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The influence of periodic driving on coherent tunneling 
is investigated, using a quartic double-well potential in a 
monochromatic external field as a working example. Ex- 
tensive numerical studies of the long-time behaviour of 
this system are combined with an analytical description 
on basis of the quasienergy formalism. Approximate so- 
lutions of the dynamics are possible in the two opposite 
limits of adiabatic and fast driving, respectively. In both 
cases, the tunneling rate is enhanced, compared with the 
unperturbed value. This is confirmed by our numerical 
results. For driving frequencies in the range of the bare 
tunnel splitting novel types of tunneling behaviour occur, 
including localization of the wave packet in one of the 
wells (coherent destruction of  tunneling). They can be ex- 
plained in terms of the local Floquet spectrum and are 
verified by the time evolution of quantum probabilities. 

1. Introduction 

The application of periodic external forces to classical 
and quantum mechanical systems generates a variety of 
complex behaviour and often produces phenomena com- 
pletely unexpected from the corresponding undriven dy- 
namics. For example, in one-dimensional nonlinear Ham- 
iltonian systems, periodic driving can lead to chaotic mo- 
tion which is excluded in their nondriven counterparts 
[1-4]. 

In the present paper we investigate the influence of 
periodic driving on tunneling. Thereby, we restrict our- 
selves to the regime of zero temperature and vanishing 
dissipation. Quantum dynamics in the presence of peri- 
odic forcing characterizes the physics of a wide class of 
systems, including, e.g., atoms or molecules exposed to 
laser fields [5-9] and microwave irradiated Josephson 
junctions [10]. Earlier theoretical work on driven quan- 
tum systems in metastabte and scattering situations uses 
semiclassical-like approximations [ 11 - 13], or is based on 
a semiclassical two-level treatment [ 14]. In a recent paper 

[15], Lin and Ballentine represent calculations of quasi- 
probability distributions for periodically driven double- 
well potentials in the context of a chaos transition in the 
corresponding classical problem. 

As an archetypal model system, we study the quantum 
dynamics of a particle in a quartic double-well potential 

a 
V 0 ( x ) = - ~ x 2 +  x 4 a,b>O,  (1) 

perturbed by a periodic monochromatic signal (no kick- 
type perturbation!), i.e., 

V(x, t) = Vo(x ) + xSsin r (2) 

The corresponding classical problem has been studied 
extensively in [2]. The quantum dynamics in the deep 
quantal regime, however, has not been addressed up to 
now. Clearly, our study has been motivated by the prob- 
lem of tunneling in multistable potentials in presence of 
time-periodic forces. 

In the present work, we combine analytical arguments, 
using the Floquet formalism, with extensive numerical 
studies to access the regimes far from the classical limit 
and of strong forcing at arbitrary frequency. In this way, 
we not only obtain information on the influence of the 
forcing on well-known quantities such as the tunneling 
frequency, but find novel coherence phenomena which 
challenge the traditional view of tunneling. 

In Sect. 2 we review the phenomenon of tunneling in 
the stationary case with an emphasis on the semiclassical 
evaluation of the tunneling frequency. Section 3 is the 
central part of this paper as it contains our approach to 
tunneling in the presence of external periodic forces. In 
Sect. 3.1 we explain the relevance of the quasienergies for 
tunneling. Additionally, in Sect. 3.2, the local quasienergy 
spectrum is shown to play a major role. In the following 
subsections we will present our results. The numerical 
calculation of quasienergies is based on a matrix-contin- 
ued fraction method. These quantities will be compared 
with the local spectrum determined from the time evo- 
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lution of a suitably chosen initial wave packet. In 
Sects. 3.3 and 3.4, two limiting cases are discussed: both 
for very low and very high external frequencies, we con- 
trast our approximate theoretical results with the nu- 
merical ones. Section 3.5 covers the interesting regime of 
intermediate driving frequencies, in the near of the fun- 
damental resonance at co ~ 1 / ~ .  We present numerical 
results with some intriguing conclusions concerning the 
notion of tunneling. In Sect. 3.6, we introduce and discuss 
a surprising effect which occurs at external driving fre- 
quencies near the unperturbed tunnel splitting: for suit- 
ably chosen external force, tunneling can be almost com- 
pletely suppressed. Section 4 contains a summary of this 
work. 

2. Tunneling in the double-well potential 

In this section we address the unperturbed problem, given 
by the one-dimensional quartic double-weU potential 

2 m2 o,)4 Vo(x)- m~o x2+-o ~0_ 
4 64EB x4, (3) 

where m denotes the mass of the particle, o% is the clas- 
sical frequency of small oscillations at the bottom of each 
well and E B denotes the barrier height. For ease of no- 
tation we introduce the dimensionless variables 

/ / ~ -  X.--~ X ~ COot~t. 

