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Foreword

With the rapid advances in microfabrication technology in recent years,
physical behaviours that are in between the macroscopic classical picture and the
pure quantum nature on the molecular level became increasingly apparent. This
regime has been popularized in the field of condensed matter physics as the
"mesoscopic” regime. Among the mesoscopic effects that have been observed at low
temperatures are a variety of transport phenomena in small metallic samples and
semiconductor hetero-structures assigned to quantum coherence, dissipative
influences in macroscopic systems ranging from Josephson devices to interstitials in
metals, and tunneling phenomena of single electrons and Cooper pairs in small
capacitance junctions and junction arrays. The importance of quantum fluctuations
in the understanding of such systems is now well established.

The objective of this Adriatico Research Conference was to bring together
physicists working in the various sub-fields of mesoscopic physics and to review the
status of research in this rapidly developing field with emphasis on current
advances and future possibilities. The Conference covered a wide spectrum
including quantum transport in small samples, macroscopic quantum tunnelling
and quantum coherence, charging effects in tunnel junctions, and correlated charge
transfer and quantum vortices in junction arrays. Experimental review talks were
given in each of these fields. The emphasis, however, was put on the theoretical
understanding of the new phenomena observed. The authors were asked to ensure
that their contributions were at a level which would be accessible to graduate
students and to non-specialists in their field. This volume should therefore be of
use to all those whose work impinges on any part of mesoscopic physics.

It is a pleasure to thank Mrs. Milena Poropat who helped us in the

organisation of the Conference and in the completion of this book. We are
particularly grateful to ICTP, SISSA and IBM for their financial help.

The Editors.
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PERIODIC ORBIT APPROACH TO
DISSIPATIVE QUANTUM TUNNELING
AT FINITE TEMPERATURES

PETER HANGGI

Department of Physics, University of Augsburg,
Memminger Str. 6, D-8900 Augsburg

Abstract: We consider nonlinear metastable quantum systems which interact with
a thermal bath of bosons. This interaction thereby induces a friction (dissipation) on
the original metastable system. An important quantity characterizing many transport
quantities is the quantum decay rate which sensitively depends on temperature T and
friction strength. The calculation of this tunneling rate is achieved by use of a many-
dimensional WKB-approach which is based on multiple traversals of unstable periodic
orbits. Explicit results are given in closed form in various temperature regimes
extending from T= 0 up to room temperature. Finally we address the quantum decay at
very weak friction where nonequilibrium effects in the energy population must be
accounted for.

1. Introduction

Processes in which a particle must overcome an intervening potential barrier are
ubiquitous in science, occurring in such fields as chemical kinetics, diffusion in
condensed matter systems, biological transport, nuclear reactions, and possibly even
describe the birth of the Universe. At high temperatures, the rate of such processes
obeys the law by Van‘t Hoff!) and Arrhenius?), according to which the rate of escape is
proportional to the Boltzmann factor for thermal activation up to the barrier top (see

Fig. 1).
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As one continuously lowers the temperature, this law predicts an exponential decrease
of the rate, with no action taking place at absolute zero. However, at low temperatures
the role of quantum mechanics provides a new mechanism b\y which a classically

stable state can become unstable via quantum mechanical tunneling (see Fig. 2).

The tunnel effect was recognized long ago, during the heydays of quantum mechanics.
In 1927, Friedrich Hund® demonstrated that quantum tunneling is of importance for
intramolecular rearrangements in pyramidal molecules such as ammonia, as
manifested by tunnel-splittings of vibrational spectra. The tunneling phenomena
became a well known effect shortly afterwards when Oppenheimer”®) employed it for
the description of the ionization of atoms in intense electric fields, or when Fowler and
Nordheim® used tunneling for the electric field emission of electrons from cold
metals, and by Gamow!® as well as by Gurney and Condon!!:12) which explained the
radioactive decay of nuclei. Quantum mechanical tunneling entered the field of
reaction rates with the pioneering study by Bourgin'3, which then was continued by
Wigner!4) who evaluated up to order (W?) the quantum corrections to the tunneling-
modified Boltzmann averaged flux through a parabolic-shaped potential barrier. Since
then, the tunneling mechanism has been invoked and developed further in a multitude
of fields, encompassing biology, electronic devices, crystalline and amorphous solids,

and tunneling microscopy'>.

