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The quantum analog of Kramers reaction rate for a dissipative environment is derived on the basis of a

periodic orbit approach for multidimensional tunneling. The resulting reaction rate expression holds at

all temperatures, thus covering [in contrast to the imaginary free energy method (“bounce-"method)] the
classical and the quantum regime on the same basis.

Introduction

Quantum reaction rate theory underwent profound de-
velopments within the last decade. In particular, the recent
progress in the quantum theory in presence of dissipation
[1,2,3,4] enables one to generalize the classical theory of
Kramers for the rate coefficient in a dissipative environment
to the quantum regime [3, 5—9]. Our focus will be on the
semiclassical limit of the quantum-transition-state-theory
(QTST) in presence of an infinite number of bath degrees of
freedom which model the dissipation, i.e. we shall elaborate
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on a unified approach to the dissipative quantum Kramers
rate in a metastable potential ¥(x) in which the reaction
coordinate x of a reactive particle of mass M is coupled to
a continuum of bath degrees of freedom.

Conventional quantum-TST represents a rather patchwork
affair: In doing quantum calculations one replaces classical
partition functions by their quantum counterparts, assuming
separability of the various vibrations and/or rotations near
the saddle point, and then corrects for multiple crossings
near the barrier top by the multiplication of a temperature-
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dependent Wigner-like transmission factor {10,11]. There-
fore, this approach essentially restricts the quantum treat-
ment to the high temperature limit. It was only until recently
that the case of dissipation (continuum of bath degrees of
freedom} has been discussed within this approach in a beau-
tiful paper by Pollak [12].

Within the last decade, the quantum-Kramers rate has
originally been studied over the whole temperature regime
by the Augsburg-Essen-Polytechnic-Stuttgart school [5, 7,
8,9, 13, 14] and the Moscow school [6] which all made use
of the imaginary-free-energy methodology [15]. The pri-
mary object of this latter method is the dissipative bounce
(instanton/anti-instanton) solution. This periodic solu-
tion — in absence of the influence of dissipation — has been
introduced in Miller’s semiclassical quantum-TST for non-
separable systems [16], see also Refs. [17—20]. Following
the original reasoning of Miller [16], we shall re-evaluate
the quantum-Kramers rate results [3, 5—9] by use of the
multidimensional WKB-approach for the quantum-TST
rate in terms of periodic orbit theory [21,22]. In doing so,
we cover the whole temperature regime from T = 0 up to
room temperature on a unified basis. In a previous item
[23], see also Refs. [8b,9], we have already reported the
results of the continuum limit of this multidimensional
WKB quantum rate approach. In this paper, we present a
more extended discussion of the various approximations
used in arriving at the quantum-Kramer’s rate expressions,
and give additional new results.

Quantum Reaction Rate Theory

Throughout the following we shall assume that there ex-
1sts a true time-scale separation for the dynamics within the
locally stable state at x = x,, i.e. ¥ (x,) = 0, and the dy-
namics characterizing the passage through the bottleneck of
the metastable potential, V'(x) (e.g. a cubic potential) sepa-
rating products from reactants. Then, an initial nonequili-
brium population decays exponentially for times longer than
the typical time-scale for nonactivated molecular processes
within the well. Thus, the rate coefficient & becomes truely
- time-independent; it can formally be expressed as the flux
integral {24, 25]

k = Z;' Re[Tr{exp(— fH)(x) (p/M) 2}]. )

Here, Tr denotes the trace, § denotes the inverse temperature
and Z, is the partition function of the metastable state at
xo < 0, x = 0 indicates the transition state, and £ is the
operator that projects onto positive momentum states p in
the infinite future (¢t — o0). H denotes the total (system plus
bath) Hamiltonian operator. The reaction coordinate x of
the escaping particle ranges from x = — oo to x = + 0.
With a few manipulations this formally exact rate expression
can be cast as an integral over a flux-flux autocorrelation
C(t), i.e. [26]

k=271 Ojo C(@)de @)
0

where with t, = t — ihB/2

C(t) = Tr[Fexp(iHt*/h) Fexp(—iHt,/h)], 3)

wherein F = -;— [8(x) (p/M) + (p/M) 5(x)] is the symme-

trized flux operator.