The time-dependent Schr6dinger equation thus takes the 
form 

i ~ ( x , t ) = H o ( x ) ~ ( x , t ) ,  (4) 

with the Hamiltonian 

1 
~ex-~x +6~D (5) H o ( x ) :  1 2 1 2 X 4 " 

Thereby we have introduced the dimensionless barrier 
height D = EJlico o. Note that as a consequence of the 
scaling of variables energies are measured in units of ha) 0. 

As noted first by Friedrich Hund in 1927 [16], quan- 
tum mechanics implies coherent tunneling of the particle 
from one well to the other. The oscillation frequency can 
be calculated by considering the time evolution of  a wave 
function initially centered in one of the wells. The two 
energy eigenfunctions ~'1, q/2, corresponding to the two 
lowest energy levels E~, E 2, are approximately given by 
the symmetric and antisymmetric superpositions, respec- 
tively, of the ground states in the two wells for infinite 
barrier height. Consequently, an eigenstate localized, say, 
in the left well is given by 

1 
~L(x, 0 ) = ~  [~,, (x)+ ~,2(x)]. (6) 

Table l. Numerically versus semiclassically calculated tunnel split- 
tings for S = 0 and different values of the barrier height D in units 
of h m 0 

D A A s 

1 0.0239229 0.0308172 
1.5 0.0022620 0.0026225 
2 0.0001895 0.0002104 
2.5 0.0000151 0.0000163 

The time evolution of the absolute square of (6) reads 

I~L( x, 012=�89 {I ~'1 (x) 12+ I ~'2 (x) I z 

+ 2 ] q / ~ ( x ) ~ u * ( x ) l c o s ( E 2 - E t ) t  } , (7) 

which reveals that the tunneling frequency corresponds 
to the difference of the two lowest energy levels of 
the potential. It is usually referred to as the tunnel splitt- 
ing A = E z - E  1 . 

The exact eigenvalues of the corresponding stationary 
Schr6dinger equation cannot be calculated analytically. 
Nevertheless, semiclassical calculations of the tunnel 
splitting exist. Using path integral methods [ 17], one finds 

A s : 8 l / / ~ - e x p ( - ~  D-) (8) 

for the tunnel splitting, where the subscript s indicates 
that this is a semMassical result. In Table 1, numerical 
results for A, obtained by using a matrix-continued-frac- 
tion method (see the Appendix), are compared with the 
semiclassical prediction. 

The deviation of the semiclassical results from the ex- 
act numerical ones decreases from approximately 29 % 
( D =  t) to 8% ( D =  2.5). This is consistent with the fact 
that for this problem the semiclassical limit corresponds 
to D ~  oo. For the decay rate out of the lowest state of 
a metastable system, such as a cubic potential, an anal- 
ogous comparison leads to similar findings [18]. 

3. The driven double-well potential 

In this section we discuss quantum tunneling in the pres- 
ence of an external periodic disturbance. For the solution 
of the time-dependent Schr6dinger equation we apply the 
Floquet formalism, which is based on the discrete time- 
translation symmetry of the Hamiltonian. This allows to 
make use of analogies between the unperturbed and the 
periodically driven case. 

3.1. Floquet formalism 

In the following we will consider the time-dependent 
potential (2), that describes the coupling of the double- 
well system to an external monochromatic force field. 



Introducing the dimensionless force strength 

1 

l ~ m  ~ ~o s - ~  s , 

the Hamiltonian reads 

H (x, t) = H o (x) § x S  sin wt ,  (9) 

with w = t o / c o  o denoting the ratio of the external fre- 
quency to the frequency of small oscillations at the bolL- 
tom of each well. Using the periodicity of the Hamilto- 
nian, the Floquet theorem [19] states that a solution of 
the time-dependent Schr6dinger equation 

i~(x, t)=/4(x, t) ~U(x, t) (10) 

can be factorized as 

T k (x, t) = exp { - ie k t} q~ (x, t) ,  

q~ (x, t)= ~(x,  t+ T), (11) 

where q~k are the time-periodic Floquet functions, and 
the quantities e~ are referred to as quasienergies [6, 19] 
in the following. 

There exist only very few driven quantum systems 
which are analytically solvable. One of them is the pe- 
riodically driven stable harmonic oscillator [20]. For the 
problem posed in this paper, however, we have to rely 
on numerical methods. The method we employ to deter- 
mine the quasienergies can be used for any confining 
nonlinear driven system and is given in the Appendix. 
Note that for this type of problems the quasienergies are 
real quantities, This follows from the fact that the 
Hamilton operator Yc ~=  H ( x ,  t) -- i~3 t is Hermitian in an 
extended Hilbert space [21], made up from the direct 
product of the space of all square integrable functions on 
configuration space with the space of square integrable 
periodic functions in time. Taking into account the fac- 
torization of T in (11), we see that the quasienergies are 
analogous to the energies in the stationary case. 

