theoretical objects. For example, the
adiabatic criterion in the previous section 2.C involves the complex-valued
object t:(‘im‘, which in turn is made up of even two further complex valued time-
scales. Clearly, physical answers, such as the formulation of the criterion Yom..
involves real-valued objects only; i.e. one has to take the absolute value of
complex quantities, or its real part, etc.. Another common example is the
evaluation of the complex-valued free energy of a metastable system, which in
turn is related - via the imaginary part - with the many-body quantum transition
state theory result for the reaction rate!*13. As we have noted, the discussion of
interaction times in Sect. 2 involves the complex-valued generalization of the
classical time a particle assumes to traverse the interaction region. The
traversal time t;l'm' in Eq. (14), pioneered by Sokolovski and Baskin?, presents
a natural quantum generalization of this classical concept. Would it not be for
the Wick rotation t — i t, — which is generic for the quantum dynamics — our
sailing towards the tunneling time would be smooth and we readily could
introduce a reasonable physical characterization of the tunneling time. The
complex-valued kernel K(xtlyt ) describing the propagation of an initial state
presents us, however, with a complex-valued time-quantity, namely
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Xple
l:]ci.m. I Q)x(-) t;_l [x(*)] exp( 1/'h) S [ ]/ K(Xf tf|x° to) s

Xo,lo

LN
j D x(+) j dt J dx 8 [x —x(+)) exp(i /M) K1 (xp t | x, t,)

FERSS
= K7xete %, 1) [dt [ dxKoxetlx Kaxtlxg 1) - (17)
b X<

Note that Eq. (17) does not equal the "on-orbit"3 expression, where with W (ty)
= K(tdt )w,(t,)

[f X>
: 2
2™ = <y t;_llwi> <yl 1lypt = Jdt J dx | yixt) |
[0 X<
= tdwell time : (18)

The r.h.s. equals the real-valued dwell or sojourn time discussed by various
authors3-21%-13_In conclusion, the path integral approach does nor supply a
unique tunneling time. Both the time scales I(t — t;)l and | tl‘i'm' | present useful
objecis with their own purpose. They both are related — in the semiclassical
limit — to the appealing result, see Egs. (15,16), yielding the (imaginary)
classical time spent for the traversal of the barrier region. Clearly, a measured
tunneling time cannot be complex, and hence the results cannot be measured
with a stop watch possessing complex numbers on its dial. Nevertheless, dials
with such complex numbers — in clear contradistinction to Rolf Landauer’s
6

claim!® — can exist too (see Fig. 3), and thereby do "support” the useful role of

1,2,3,17

complex-valued physical objects , such as e.g. t?_'m'.
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0]

(i1)

(iii)

Swiss
Complex. Clock.

Figure 3: A clock suitable to "measure” tunneling times with complex numbers on its dial.
Hereby, we used the algorithm: t—t + exp{2mit/t, 1 i.e. hours h—h+exp[2mih/12],

respectively.

In any case, it has been demonstrated here and in the literature!-3-13 that the
hope of finding a well-defined expression for the tunneling time is erroneous.
This result will be corroborated by a few further observations, expressing to

some extent more closely my personal viewpoint on the issue:

First, time plays a peculiar role in quantum dynamics. The time presents within
quantum theory the role of a parameter — it is not an observable {B} with a
corresponding Hermitean operator (B]).

Note, that the classical traversal time for structureless particles involves a (in
time) nonlocal concept ~ i.e. no usual Schrodinger operator exists!

The accuracy with which we can measure a duration of an event is limited by
the energy - time uncertainty relation

AEAt2H/2 . (19)

Note that generally At in Eq. (19) depends on the way we measure the
duration. Usually, one measures the change of some observable L (which does
not commute with energy, and which does not exhibit an explicit time-
dependence, (9 L/0t),, = 0), i.e. At in Eq. (19) corresponds to the quantity At =
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AL/ [%< L (t) >] where AL = [< L2 > - < L >2]'2. Put differently, At
measures the duration in which the expectation of L(t) changes; i.e.< L(t) > —
< L(t) > + A L. With the uncertainty in At one generally finds® that AE > U, —
E, where U, denotes the maximal barrier height. Thus, one cannot state for

sure that the particle had energy E < U, and simultaneously was under the
barrier.