Semiclassical Quantum-Transition-State-Theory

Following Miller [16] the quantum — TST approxima-
tion to the rate k consists in the replacement in (1):

39 (/M) @ — 28315, @

and then proceeds by use of the semiclassical approximation
for the Boltzmann propagator. Thus, one obtains [16]

kkrss = 257 Re{{daalexp(~ BH)I >3 ()5 151} ()

Here, g = (g0 = x, qi, ..., qn) are the coordinates of all the
degrees of freedom of the system, (x) and bath, (g4, ..., gn)-
In going from (1) to (5) we made use of a Weyl ordering for
the operator d(x) | x|, [16], i.e. we can replace the trace in
(1) by the phase-space average over the Wigner function. By
use of the semiclassical expression for the propagator
exp (— BH) the corresponding phase space [16] integration
has — in consistency with the use of the semiclassical result
— been evaluated within the stationary phase approxima-
tion (SPA). This procedure then yields (5). Continuing in
this vein and evaluating the trace in (5) also in SPA yields
a continuum of stationary phase points. This continuum of
SPA-points just defines the unstable periodic orbit, or the
bounce solution [16]. In view of the Boltzmann propagator,
however, this periodic orbit exists for pure negative imagi-
nary times only, i.e. the Wick rotated time t — 7 = it, is
real and positive. We now measure distance along this pe-
riodic orbit, g, = x, with all other coordinates being or-
thogonal displacements away from it. Therefore, all the in-
tegrations over the orthogonal displacements can again be
evaluated within SPA. In terms of the Green’s function

1 i i
- - = —(E4ie—
E+ic—H P (j;dtexp{h( +1¢ H)t} ©
= G(E + i¢)
we have with
exp(—iHt/h) = ﬁjdlz exp(—iEt/h) G(E), (7a)

and f = it/h the formal identiy

exp(—BH) = lim i § dEexp(—BE)G(E +i0").
e—0" —

(7b)
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Inserting (7) into (5) yields the rate coefficient krsr as a Boltz-
mann average

krst = Z; ' Re {i | dE exp(—BE)
2 ®

Jdg 8(q0)§|401<q|G(E+ io+)|q>}.

In virtue of this expression involving the Green’s function
one never has to construct a multidimensional wave func-
tion, This feature represents a great advantage when treating
the effects of dissipation.

The trace in (8) can now be evaluated by use of unstable
periodic orbit theory [22]. Integrating within SPA over the
orthogonal fluctuations, with ¢ = g, fixed, and then inte-
grating over g, (which is trivially accomplished due to the
d-function in (8)) yields Miller’s central result [16]

1 o0
— 71— _
kst = 2 Snh g dE exp (—BE) k(E), (9a)
. where the cumulative reaction probability reads
k(E)= X (—1y~"exp[—n ¢ (E)/h]
n=1 (9b)

: ll'v[ {2 sinh B n T(E) a)i(E)]}_l .

i=1

Here, ¢ (E) is the abbreviated (Euclidean) action integral
along the unstable periodic orbit of period T(E) = — ¢’ (E)
on the inverted potential landscape (Wick rotation of time
t = —iT(E)). The set {w;(E), i = 1, ..., N} are the stability
(angular) frequencies of the unstable periodic orbit. If, ¢ (E)
is positive (low temperatures) we note that only the n = 1
term contributes significantly to (9a).
Next we use the selfconsistent solution of

Er =E— él (ni + %) ho;(Er) (10)

as the energy E; which is left in the reaction coordinate
while the system is crossing the saddle point with the bath
being excited {n;} in corresponding modes. Following the
reasoning of Miller [27] which he put forward to obtain the
improved quantum condition for the eigenvalues of an er-
godic system, we now construct an improved, and rather
appealing expression for k(E), i.e. following Héanggi and
Hontscha [23] we use the tunneling energy in (10) and set
[9,23]

oo

KE) = X

(ng,....n5)=

1 +eprs@ml (11)

In doing so, we have “unexpanded” the corresponding ex-
pression in (9b) which results if the sinh-fcts are expanded
into geometric series (for more details, see Refs. 9, 28).