At this point we mention an interesting property of 
the Floquet solution: From the factorization in (11) it is 
obvious that 

~bk, z(x, t) = -- ~bk (x, t ) exp  (i lwt )  , 

ek, l=--ek+lw, l = 0 ,  •  •  .... , (12) 

represents the same total solution as in (11), i.e. 

~i, (x, t) = exp{ --iek, lt  } q~,/(X, t) .  (13) 

The index k corresponds to the quantum number in the 
undriven case. One value of k now defines a whole class 
of Floquet functions, because every ! yields the same 
total solution. The quasienergies are thus only defined 
modulo w. 

This provides a clue concerning the behaviour of quas- 
ienergies under the variation of external parameters [22]. 
To this end we investigate the effect of the generalized 
parity transformation P, defined by 

317 

7~ 
x ~ - x ,  t ~ t + - .  

w 

X is invariant under the transformation P. This implies 
that the Floquet functions must transform according to 

PqSk, z(x, t ) =  _+ ~bk, l(x, t) .  (14) 

The notion of parity is thus extended to the periodically 
driven case. From (12) it is obvious that two Floquet 
functions, q~k, ~, ~bk,, ~,, have the same or different parities 
according to the difference ( k -  l ) -  (k' - l ' )  being even 
or odd, respectively. 

There are some features of the parameter dependence 
% z(S, w) which deserve special mention. In the limit S--*0 
of vanishing amplitude of the driving force, the remaining 
w-dependence takes a particularly simple form, 

e~,,(0, w)=Ek+tw, (15) 

where E k is the k-th unperturbed level. Equation (15) 
implies that there is an infinite number of resonances 
e~, l (0, w) = ek, ' r (0, w) at driving frequencies 

Wk'l;k"l" l' - - l  (16) 

In a quantum-optical context, they can be interpreted as 
l' - / - pho ton  transitions. 

At finite force amplitudes, Sg:0, the linear law (15) 
looses its exact validity. The deviation becomes particu- 
larly large in the vicinity of a subset of the resonances, 
given by (16): if the corresponding eigenstates 
q~k, t, q~k,, t, belong to the same parity class, these inter- 
sections become avoided crossings. Due to their smallness 
and high density in parts of parameter space, the occur- 
rence of avoided crossings along a one-dimensional sec- 
tion of a quasienergy surface often makes it practically 
impossible to trace it back to the unperturbed value E~ 
from which it emerges. Therefore, in many cases, a quasi- 
energy spectrum obtained numerically cannot be labeled 
reliably, and the parities of the corresponding Floquet 
functions have to be inferred indirectly. 

Both exact and avoided crossings show up in the time 
domain in a conspicuous way: they translate into diverg- 
ing or extremely long time scales, respectively, in the ev- 
olution of a wave packet. In the subsequent sections, we 
shall briefly introduce the formal tools that establish the 
relationship between Floquet spectrum and long-time be- 
haviour, and then illustrate its usefulness in the present 
context by several numerical examples. 

3.2. Staying probability and local spectrum 

For the undriven double-well potential, it was shown in 
Sect. 2 that the tunneling frequency is given by the split- 
ting between the two lowest-lying energy eigenvalues. In 
the driven case, it is necessary to generalize this relation 
on basis of the concept of quasienergies. This is straight- 
forward in the two opposite limits of very slow (adiabatic) 
and very fast driving frequency: here the separation of 
time scales implies that the structure of the Floquet spec- 
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trum deviates only slightly from that of the energy spec- 
trum in the undriven case. Consequently, the difference 
between the two quasienergies corresponding to the low- 
est-lying energy eigenvalues still plays the role of the tun- 
neling frequency. For intermediate driving frequencies, 
however, the Floquet spectrum may loose any resem- 
blance to the unperturbed case, and the simple oscillation 
of probability between the two wells is replaced, in gen- 
eral, by a more complicated dynamics. 

The relation between this time evolution and prop- 
erties of the Floquet spectrum can be made precise using 
the concepts of the probability to stay and of the local 
spectrum [23, 24]. In order to set the stage for the sub- 
sequent discussion of our numerical results, we now 
briefly introduce these concepts. 