Our focus here is on tunneling in presence of dissipation. This area of research has
been nurtured considerably by Leggett’s!6-17:18) initial discussion of quantum
mechanics and realism at the macroscopic level. The publication of the Einstein-
Podolsky-Rosen Paradox!? triggered Schrodinger’s?®) "Generalbeichte" (general

confession) on the status of quantum mechanics. Best known from this article is the
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therm. hopping

p——p,

heat bath

Figure I: Escape of a particle from a metastable state. The particle can leave the
potential well either via thermal activation over the barrier or via tunneling through the
classically forbidden regime. The interaction between the particle and the surrounding

heat bath is modelled by frictional forces giving rise to dissipation.
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Figure 2: Arrhenius plots of reaction data for two different physical systems in which
tunneling events occur: (a) rate of CO-migration to a separated B-chain of haemoglobin
(Hb) (data from Alberding et al.®); Frauenfelder®)); (b) the diffusion coefficient of
hydrogen moving on the (110)-plane of tungsten at a relative H-coverage of 0.1 (data

from Di Foggio and Gomer®).
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paradox of Schrédinger’s cat (see Fig. 3) in which he illustrates the indecisiveness of
observations which is possible in quantum mechanics. To this end he links the life of a
cat, to which so many of us are compassionate, with the state of a radioactive nucleus.
In this way he "infects" the cat with the quite common uncertainty of the subatomic
world. Specifically, the linear structure of quantum mechanics seen:s to contradict our
common sense for a cat to be in a combination of "dead and alive" for an appreciable

time ( ~ half-time of a nucleus whose decay triggers a device which then kills the cat),

Figure 3: Schrodinger’s cat. Is the cat alive, or dead (or if you prefer in a state of -

permanent sleep, 1) only when one looks?

while at the same time we are ready to accept the analogous situation for the atomic
nucleus. In the recent past years it has become feasible to construct Laboratory Cousins
of Schrédinger’s cat by observing the quantum mechanics of macroscopic quantum
variables such as the decay of the zero-voltage state in a biased Josephson junction, or
fluxoid quantum transitions in a superconducting quantum interference device.

This area of research is nowadays known as Macroscopic Quantum
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Mechanics!8:21.22.23.24)_In the following we shall restrict our discussion of dissipative
tunneling to the case of incoherent quantum tunneling processes, i.e. we do not
consider dissipative quantum coherence effects as they occur typically in weakly
damped double-well systems25-26), Such incoherent tunneling processes of damped
observables occur in biased Josephson junctions?’-33), nucleation of vortices in He 1134
or quantum diffusion in solids5, in biological transport*36) and in low temperature

vibrational spectroscopy of small molecules in inert solvents.

2. Formulation of the Problem

For the description of the dissipation for the quantum particle dynamics in a metastable
potential V(q) (see Fig. 1) we rely on the standard methods known from statistical
mechanics. As a rather general model we consider a particle of mass M that interacts
via a linear dissipative mechanism with a thermal environment at temperature T, i.e.
we consider a bath composed of an infinite set of harmonic oscillators being coupled
bilinearly to the particle coordinate q. The total Hamiltonian, H , of the system plus
the bath is then of the form373839)

HY 2 ev@ +5 3m, <'1%+w,2(qi+—%q)2 : 1)
= m;Co;

[

In Eq. (1) the coupling to the bath of harmonic oscillators with masses {m;} and
(angular) frequencies {c,} is of a form such that no coupling-induced renormalization
of the metastable potential V(q) occurs. Upon integrating over all bath variables {q,,

. » QyJ, one obtains in a canonical ensemble the generalized Langevin equation

t
M&i+aﬁivfl)+MJY(t—t)il(f)d‘=§(‘)
@
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with the memory-friction Y(t) obeying the fluctuation-dissipation theorem
<EWEG) >=kTMy(It—sl) . 3)