Eq. (11) represents a uniform WKB-approximation to k(E),
which becomes exact in multidimensional, separable para-
bolic-like potential landscapes. We stress that (11) accounts
for the anharmonic nonlinearities in the reaction coordinate
x; but neglects the influence of anharmonicities for the
“transverse” bath degrees of freedom.

With k£(E) given in (11), the quantum-TST rate is obtained
by insertion of (11) into (9a) and then performing the re-
maining summations and the integration over the range of
total energy E of system plus bath. It also should be noticed
that this procedure yields a closed expression for the mul-
tidimensional quantum TST-rate that holds true for all tem-
perature [23]. Further, with the density of states for a har-
monic oscillator, i.e. ¢(E) = (2n #/T(E))~" it follows on
inspection of (9a) that the quantity
I'(E) = k(E)/T(E) (12)
denotes a semiclassical expression for the microcanonical rate
coefficient at total conserved energy E.

Periodic Orbits: A Useful Identity

Before we proceed to evaluate more explicitly the dissi-
pative quantum-Kramers rate in the continuum limit we
shall reconcile the various approximations leading to (9).
First the trace operation in (5) naturally leads within the
semiclassical limit to the consideration of periodic orbits
which give the dominant contributions to (5). In view of the
Boltzmann propagator exp(—pH), such periodic orbits,
which pass through the transition state location (see (8)), do
not exist in real time but only in (negative) imaginary time
t = —irt, ie. T = it. Therefore, it is advantageous to con-
sider the Euclidean version of the propagator. In original
time ¢, such negative imaginary time periods imply for the
SPA-evaluation of (6) a distortion of the integration path
into the lower complex half-plane. In other words, we
analytically continue the semiclassical propagator
{q|exp(—iH t/h)|g> to complex times t = —it. The ana-
lytically continued Green’s function then formally reads [28]

{q|G(E)g>—<q|G{E)lg> = —_h_i (13)

: g dr exp(Et/hX qlexp(—tH/h)g) .

The time integration inherent in (13) must be understood to
be performed in SPA with the integration path deformed so
as to go through the stationary points in the direction of
steepest descent. This procedure is consistent with the use
of the semiclassical approximation. Such an approach gen-
erally requires some care near conjugate points [focal sur-
faces], see [29]. This SPA integration fixes the period of the
periodic orbit 7,4 = T(E), such that the corresponding
classical energy of the periodic orbit equals the value E =
Eperiodic obir- The final trace over g in (8) is then calculated
following the recipe of Gutzwiller [22]; i.e. all the transverse
displacements along the periodic orbit are again evaluated
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in SPA, while the final integration over g, would simply
yield the period T(E). By accounting for multiple transver-
sals of the periodic orbit, T(E} — n T(E), and keeping track
of the phase changes of the periodic orbit at conjugate points
yielding the phase (—1)-(—1)" "', one obtains for the trace
of the analytically continued Green’s function G,(E + i0%)

= :h—l { dt exp(Et/h) exp(—tH/k) by use of the Refs.
0
[16,22] the result [28]

(—1)
h

{dq<qlGAE+107)|q) = [iT(E)]

o0

- X (=17 exp(—ng (E)/h) (14

~if:11 {2 sinh B nT(E) o, (E)]}ii :