The probability to stay in the initial state after n pe- 

riods T= 2~ of the external field is given by 
W 

P(n)= I<T(nT)I T(o)> 12, n= l ,  2,.... (17) 

This absolute square of the overlap of a wave function 
propagated in time with its initial state is in the literature 
also referred to as non-decay probability, survival prob- 
ability, or autocorrelation function. Expanding both 
IT(0)> and I T(nT)> in the Floquet basis and using 
Eq. (11) to express their time evolution, we find 

P ( n ) =  ~, e x p { i ( G - e a ) n T  } 
cG 17 

X [(~-i~[ T(0)>  [2 [ (~B]  T(0)>  [2 

= ~ - 1 +  ~ e x p { i ( G - e ~ ) n T }  
acB 

• IT(o)> 12 [<% I T(o)> 12, (18) 

where the index ~ refers to pairs k, I, with k = 1, 2, 3... 
and a single value of I chosen such that - rr _<G, ~ T <  rc 
(correspondingly for fl). Additionally, the abbreviation 

r  I(q~= IT(0) )  14 

1 21 = lim ~ P(n) (19) 
N ~ e o  n ~ 0  

has been used for the long-time average of P (n). Equation 
(18) shows that the time evolution of this characteristic 
dynamical quantity is determined by the differences of 
those quasienergies which correspond to eigenstates over- 
lapping appreciably with the initial state. For the special 
case of a driven double-well system, the probability to 
stay may be used as a crude, but simple diagnostic to 
assess the tunneling phenomenon, if the initial state is 
chosen, e.g., as a Gaussian wave packet centered in one 
of the wells. 

Consequently, in the energy domain, the relevant 
quantity for the description of tunneling is not the un- 
biased Floquet spectrum but the local spectrum. Its den- 
sity is defined by endowing each eigenvalue with a weight 
equal to the overlap of the corresponding eigenstate with 

an adequately chosen reference state, 

p~oo(~/) = ff] 1(r i ~  > 12g (~/--G T), (20) 

where it is understood that the g-function is 27z-periodic. 
As a straightforward generalization of (20), the defi- 

nition of the local spectral two-point correlation function 
reads [24] 

27~ 

p2 loc (~/)= I at2 s 
0 ~e,g 

I<~=1T>I 2 I ( ~ l  T> 12 

• - - ~ - - e ~ T )  (21) 

An averaging over the mean position g? of the two quas- 
ienergies involved is implicit in this definition. 

The local spectral correlation function (21) is related 
by Fourier transform to the probability to stay, (18) [24], 

e x p { - i t l n } ( P ( n ) - ~  1). (22) 

Summarizing the preceeding formal arguments, we con- 
clude that the concept of tunneling has to be replaced, 
in the driven double-well system, by the time evolution of  
the staying probabilityfor a wave packet initially centered 
in one of  the wells. This dynamical quantity, in turn, is 
adequately analyzed in terms of the local spectrum and 
its two-point correlation function, with that initial state 
serving as the reference state. 

These considerations serve as a guide how to inves- 
tigate the long-time behaviour of a wave packet initially 
centered in the left well and subject to a periodic external 
force with a frequency higher than the unperturbed tun- 
neling frequency. This will be done using the notion of 
quantum maps [25]. Because of the periodicity of the 
Hamiltonian (9), the propagator has the property 

U(nT) = U n (T),  (23) 

indicating an elegant way to obtain the long-time behav- 
iour of a periodically driven quantum system in a stro- 
boscopic fashion: to this end we construct the propagator 
over one period of the external force by solving the time- 
dependent Schr6dinger equation numerically. This prop- 
agator is then applied iteratively to a Gaussian wave 
packet 

1 Tin (0)) = ~, % lyre)-  (24) 
m 

�9 Here [~ ~) are harmonic-oscillator eigenfunctions, given 
in coordinate representation in the Appendix (A4), and 
the weighting factors c m are Poisson distributed, in a way 
that the particle will initially be centered in the left well. 
By this procedure we obtain the time evolution of the 
probability to stay. From the time series P (n), a discrete 
Fourier transform can be calculated, allowing us to de- 
termine the frequencies relevant for tunneling (cf. (22)) 
and to compare them with the corresponding quasiener- 
gies. 



Before going to the topic of complex interference phe- 
nomena at intermediate driving frequencies, we will now 
consider the two limiting cases of  adiabatic and high- 
frequency driving. Here, analytical approximations are 
still possible, and serve to check theory and numerics 
against each other. 

3.3. Adiabatic limit 

When we prepare a particle in a superposition of  the 
Floquet functions corresponding to the wave functions 
of the two lowest unperturbed eigenvalues El, E2, the 
time evolution of the absolute square of this function is 

�89 ~, (x, t )+ ~'~(x, t ) l  2 

=�89 I ~,,o(X, t ) l = +  I ~,=,o(X, t) I = 

+ 21 (b], o (x, t) q~  0 (x, t)[ 

• cos [(e~, o -  e,, o) t -  ~ (x, t ) ] } ,  (25) 

where (o(x,t)  is the time periodic phase of  
~bt, 0 (x, t) q)~, o (x, t). For external forces varying slowly 
compared to the time scale given by the difference of the 
two quasienergies, the Floquet functions are quasista- 
tionary so that this difference obviously plays the role of 
a tunneling frequency. 

Adiabatic approximation. In the adiabatic case, the fre- 
quency of  the external force must be small compared with 
the smallest internal frequency, given by the unperturbed 
tunneling frequency. Therefore, in the adiabatic limit, we 
assume w <A.  