Here k denotes the Boltzmann constant. The Gaussian stochastic force &(t) and the
memory-friction Y(t) are determined by the parameters of the Hamiltonian3”-39). Thus,
a phenomelogical decaying memory-friction y(t), i.e. ¥(t) — 0, as t = oo, can be
modelled by a suitable choice of the parameters in Eq. (1) by performing a continuum
limit (i.e. N — o) for the distribution of frequencies which densely extends down to
zero frequencies (elimination of Poincare recurrences). In Kramers’ 2249 seminal
study on classical reaction rates it was assumed that the frictional influence of the
environment can be modelled by a frequency-independent damping y(t) — 2y 8(t). In
recent years, however, several experiments on the behavior of thermally activated
(classical) reaction rates have shown a failure of the memory-free friction
mechanism?224142), This is due to the fact that barrier frequencies are often of the order
of 10!} — 10! Hz, and environmental influences are likely to be correlated on this time

scale, thereby giving rise to frequency-dependent damping effects for the classical

rate22:43.44)

¥

3. The Dissipative Tunneling Rate

The theory for dissipative tunneling was developed only recently. The field has seen a
rapid development after Caldeira and Leggett®®:45) discussed the problem of
macroscopic quantum tunneling at zero temperature. Following the reasoning of
Langer*®) used for the classical nucleation problem, the original approaches for
dissipative tunneling are based on an imaginary-time functional integral approach
(imaginary free energy method, Im¥). The essence of the method consists in a
semiclassical steepest descent evaluation of the free energy which leads to the so-
called "bounce"47:48.49) a5 the primary object in the theory. The important qualitative

result of the zero temperature studies3®) was the observation that at zero temperature
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the presence of dissipation will exponentially decrease the tunneling rate relative to the
gas phase rate, defined as the tunneling rate without dissipation (y =0 ).

The functional integral approach was extended by the Augsburg- Essen - Polytechnic -
Stuttgart and the Moscow school to finite temperatures, covering all temperatures in
the range from T 2 0 up to the classical regime?!-2450-56), In the sequel we shall present
the main results of the finite temperature theory to dissipative tunneling by use of a
unified approach which covers both, low temperatures and high temperatures on the

same basis>®).

3.1 Flux-Flux Autocorrelation Function Expression for the Quantum
Mechanical Rate

We start our more detailed tunneling rate discussion by a formally exact rate

expression, originally put forward by Miller>). Let Z, denote the quantum partition

function of system plus bath for the metastable state located inside the well minimum

(see Fig. 4).

Figure 4: Metastable cubic potential used in the text.

Further let s denote the reaction coordinate in full configuration space with the

activation barrier being located at s = 0, and let p be its conjugate momentum, i.e. s is
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the coordinate perpendicular to the surface which divides "reactants" from "products”.

The flux-through-a-surface operator F has the form

F=8() (/M) -

and the thermally averaged tunneling rate T"is formally given by*?

[ =Re{Tr [exp(- BH)F P1} /2, , 5)

where Re denotes the "real part", Tr indicates the trace, P = (kT)"! is the inverse

temperature and

P=lim exp( #Ht/h)h(p)exp(-iHt/h) (6)
t=oo

with h(p) = 1, if p>0 and h(p) = 0, if p < 0. The operator P projects onto all states
that have positive momentum in the infinite future ( t — oo ), with the reaction
coordinate ranging from s = — e to s = + co. By use of a few formally exact
manipulations the rate in Eq. (5) can be recast in terms of a time integral over a flux-
flux autocorrelation function, i.e. with i’= :12— [8(s) (p/M) + (p/M) 8(s)}, and t, =1— ih

B/2, Eq. (6) can be written in the form>®%).

oo

r=3z=' [coa , (72)
where™
C@ = Tr [F exp(i Ht. /) Fexp(—i Hi/m)] . (7b)

Note that this result is analogous to the Green-Kubo formulas for transport coefficients.