Note that in (13) the fundamental period T(E) is obtained
independent of the number of periods. This is so because
T(E) stems from an integration over g, and not over time
7. The multiple traversals must be accounted for because to
obtain the SPA result we must sum over all solutions for
the period T(E) = T, (E) yielding a fixed energy E [30,31].
Thus, we deal with an infinite sequence of stationary points
along the (negative) — imaginary time axis, t, = — inT(E);
i.e. 1, = nT(E). More generally, the result in (13) would be
improved further along the line of reasoning of Hanggi,
Weiss and Riseborough [32] by including not only real
times 7, but also complex-valued time periods t,; ... =
nTAE)+ ik T(E) + ..., yielding a fixed energy E. Here, the
index e stands for “Euclidean” and m for “Minkowskian”,
in reference to the corresponding regions of the non-in-
verted, original potential landscape such as the barrier re-
gion (e), or the reactant and/or product region (m). In par-
ticular, apart from the normalization factor Z; ! the rate
expression in (9a) is observed to include information about
the classically forbidden region (transition-state region)
only. Thus, just as with the imaginary free energy bounce
formalism — any interference effects to the decay rate stem-
ming from the classically allowed quantum dynamics in the
non-inverted potential landscape is not accounted for. Such
effects, for example, include backscattering from reactant
regions [32], and/or curvature effects of the classically al-
lowed reaction paths.

In Gutzwiller’s procedure, the trace is calculated keeping
the fluctuations zero at a fixed point on the periodic orbit,
and integrating over these fixed points at the end (yielding
the period T(E)). Likewise, the trace can be evaluated by
considering all closed orbits and allowing both for longi-
tudinal and transversal fluctuations around a fixed periodic
orbit (7). For the trace of the Wick-rotated Green’s func-
tion

e8]

Jdq CalGulB)la> = S+ ] dv exp(eE/h) Triexp(—<H A
®

one alternatively can evaluate the semiclassical limit follow-
g the reasoning of Callan and Coleman [20]. Use of the
SPA (in function space) for the trace in (15) yields stationary
solutions obeying §(0) = g(t). Among those are two con-
stant solutions §(t") = x, characterizing the stable state dy-
namics (i.e. it yields Z,, see below), and §(z) = 0, charac-
terizing the barrier motion. In view of (8) we consider now
only periodic paths passing forth and back the transition
state. We shall restrict the following discussion to low tem-
peratures; i.e. the rate controlling relevant energies E in the
expression (9a) all are lying below the barrier energy £ =
E,. With this in mind, we consider for (15) such t-values for
which the nontrivial periodic solution §(0) = §(7) is real-
valued. Setting for a general periodic path
q(z') = q(v) + Z € Xa (7'), (16)
with x, (z/) obeying periodic boundary conditions x,(0) =
X, (1), one considers — for small # — terms in the action up
to quadratic order only. In our case, we consider the Eu-
clidean Lagrangian for a harmonic bath coupled bilineary
to the nonlinear reaction coordinate x.

L =

M ., A N g < C; )2}
7x +V(x)+i§12m,{q,« + Q,—qi—l—miQix .
(17
Following the standard procedure, one finds after integrat-
ing first over the harmonic bath degrees of freedom in terms
of the dissipative bounce trajectory §(z') and the well-known

non-local (Euclidean) Lagrangian L [S—9, 13, 14] for the
trace the result [28]

Trlexp(—tH/h)] = iAr< S, >1/2 11 [2sinh(%r9i>]ﬂ

2nh i=1
“|det’ & S.|; " exp[ —S.(q.1)/h], (18a)
where

/2 . T . T .
Se=M | du(@wP?S.=[L(q q)du= fLy[q q]du.
—1/2 i 0 (18b)

det’ indicates that the Goldstone mode contribution of the
eigenvalue zero must be omitted. 4 is a normalization con-
stant to be determined below. The z-integration in (153) is
again calculated in SPA. This yields the condition E =
0 S./07, 1.e. this fixes the period tspy = T(E)sps to equal
the total energy E, i.e. S, = ¢(§) + T(E)E. With E in the
classically forbidden regime we need to consider the prim-
itive orbit only of period T(E), i.e. G, = G". Insertion of
(18) into (15) yields

f dg (a1GY (B +i0%)(3) = = 512 T(E)

- [det’ 88, [; (=& 8/ pe)]

: {‘_Ii[1 [2 sinh G T(E) Q,-)T} exp [—¢(E)/h].