What happens, when a weak and sufficiently slow ex- 
ternal force perturbs the system? Because of  the x-de- 
pendence of  the slowly varying time periodic potential 
(9), the fast oscillating wave packet will see a stationary 
distorted potential during one period of  tunneling. For 
asymmetric double-well potentials, we can calculate the 
tunnel splitting in the semMassical limit from its value A 
for the symmetric potential and the asymmetry o, by 
using 

A o = ~ a  2 . (26) 

This formula certainly holds if cr < 1, i.e., if the distortion 
is much smaller than the lowest energy eigenvalue at the 
bottom of one well. With this restriction, o- may range 
from 0 to values large compared to A. 

We now have to average A~ over one period of  the 
external force to find the tunnel splitting in the adiabatic 
case. From the Hamiltonian (9) of  the driven double-well 
we get 

= ~ S sin qS, (27) 

where q5 is the phase of  the slowly varying external force. 
Averaging equation (26) over one period of sin q5 then 
leads to 

Aad =2A-~ (1 +o~)I/2E ( ] / / / 1 ~ - ~ )  (28) 
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for the estimated adiabatic tunnel splitting. Here E(x)  
denotes the complete elliptic integral [26], and we used 
the abbreviation 

32 SZD 
e -  A ~  (29) 

An expansion of  the right-hand side of (28) in the limits 
< 1, and c~ >> 1, reveals that 

Aad , A  ( 1 + 1 ~ ) ,  (30) 

Z]ad ) - -  S,  (31) 
7~ 

respectively. This predicts that the averaged adiabatic 
tunnel splitting increases quadratically for small S and 
approaches a linear dependence for large S. Furthermore, 
it implies an enhancement of  tunneling for arbitrary ex- 
ternal force in the adiabatic case. 

Numerical results. For frequencies small compared to the 
undriven tunnel splitting, we have evaluated the quasi- 
energy difference, e2, o -~ ] ,o ,  for the driven double-well 
potential for several values of the external field strength. 
In all our investigations the amplitude of the external 
force has been chosen sufficiently small so that the po- 
tential remains bistable. The outcome for small frequen- 
cies does not depend on the external frequency up to 

0.08 

0.07 

E 0.06 

~ )  0.05 

E 0.04 
E 

I-- 0.03 

(a) D=I 

0.02 - -  

0.000 0.005 0 .0 t0  0.015 0.020 

S 
6 10 -4 

5 10 -4- 

E 
4 1 0  -4- 

r J) 310_4_ 

t"- 
(-- 

2 1 0 4  
I-- 

1 10 -4 

(b) 

D = 2  a p p r . ~  num. 
0 100 2 105 4 10 -5 6 10 .5 8 10 .5 1 104 

S 
Fig. 1. Dimensionless tunnel splitting A~d of the driven double well, 
in the cases a D= 1, w= 10 -4, b D=2, w= 10 -6, as a function of 
the external force strength; appr. : denotes adiabatic approximation, 
num.: denotes numerically calculated quasienergy difference 
,~2,o-- Ct,o 
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A 
w , - ~ .  In Fig. la, b, the difference of the two quasi- 

energies emerging from the lowest stationary energies as 
calculated numerically and the adiabatic approximation 
for the tunnel splitting are plotted versus the field strength. 
The outcome exhibits the predicted behaviour. The quasi- 
energy differences plotted in Fig. 1, taken modulo w, are 
playing the role of a tunneling frequency in a stroboscopic 
dynamics of the tunneling process. 

We did the calculations for two different values of the 
barrier height. In both cases, the values predicted by the 
semiclassical approximation exceed the numerical results. 
This is due to the effective softening of the potential to- 
wards the top of the barrier. The conditions for the va- 
lidity of the semiclassical approximation are thus better 
fulfilled for the case of a higher barrier. So the discrep- 
ancy between the numerically evaluated and the theoret- 
ically predicted curve is smaller in the case D = 2, com- 
pared to D--  1. This is obvious from a comparison be- 
tween Fig. 1 a and b. 

3.4. High-frequency limit 
The idea of our high-frequency approximation is to as- 
sume that the external force varies so rapidly (w~> 1) that 
the wave function is not able to respond appreciably and 
thus remains nearly constant over one external period. 
This assumption is suggested by the behaviour of the 
driven harmonic oscillator [20] in the same limit. In a 
sense, the high-frequency case is converse to the adiabatic 
limit. While, in the latter case, the slow variation of the 
external force, compared with the lowest system fre- 
quency, leads to a separation of the corresponding time 
scales, the roles of the slow and the fast dynamics are 
exchanged in the present limit. 