Except in simple situations (e.g. for the one-dimensional parabolic barrier with
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-1
curvature o)2b= IM1V(q= qy) | >0, yielding Z, I = % (%‘hﬁﬂ)b) [sin(%h Bw,)] ), it
is with non-separable systems generally impossible to simplify analytically the
expression in Eq. (7). Therefore, it is more practical to evaluate for Eq. (5) the

semiclassical approximation.

3.2 Unified Approach to the Quantum - Kramers Rate

In order to make progress on an analytical basis we first approximate the projector P
in Eq. (6) by the simple step function h(p). This procedure is known in the chemical
physics literature as the quantum-transition-state approximation (QTST). By use of the
semiclassical approximation for the propagator, exp(—p %), one finds after a first
stationary phase approximation a periodic trajectory in configuration space which
represents a continuum of stationary phase points. This periodic trajectory, being
unstable with respect to small perturbations, just constitutes the "bounce-solution”
(often also denoted as "instanton-solution") in full configuration space of system and
bath, see Eq. (1), which describes the tunneling at fixed total energy E. The dividing
surface will next be chosen éo that the periodic trajectory crosses it perpendicularly,
i.e. gy = s is the coordinate which measures distance along the unstable periodic
trajectory with the other N-coordinates being orthogonal displacements away from it.
In contrast to the remaining N-orthogonal coordinates, which can be evaluated by the
stationary phase approximation, the integral over the s-coordinate cannot be performed
in such a way. The latter, however, is trivially accomplished by virtue of the 3-
function in Eq. (4). Making use of similar calculations (periodic orbit theory)

originally put forward by Gutzwiller®6)) one ends up with the result*”
L -
I'=2! — |dE k(E) exp(-BE) , 8
OM]J (E) exp(-BE) ®)

where k(E) is the microcanonical cumulative reaction probability given by



k(E) = 21 1™ exp[-nd(E)/N]

\
& 1
- | | 2 sinbig sr@¥en@ny” ©
i=1
with
® '
0(E) = Jdtg(r)g(ﬂ (10)

being the "small action” integral along the periodic orbit with period T(E) (in complex
time T = it) that rocks back and forth through the saddle point region on the upside-
down potential energy surface in (N + 1) dimensions. The parameters {®, (E)} are the
stability frequencies (Hill-Floquet coefficients) characterizing the unstable periodic
orbit with period T(E) = — ¢ (E). Upon expanding the sinh-functions in Eq. (9) in
geometric series one obtains a well-behaved result for k(E) (i.e. we use an analytic
continuation of the series over n in Eq. (9) which might formally be divergent when

E > E,, where E, is the threshold energy for activation) reading

oo

‘N
K(E) = E {1+ expl(6® -0 ® D+ M o®)h1}
i=1

(nqs ... ;=0
(11a)

With [TE)]™! = v(E) being the frequency at energy E, the quantity
['(E) = v(E) k(E) (11b)

denotes the semiclassical, microcanonical tunneling decay rate at energy E.



With the solution of

N
E; =E- Z (0, +3) o, (Ep) (12)
i=1

being the energy left in the tunneling mode while crossing the saddle point we

approximate the answer in (11) by the more appealing expressionS®

K(E) = ) (+ explO(Ep/M]) ' (13)

(ny, ..., ny)=

wherein we have "unexpanded” the first two terms in the Taylor series in Eq. (11).
Note that the form in Eq. (13) becomes exact for tunneling in the case of a multi-
dimensional separable parabolic-like potential function.

With Eq. (13), the evaluation of the thermally averaged, dissipative tunneling rate
follows after the integration in Eq. (8). The remaining problem in obtaining an
analytical result consists in the determination of the small action ¢O(Et), the Hill-
Floquet coefficients {w,(Ep)}, and fhe period T(Eq). In particular, it should be stressed
that the result in Eq. (8) combined with Eq. (13) presents an expression for the

dissipative tunneling rate that is valid for all temperatures.