In accordance with the energy - time uncertainty we find that t?’m' in Eq. (14)
does not present a single fixed value but rather denotes an average. Similar
conclusions have been put forward by Fertig!® . Thus a definite formula which
gives (at fixed energy) the traversal time in function of the transmission
probability T and the phase change A$1%12:19 cannot be quite right. Indeed,
even the evaluation of the transmission probability T within the semiclassical
1imit2%, involves multiple traversals of the barrier region corresponding to
(imaginary) times, i.e.

tW=i2n+ 11, , n=0,1,.. (20)

where T =J':<> m [h K(x)]‘ldx, denotes the (primitive) time-duration for
traversal of the classically forbidden region (see also Reference 21). Likewise,
the cumulative reaction probability?? yields with multiple periodic orbits of
duration n[27_], n =1, 2, ..., e, after summation over all these multiple
traversals?®23 of the primitive periodic orbit the well-known uniform WKB-
result for the quantum transmission T(E)

-1
T(E)={1 + exp ©(E) /'ﬁ} . 21

Here, ®(E), [®(E) = 2r (U, - E)/cob for an inverted parabolic barrier] denotes
the Euclidean (abbreviated) bounce action at fixed energy EZ.

It should not go unnoted that recently several beautiful experiments have been
performed to measure the tunneling time. One experiment is based directly on
the macroscopic tunneling process24, while other very beautiful work is based



364

on the close analogy between the Schrodinger equation and the microwave
propagation as described by the Helmholtz equation?26. These present
experimental efforts, however, neither could settle the issue of a unique "time
for tunneling”. At least as it concerns the experiment in Reference 24, which
measures macroscopic tunneling decay in a Josephson junction shunted by a
delay line, the author likes to point out the fact that the experiment did not
measure any “tunneling time"; but consistently measured the decay time
(lifetime) of the zero voltage state, as a function of a delay paramter tp. This. -
delay parameter - in turn - defines the friction mechanism, which changes as t;
is varied. Thus, the beautiful experiments in Reference 24 can be used to check
different dissipative quantum decay predictions, but cannot be used in effect to
substantiate an experimental verification of tunneling times?’.

. References
1. D. Sokolovski and P. Hiinggi, Europhys. Lett. 7, 7 (1988).
2. D. Sokolovski and L.M. Baskin, Phys. Rev. A36, 4604 (1987).
. D. Sokolovski and J.N.L. Connor, Phys, Rev. A42, 6512 (1990).
. L.A. Mac Coll, Phys. Rev. 40, 621 (1932).

3

4

5. E.P. Wigner, Phys. Rev. 98, 145 (1955).

6. F.T. Smith, Phys. Rev. 160, 349 (1960).

7. T.E. Hartmanﬁ, J. Appl. Phys. 33, 3427 (1962).

8. G. Baym, Lectures on Quantum Mechanics , W.A. Benjamin Inc.,

Reading, MA, (1969); see p. 88-97.

9. M. Biittiker and R. Landauer, Phys. Rev. Lert. 49, 1739 (1982).
10. M. Biittiker, Phys. Rev. B27, 6178 (1983).
11. M. Biittiker and R. Landauer, Physica Scripta 32, 429 (1985).
12. R. Landauer, Ber. Bunsenges. Phys. Chem. 95, 404 (1991).
13. E.H. Hauge and J.A. Stovneng, Rev. Mod. Phys. 61, 917 (1989).

14. J.S. Langer, Ann. Phys. (N.Y.) 54, 258 (1969).