High-frequency approximation. To obtain a crude esti- 
mate for the frequency dependence of tunneling for rap- 
idly varying external force, we perform the unitary trans- 
formation 

T(x't)=exp [ - i s  ] 
- cos(wt)x g(x,t) 
W 

(32) 

in the time-dependent Schr6dinger equation (10). To ar- 
rive at an equation for g(x, t), we employ a well-known 
relation for an operator surrounded by exponentials of 
another operator [27], yielding 

ig(x, t)= I-�89 V(x) 

- i  S ~xcos(wt)l g(x,t) 
W 

(33) 

Here, we have dropped x-independent terms because we 
are only interested in energy differences. 

At this point we note that (33) formally resembles the 
nontransformed Schr6dinger equation (10), the only dif- 
ference being the coupling of the force to momentum in- 

stead of position. Thus, the unitarity of transformation 
(32) shows that the Hamiltonian 

/](x, t )=  - �89 ~2+ V ( x ) - i  S ~xcos (wt) (34) 
w 

is quasienergy-isospectral to the Hamiltonian in (9). 
Introducing a second transformation 

g(x,t)=exp ~ s i n ( w t ) ~  x f(x,t), (35) 

which is again unitrary, inserting it into (33), and using 
the operator relation mentioned above, leads to 

if(x,t)= - �89  x-~sin(wt) f(x,t). (36) 

Here the argument of the potential is shifted by the ex- 
ternal perturbation. To determine the tunnel splitting in 
the high-frequency case, we average (36) over one exter- 
nal period. This shows that the quantum particle sees an 
effective potential, given by 

[ 3 ( S )  2 ] 1 X4 (37) 
 =-�88 2 7 + U S  �9 

Again, x-independent shifts of the energy scale are not 
included. Thus, one particular effect of the high-fre- 
quency field on the double-well system, in this approxi- 
mation, is to lower the barrier height. From (37), it fol- 
lows that 

[ 3 ( )21 15=D 1 - 1 6 D  ~ < D ,  (38) 

is the effective barrier-height in the high-frequency case. 
Thus we can calculate the corresponding tunnel splitting 
semMassically from (8). 

Here we note another interesting fact by considering 
the classical Hamiltonian corresponding to the one given 
in (9). Averaging the corresponding classical equation of 
motion, using the analogous high-frequency assumptions 
and quantizing subsequently, yields the same effective 
potential (37). The classical considerations have been used 
in  [28] to deduce an effective Langevin equation for a 
Brownian particle in a bistable potential under external 
forcing at high frequencies. 

Since the transformations (32), (35) are unitary, the 
time evolution of If(x, t)] 2 is identical with that of 
I T (x, t) I 2. With the barrier height from (38), we there- 
fore obtain an estimate for the tunnel splitting in the high- 
frequency case. The ratio of the semiclassical high-fre- 
quency tunnel splitting to its unperturbed value is ex- 
ponentially enhanced, 

S 2 

In the high-frequency case, this quantity is always larger 
than one and depends on the external parameters solely 

via the ratio ~ .  For very high frequencies it approaches 

one, i . e . , /}~D.  
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W 
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Fig. 2. a Quasienergy difference yielding AHF (scaled with respect 
to the unperturbed tunnel splitting) corresponding to the largest 
peak in the Fourier spectrum (dots) versus w, for high frequencies. 
This is compared to the high frequency estimate (solid line) in the 
case D= 1, S=0.2. The arrows are indicating two of the energy 
differences depicted in b. b Energy eigenvalues of the unperturbed 
double-well potential (D = 1). Arrows indicating the differences be- 
tween eigenvalues of different parity 

Numerical results. We have determined the quasienergies 
relevant for tunneling also in the high-frequency case. In 
Fig. 2a we have plotted the ratio of the driven to the 
undriven value of  the tunnel splitting versus frequency. 
The numerical results are compared with the high-fre- 
quency estimate (39). We observe the predicted limiting 
behaviour for w--* oe. 

At specific external frequencies, however, this behav- 
iour is disrupted. The frequencies for which the system's 
response deviates from the predicted behaviour corre- 
spond to the resonances mentioned in Sect. 3.1 (cf. (16)). 
They can be associated with differences between unper- 
turbed eigenstates with different parity, as indicated in 
Fig. 2b. Concerning the Floquet solution, we observe an 
avoided crossing between two quasienergies belonging to 
the same parity Floquet function (Fig. 3 a). In the region 
of closest approach of these two quasienergies, the time 
evolution (see Fig. 3b) of  the wave packet is dominated 
by three frequencies (cf. Fig. 3c) which correspond to the 
mutual quasienergy differences in Fig. 3a. Therefore, in 
the neighborhood of  these resonances, tunneling can no 
longer be characterized by a single frequency. The tunnel 
splittings Airy, we plotted in Fig. 2a are those, corre- 
sponding to the highest relevant peaks in the Fourier 
spectrum. 