3.3 Results for the Quantum-Kramers Rate

In this subsection we follow the reasoning of Hinggi and Hontscha>® to derive explicit
results for the dissipative tunneling rate in various temperature regimes. Let U denote
the (positive-valued) relaxation (angular) frequency along the reaction coordinate, s, at

the saddle point. Then the temperature

T, =@k, with p = [ 17 @+ 0217 - 390 (14)
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denotes the dissipative crossover temperature above which thermally activated events
. . - - y
dominate over tunneling transitions. In Eq. (14) ¥ denotes the Laplace transform of the

memory friction Y(t), while 2 = |V*(q=q,) / M | is the barrier (angular) frequency.
Ty o, q=q q y

3.3.1 Dissipative Tunneling Above T,

In this regime we can use a harmonic, local adiabatic approximation, i.e. the period
T(Ey) equals a constant T(E;) = 2n/U, and the Hill-Floquet coefficients can be
approximated by the normal mode (angular) frequencies of the orthogonal coordinates
at the saddle point, and ¢(Ep) = (E, — Ep) 2 w/u. Then, interchanging the integration in
Eq. (8) with the summations in Eq. (13) yields, by virtue of an identity due to Pollak$3
which relates the product of the (unknown) normal mode frequencies at the saddle

point and at the well bottom to the (known) memory-friction ¥, the result62-63.64.65.66)

oo

| pfog o+n2vnvy(nv)
F_[Q[ZN]CXP(_BE")] I I—m}+n2v2+nvi(nv) N as)

n=1

The first term inside the square brackets denotes the classical generalized Kramers
rate??). The definition of v is v = 2rt/(hB) and mg = V"(q = qy)/M is the (angular)
frequency in the well bottom, see Fig. 4. For temperatures T >> T, the quantum
correction Q, given by the curly brackets in Eq. (15), approaches unity. Moreover, this
quantum correction always exceeds unity, i.e. this quantum-Kramers rate theory
always enhances the classical rate. In particular, for weak-to-moderate damping
strength Y(j) there exists an accurate and quite simple approximation to the quantum
correction Q in Eq. (15) which in leading order is independent of the dissipation

¥, i.e.59

Q- exp{% B(w? + wﬁ)} . (16)
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Thus, above T > T, the Arrhenius factor undergoes a temperature-dependent

renormalization towards smaller values, i.e.

E,—E,~ B @2 +ad) . an

3.3.2 Dissipative Tunneling Near T,

At temperatures T ~ T, the integral in Eq. (8) becomes dominated by energies

E; <E,, where ¢(E;) > 0. Setting for the small action more accurately>® with | T | =
10"(E =Ep)|,
2n 1 2 ,
¢(E‘F)=(Eb_ET)E+E(Eb_ET) 1T (18)

we find the result52.54.67)

re [ 2n J‘ﬂ [wo] @+ V2 + Vi (V) oZ+n?vZ4+nvy(nv)

T o a —02+n2v24nvy(nv)
n=2

. (cxp[—ﬁ E, + 5y (B B)zl]% erfc {[2%’[}”2 (Bo—ﬁ)} ’

19
where .
a=af+p2[1+@ @) /921,18y = KTy, and erfc(x) = 212 xf dy exp(~y?).
For constant friction Y(t) = 2y3(t) we obtain for a = v, (2v, + ), with vy = 21/ (hBy).
Note also that the result in Eq. (19) approaches for T > T, the previous answer in Eq.

(15).
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3.3.3 Dissipative Tunneling Below T,

At lower temperatures the action ¢(E;) in Eq. (18) must be evaluated by taking the full
nonlinearity of the potential V(q) into account. In that regime, however, the
contribution from multiple traversals of the classically forbidden regime with period
nT(E), n > 1, do not significantly contribute to the sum in Eq. (9). Hence, we can
evaluate Eq. (8) by keeping only the n = 1 term in Eq. (9), and the remaining integral
can be performed by the method of steepest descent. The steepest descent condition
yields for the period T(E) = hf = 6. With E, determined so that T(E = Eg) =T, we

find in terms of the full extremal action S,

S, = OEq + 0(Ep) (20a)
[¢)
= jdt[U(g_(t)) +74@p )] (20)

wherein U(q) denotes the potential function of all degrees of freedom (system plus

bath) for the low temperature dissipative quantum rate the result’%)
=273 12 hT" (E=Ey) 2 exp(- S, /N)