(19)
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Hereby we observe that the SPA yields a phase i = exp(i
1/2), which with (—1) iA()) = A yields a real quantity for
the analytically continued object (14, 15). The normalization
constant, A, stemming from the measure over {c,,}, can be
obtained if we evaluate Z,, i.e. we use 4(0) = 4(r = T(E))
X, This yields [28]

Z,

oo 1 —t
Aldet 8 5, |72 }[_11 [2 sinh <§ T(E)Q,ﬂ (20a)

iﬁ[ﬂ [2 sinh G T(E) l;’)}_i .

Here, the set {1°},i = 0,1, 2, ..., N, are the normal mode
(angular) frequencies at the metastable state § = x,. Upon
expressing A by use of (20b), one finds with n set equal to
one upon the comparison of (19) with (14) the important
identity:

Sé/2<|det82Se|a=xD >1/2 _ Z*1<
ldet/82 Se|§(‘r) ¢

(20b)

62S6>1/2
T A

1 [2 sinh G T(E)(n,-(E))}ii -

i=1

This relation is of use for the explicit evaluation of deter-
minants. Note also, that in contrast to (14), the SPA in the
time integration for (19) is performed here at the end, while
for (14) it defines the first step in the approximation scheme,
thereby fixing the period © = T(E).

The Quantum Kramers Rate

Following Hénggi and Hontscha [23], we now present
explicit results for the Kramers rate of a particle that inter-
acts with a continuum (N— o0) of bath modes, cf. (17). In
terms of the spectral function

n io -2
J() = —— ‘
©) =% & ma,

d(w—Q), (22)

the Laplace transform the memory-friction kernel y(t) can
be expressed as

J(w)z

PlEETo *)

- 2%
y(z)=;§dw

First, we shall consider high temperatures T above the cross-
over temperature 7 [5], i.e. with ky the Boltzmann constant

T>T, = 24
2TEkB K ( )
where p denotes the positive root of
~2 1/2
7 (W 1-
n= [ 2+ w@} — 57 (25)

and w, = |[M~' V" (g, = 0)|"”. In other words, u denotes
the dissipation-modified normal mode barrier frequency
w,— pu(y). With Er > E,, the effective abbreviated action
¢ (g) is negative. Thus the cumulative reaction probability
is not exponentially sensitive, and with k3 7/E, < 1, an-
harmonic corrections are negligible. Thus we can use a har-
monic approximation, i.e. the period T(E) assumes a con-
stant value T(E) = 2n/u and the stability frequencies can
be approximated by the normal modes in the saddle point
region, i.e. w;(E)— AP. The abbreviated action thus reads
¢ (Er) = (E,—Er) 2n/u < 0. (26)
Upon an interchange of the integration in (9a) with the
summations we find

1 X 1
— g1 __ _ 4= b
kst = Z, >k n,,...,zn,,:o exp{ ﬁ[Eb+Z <n, +2>h/tl]}
1
exp {ﬁ[Eb+Z <n,—+§>h}t}’—E]}
'JdE 1 . @)
1 +exP{ﬁo[Eb+Z <ni+§> h'lib—E]}
0 i
where f, = 27 (h pu)~". Setting

X = exp {ﬁ[Eb+Zi: <n,- +%> hi> —E1},

the integral in (27) becomes with x, = x(E

It

0)

Xo 5e) d © d
ﬂ_ifdx-ITixl,W=ﬁfl[f e }

o o 1+ xPolB M 1 4 xP/B

x; (Bo= VB

(ﬁo_ ﬁ)

8 2

= ﬁl [sin(rp/B)]~" —
(28)

1 . . .
where 3 < ¢ < 1. With SE, > 1, this correction can be

neglected to give after corresponding summations

kTST =

_u 2sinh(kB 25/2) { N Zsinh(hﬂ,l,-"/Z)}eX T
2% 2sin(hfu/2) li=1 2sinh(hpAr2) | P o

(29)

By use of the Pollak identities [12], the products in (29) can
be related directly to the dissipation 7, i.e.