In the frequency range between the resonances, how- 
ever, we observe only one dominant peak in the Fourier 
spectrum of the probability to stay. In these regions, we 
can approximately describe the time evolution by a single 
tunnel-splitting AHF. Note that for external frequencies 
higher than w ~ 5, the numerical values agree within line 
thickness with the estimate in (39). 
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Fig. 3a-e.  Investigation of the time scales for tunneling in the driven 
double well for D = 1, S = 0.2, in the vicinity of the fifth resonance 
(E 7-  E2). a Quasienergies versus external frequency w; the vertical 
line indicates the value of w for the time evolution in b. b Time 
evolution of the probability to stay over 212 periods of the external 
force in the case w = 2.643. c Logarithmic plot of the Fourier spec- 
trum of the time evolution in b; ordinate in arbitrary units 

3.5. The fundamental resonance 

In this subsection we will investigate the time evolution 
of  a wave packet initially centered in the left well, when 
it is subject to external monochromatic forces with fre- 
quencies in the vicinity of  the difference E 3 - E 2 ,  which 
will be called the fundamental resonance. For  D = 1, it 
occurs at w~0.6185. 

Here, even for moderate values of the external field 
strength, we find marked deviations of  the quasienergies 
from the stationary energy eigenvalues (Fig. 4a). The 
analysis of the time evolution of  the probability to stay 
(Fig. 4b) shows that, similar to the resonances in the high- 
frequency case, three frequencies, corresponding to the 
mutual quasienergy differences in Fig. 4a, are again in- 
volved in the tunneling process (Fig. 4c). The largest of 
these frequencies supersedes the unperturbed tunnel split- 
ting by more than 20%. 
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In the frequency region between the fundamental and 
the second resonance (w=E4-E1), tunneling will be 
dominated by a single frequency only (Figs. 5a, b). For 
the choice of parameters made in these figures, the driven 
tunneling frequency is more than 15 % larger than the 
unperturbed tunnel splitting. 

3.6. Coherent destruction of tunneling 

A range of external frequencies not investigated up to 
now is the region between the undriven tunnel splitting 
and the fundamental resonance, A < w < E3-E2. 

Here the behaviour of the quasienergies emerging from 
the lowest two unperturbed eigenvalues is conspicuous 
(Fig. 6a). The l = 0  branches of the two quasienergies 
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Fig. 6a, b. Investigation of the time scales for tunneling in the driven 
double-well for D = 1, w = 0.06. a Quasienergies versus external field 
strength; vertical line indicating the value of S for b. b Time evo- 
lution of the probability to stay over 2 t~ periods of the external 
force in the case S =  0.028 
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approach each other, cross exactly, deviate and come 
together again with increasing field strength. These exact 
crossings have an intriguing consequence: a suppression 
of tunneling in presence of  periodic driving. 

In Figs. 6b, 7a, we present two typical time evolutions 
of the probability to stay, with the external parameters 
tuned into the vicinity of a crossing of the quasienergies. 
Figure 6b shows that probability is still flowing back and 
forth between the two wells. The frequency, however, is 
two orders of magnitude smaller than the unperturbed 
tunneling frequency, i.e., Ae/A ~0.016. Figure 7a depicts 
the corresponding time evolution, over the same time 
interval, for a driving force that sits exactly at the cross- 
ing, with the best accuracy we could obtain. It shows that 
the probability to stay remains nearly constant and al- 
most equal to unity, indicating that the wave packet is 
localized in the left well. In the corresponding Fourier 
spectrum (Fig. 7b), the beating-type behaviour of Fig. 7a 
translates into a pronounced reduction in weight of  the 
peaks at finite frequencies as compared to Figs. 3c, 4c. 

Several remarks are in order. Even for perfect tuning 
of the parameters of  the driving force to the crossing point 
of  the quasienergies, localization is not complete, i.e. a 
small, periodic deviation of  the probability to stay from 
unity remains. This is due to the fact that the Gaussian 
wave packet, we prepare as the initial state is not com- 
pletely exhausted by the two corresponding Floquet 
states, depicted in Fig. 6a, but has a small, but finite 
overlap also with other Floquet states. Additionally, we 
had to make sure that these admixtures and the time 
evolution of the Floquet functions does not lead to a 
marked shift of the center of gravity of the wave packet 
towards the opposite well in the course of  a single period 
of  the driving force, which would remain unvisible in the 
stroboscopic dynamics used here. Figure 7c shows P(t) 
over the first period of  the driving force, resolved into 
1000 time steps. We do not observe any high-frequency 
tunneling obliterated by the discretization of  time in 
Fig. 7a. Finally, we would like to emphasize that the set 
of parameter values where the two relevant quasienergies 
cross and, therefore, localization occurs, forms a one- 
dimensional manifold in (w, S) parameter-space of  an 
approximately linear shape (Fig. 8)! This fact should 
greatly facilitate an experimental search for the locali- 
zation phenomenon. 