N
H [ 2 sinh (%thoi @)™ . @1

=1

By use of the identities discussed in the paper by Dashen, Hasslacher and Neveu®®), the
prefactor in Eq. (21) can be related to the eigenvalue spectrum around the dissipative

bounce trajectory g, (t) of period h = 0 to give the known result?!-2430-32) j ¢,
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r= T% Im¥F
M2 Det (5S/5q%)__ 12
= 2’”_?] Je‘d't[qb(")] IDet, ( 82 s / qu)q=qb(1)| CXp(-Sb/h) .
-7

(22)

Here S denotes the Euclidean, dissipative action with S(q(t) =q¢) =0, and S(q =q,(t))
= 8, see in Eq. (20), and Det” means that the eigenvalue zero has to be omitted.
Arrhenius plots of some numerical results for the dissipative tunneling rate with Ohmic
friction Y(z) = y are depicted in Fig. 5. Because of quantum tunneling the rate I" does
not decrease continuously as the temperature T is lowered, but flattens off at low
temperatures, see also Fig. 2. In the high temperature (or classical) regime the rate is
reduced compared to the gas phase rate (Y=0, i.e. u=wy) by the dissipative
transmission factor Way, < 1, see Eq. (15). In contrast, the zero temperature rate is
exponentially reduced by the dissipative action factor Sy, (T = 0)*®. For very weak
damping y(u) = 0, the thermal fluctuations have little effect on the low temperature
behavior of the rate, i.e. the temperature dependence is almost neglible below T, for
¥=0. For a damped system, however, there exists a large regime where quantal and
thermal fluctuations interplay. In this low temperature regime one finds a universal

exponential temperature enhancement in the form of a power law’®
In{T(T) /T(T =)} =c T" (23)

where n = 2 for all systems with finite low frequency damping, i.e. Y(w=0) = Yo> 0. For
Ohmic-like damping, this characteristic low temperature T2 - law, as well as the
quantum corrections in Egs. (15,16,19), have been observed in several
experiments?7-28:29.3233) Moreover, the power n is directly related to the behavior of
the spectral density J(w) = ;Z Ciz(mi (x)i)‘1 o(w — ;) of the environment at low

frequencies, ie. J(®)e @™ !, as @ — 0. The slope ¢ in Eq. (23) increases with the
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strength of dissipation, but depends further on the details of the model for the

dissipative mechanism and the metastable potential function V(q).

0
_10 p
> a=0
3
-0
=
-30 4 a=0.5
-40
a=1
-50
20 40 60 80

hwy /k T
Figure 5: Arrhenius plots of the dissipative tunneling rate T’ for the system in Fig. 4
with @y = o, Ey = V, =5 T, and frequency - independent Ohmic dissipation Y(z) =

v=2w,0 for various values of o (data are from Grabert et al., Ref. 24).

4. Quantum Tunneling at weak Dissipation

The quantum Kramers theory presented in the previous section did not account for
effects caused by possible deviations from a thermal Boltzmann weighting. Such latter
deviations can occur at extreme weak friction where the internal mechanism to
replenish the upper energy states may start to fail (i.e. such nonequilibrium effects can
occur if those states are not continuously prepared in thermal equilibrium by an outside
mechanism). In other words, for extreme weak friction one faces a diminutive
population below the Boltzmann weighting at the upper energy levels. This possible
nonequilibrium effect plays generally a very subordinate role in the low temperature
regime T < T, where the time available for equilibrization grows cxponentially55). It

may become observable, however, at temperatures above crossover T, where
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quantum corrections to the classical Kramers” weak damping result (see Ref. 22) are of
considerable interest6%70.71,72.73),

This problem of nonequilibrium quantum tunneling above T > T, out of a metastable
state at weak dissipation is most conveniently discussed in terms of the probability per
unit time, f(E), to find the system in the barrier region near a classical turning point
with energy E. Moreover, let P(E/E) denote the classical conditional probability that
the particle leaves the barrier energy Eand returns after a round trip with energy E.