U,
wy 2T

fee)

kist(T > T) = ( >6Xp(—ﬁEb)

_ @ + n*v* + noy(nv)
n=1 —ai + n%’ + noy(n)

where v = 2n/hB, w2 = M~ V" (x = Xya)
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At temperatures T =~ T, the above approximation diverges
at T = T, proportional to (T — T,)~'. Thus, near T =~ T,
we must account for the nonlinearities of the potential land-
scape. Setting more accurately [23]

2 1
b (Er) = (Ey— Ey) 7” + = (By— EQP| T (By)]

> G1)

and proceeding as above we arrive at

w, sin(hBu/2)

kst (T ~ To) = o @b | T )

o o)

o + n*0* + n y(nv)
i1 — @ + n2v? 4+ no y (no)

exp [_‘ﬁEb . fl(g—;f)] Erfe [<2|hT, |>W (6 - ﬂ&]

+ O [exp(—BoEx)/(BoE)'] (32)

where Erfc(x) = 2% | dyexp(—)?) = erfc(—x). With

! — ¢ + vy (v) = a(T— T,)/ T we recover the known result
of the imaginary free energy method [6, 7, 8, 9, 14, 23, 33].
At low temperatures 7 < T, the cumulative reaction
probability becomes with ¢(E;) > 0 exponentially small
and we must treat the full nonlinearity of the potential. The
integration in (9a) can then be approximated by keeping
only the term with n = 1.
This integration can be performed within SPA to yield [8b,
9]

krst (T < T,) = Z5' 2nh| T'(Eg)|)~ 7 exp(—Sw/h)
11 |:2 sinh <% h ﬁa),»(Eﬂ)>]~1

where 7" = 0T/3E. The SPA condition yields T(E) = hf,
and E; = E[T(E) = hff] denotes the corresponding sta-
tionary phase energy. S; is the dissipative bounce action of
the periodic orbit with period # 8, i.e.

(33)

hB

So = | Lg(t)dr. 4
0

Upon noticing that

—ESNT (B :

< or’ >r:hﬂ =gz k=5, =T (EYI >0 (35)

we find by use of the identity in (21) the alternative expres-
sion, 1.e.

Se \2/  det&S ..
kTST(T< T;J) = <2ﬂh> <|det/82s |_(q) o(hﬁ)> exp(—sb/h) .
elglo)=¢

(36)

This latter form precisely equals the imaginary free energy
result [3, 5—9, 14].

Conclusions

By use of the semiclassical TST of Miller [24] and the
periodic orbit theory we managed to obtain from (9a, 9b,
11) all the previously derived results for the quantum-Kra-
mers rate. This approach has for all temperatures the same
common basis, i.e. the rate expression in (9a). We have thus
demonstrated that the continuum limit of this quantum TST
precisely equals the dissipative quantum-Kramers theory.
At high temperatures 7 » T, the results approach up to
quantum corrections (see Ref. [34]), the classical Kramers
rate derived fifty years ago [9, 35], i.e.

© W,
Wy 2T

kTST (T> ]:J’ N— (X)) - kKramers = €Xp (_ ﬂEb) s

37

where for zero memory friction [35], y(t) — 2y (), i.e.
Y =y

2 172 1
Y
#=<z+w§> 57

The above given results therefore generalize the classical
treatment of Kramer’s dissipative rate to the full (dissipative)
quantum regime which extends from 7 = 0 up to room
temperatures.

(38)
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