4. Conclusions 

We have considered the quantum mechanics of  a peri- 
odically driven bistable system. In this work, the Floquet 
formalism has proven an adequate and powerful language 
to discuss driven tunneling, superior to semiclassical and 
perturbative techniques. However, it requires to abandon 
traditional concepts familiar in the field. 

In the limits of  very low and very fast driving, the 
separation of  time scales allows for an approximate an- 
alytical calculation of  the quasienergies that correspond 
to the two lowest energy eigenvalues in the undriven case. 
Our numerical results confirm that in these limits, their 
difference can still be interpreted as a tunneling fre- 
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quency. Its quantitative increase at finite amplitude of 
the external force indicates that tunneling is enhanced by 
periodic driving (away from the resonances, cf. Sect. 3.4). 

For intermediate frequencies, in general, more than 
two quasienergies are involved in the dynamics, time ev- 
olutions become more complicated and the familiar no- 
tion of tunneling is no longer applicable. In this regime, 
the local quasienergy spectrum and its relationship to 
characteristic dynamical quantities like the probability to 
stay provides an adequate formal tool for the interpre- 
tation of numerical experiments. Specificially, we observe 
the slowing down or even divergence of time scales, cor- 
responding to avoided and exact crossings in the quasi- 
energy spectrum, respectively. In particular, for suitably 
tuned frequency and amplitude of the driving force, co- 
herent tunneling can be suppressed altogether, enabling 
localization of the wave packet in one of the wells of the 
bistable potential. An experimental test of this surprising 
prediction can be carried out with every bistable tunnel- 
ing system, subject to a monochromatic external field. 
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meinschaft through Grant No. Ha1517/3-1. The help of the staff 
members of the computer center at the University of Augsburg for 
providing computer-network facilities is highly appreciated. The 
numerical calculations have been done on the Cray YMP at the 
Leibniz-Rechenzentrum, Munich. 

A. Numerical  calculation of  quasienergies 

The quasienergies, as was pointed out in Sect. 3, deter- 
mine the time evolution of the wave function. In order 
to calculate them, we use a method given by Risken [29] 
and used by one of us [28] to solve Fokker-Planck equa- 
tions with periodic drift coefficients. For the treatment 
of a driven two-level system in this context, see [30]. 

Dealing with the Schr6dinger equation, we expand the 
Floquet function from (11) in a Fourier series 

+co 
q~k,l(x,t)= ~. c~(x)exp(inwt). (A1) 

The e-dependence of c{ arises because ~bk, z belongs to the 
quasienergy G,~- Inserting this into the time-dependent 
Schr6dinger equation (10) leads to the recursion relation 

(__21 ~x2-- V(x) - -G ~-wn) Cen(X) 

1 
+ ;:. xS  [c~_ 1 (x) - c~ + t (x)] = 0 (A2) zl 

for the coefficients c,~ (x). 
The x-dependence will then be removed by expanding 

the c~ (x) in the complete orthogonal set of oscillator 
eigenfunctions, 

Cgn (X) = ~ knnym (X), (A3) 
m~0 

with 

Y~(X) =- ! 2~-[/~ Hn(~189176 �9 (A4) 

Here H, denote the Hermite polynomials and e is an 
arbitrary scaling parameter. The e-dependence of k has 
not been denoted explicitly. Inserting this expansion in 
(A2) yields the tridiagonal matrix recursion relation 

m=O m~O 

+ 2 k."-I Fj_.~ = 0 .  (A5) 
m~0 

For arbitrary Hamiltonians one computes the above ma- 
trix elements by expressing all powers of x and ~x in 
creation and annihilation operators. For the time-de- 
pendent Hamiltonian (5, 9) considered in this paper, the 
matrices G, F +, F -  are given by 

V(j+2)(j+l)6 ,m_2 

( j +  1) (~j,m+2 -- ( 2 j +  1) dr, m] VJ + 

1 [1//~+ 2) ( j +  1) Oj, m_ 2 
8C~ 2 

+]/ j ( j+  1)6j, m+2 + ( 2 j +  1) Oj, m] 

1 q 
256Dc~ 4 

• [ V ( j + 4 ) ( j + 3 ) ( j + z ) ( j +  1) Oj, m_ 4 

+ ] / j ( j -  1)(j-- 2)(j--  3)6j, m+4 

+ (4 j+  6) ] / ( j +  2) ( j +  1) dj,.~_ 2 

+ (4j-- 2) ] j ( ~ - -  1) 5j, m+ 2 

+ (6j 2 + 6j + 3) 6j, m] -- (e -- wn) 6j,,~, 

F+-= iS [ ] 
j,m i 7 ~  V.J+l(~j ,m-l+f~j ,m+l " 

The freedom to vary the parameter e can be used to check 
and to improve the numerics. 

To solve Eq. (A5) for the quasienergies, which are 
explicitly contained in G, we then use a matrix-continued- 
fraction technique [29]. 
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