The steady state function f(E) therefore obeys the integral equation
f(E) = J dE" P(E/E") r(E") f(E") (249)

wherein r(E) = 1 — «(E) denotes the quantum reflection, while t(E) is the quantum
transmission. Hereby we have measured energy from the well bottom, i.e. V(q = q) =
E,. The boundary conditions on f(E) are given as follows: For E —» oo , f(E) approaches
zero whereas deep inside the well f(E) approaches the quantum mechanical

equilibrium value. The quantum rate of escape I' is given by the outgoing flux, i.e.

r- fd}«: «E) fE) .. 25)

Together, Eqs. (24 - 25) yield a solution of the quantum rate problem for any given
transmission t(E). In contrast to the (multidimensional) quantum transition state theory
in section 3, the solution of the integral equation in (24) allows for deviations from the
corresponding equilibrium solution. At extreme weak damping the conditional
probability P(E/E") is peaked sharply around E ~ E’, due to the small loss of energy
along the undamped, deterministic trajectory. Upon an expansion of (24) up to second

order in (E — E*) one finds the differential approximation to the integral equation’®

t(E) f(E) = 5% A(E) [1 +B! 8%] (E) f(E) , (26)

oo

where A(E) denotes the energy loss coefficient A(E) = Jy(s) J(E, s)ds, with J(E,s)
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P(E)
being the delayed action along the undamped trajectory, i.e. JE,s)=M Jdt qQE, 1 q

(E, t-s), with P(E) being the period of oscillation in the metastable region with energy
E. In the following we want to determine the quantum corrections to the classical
Kramers rate. In this case f(E) will deviate from the equilibrium value, f(E) = sinh (%h
Bwy) (wh Y exp(—BE), only for energies near the barrier energy E,. Hence we may
approximate the transmission coefficient t(E) by the parabolic barrier result, i.e. ((E) =
{ 1 +exp[-2rnE-E)/ (h(ob)] }_1. The solution of Egs. (25) and (26) then yields the

central result’ .
Wy Sinh(i'hﬁ(!)o) ) [ (p)p
= 1 N
2% fhﬁmo sin(xp) LT'(1 + p)

(BS)!P exp(- BE,) , @7

where p =ThBw, @@n)~! and & = A(E,) is the energy loss at the barrier energy. For
Ohmic friction Y(t) = 2y3(t), we obtain & = ¥ J(Ey). The result in Eq. (27) holds at
extreme weak friction B8 << 1, and temperatures T above crossover T, ie.p <l
Moreover, the expression in Eq. (27) holds uniformly both for p2<<1,and B3 << 1.
At high temperatures (p,T1[3(00(21t)‘1 << 1), Eq. (27) approaches the weak damping
result of Kramers®®, i.e. T' = I = wy(2n)~! BS exp(-BE,). The leading weak damping
(B3 << 1) quantum corrections Q follow from Eq. (27) with ['=QTas

+ hz 2|
Q= cxp[ g:" [2 C+ln (4—;)2"3[2)] + 21—4 (hﬁmo)z] (28)

where C = 0.5772 ... is Euler’s constant.

Clearly, for p2 < B8 << 1 the logarithmic term in the exponent of Eq. (28) gives a
negative contribution that may compensate the other positive terms. Hence, within the
range of validity of our formula there exists a region in parameter space where the
correction factor Q is smaller than one. In this region quantum reflection above the
barrier dominates over quantum transmission, thus leading to a net reduction of the full
rate below its corresponding classical value’. This feature is contrary to common

knowledge and intuition, i.e. the full rate is often approximated by simply adding the
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classical rate and the zero temperature rate, i.e. T - ' = I, + (T = 0) (see e.g. Bell,
Ref. 74). Such an approach not only entirely disregards the complex interplay between
thermal and quantal fluctuations, see section 3, but also neglects the role of quantum
reflection and nonequilibrium. We also remark that the leading correction in (28) is
proportional to T pointing to nontrivial quantum corrections since the underlying
Hamiltonian, or the Schrodinger equation contains only h. This possible novel
quantum reduction below the classical rate is most pronounced for systems with very
flat barriers (¢.g. potentials of the Morse-type) as they occur in absorption-desorption

problems on surfaces.
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