Reaction-rate theory: fifty years after Kramers
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The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics,
chemistry, engineering, and biology. Fifty years after Kramers’ seminal paper on thermally activated bar-
rier crossing, the authors report, extend, and interpret much of our current understanding relating to
theories of noise-activated escape, for which many of the notable contributions are originating from the
communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are
discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed
phases. The role of many-dimensional transition-state theory is contrasted with Kramers’ reaction-rate
theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connec-
tion between unimolecular rate theory and Kramers’ work for weakly damped systems. The rate theory
accounting for memory friction is presented, together with a unifying theoretical approach which covers
the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The pecu-
liarities of noise-activated escape in a variety of physically different metastable potential configurations is
elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of es-
cape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is
identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The
early quantum approaches as well as the latest quantum versions of Kramers’ theory are discussed, there-
by providing a description of dissipative escape events at all temperatures. In addition, an attempt is
made to discuss prominent experimental work as it relates to Kramers’ reaction-rate theory and to indi-

cate the most important areas for future research in theory and experiment.
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LIST OF SYMBOLS
A(T) temperature-dependent quantum rate prefac-
tor

C(1) correlation function

D diffusion coefficient

E energy function

E, activation energy (=barrier energy with the
energy at the metastable state set equal to
zero)

E Hessian matrix of the energy function at
the stable state

E® Hessian matrix of the energy function
around the saddle-point configuration

I action variable of the reaction coordinate

J Jacobian
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transition probability kernel

mass of reactive particle

period of oscillation in the classically al-
lowed region

classical conditional probability of finding
the energy E, given initially the energy E’
quantum correction to the classical prefac-
tor

dissipative bounce action

temperature

crossover temperature

period in the classically forbidden regime
metastable potential function for the reac-
tion coordinate

volume of a reacting system

partition function, inverse normalization
partition function of the locally stable state
(A)

partition function of the transition rate
Hamiltonian function of the metastable sys-
tem

complex-valued free energy of a metastable
state

Fokker-Planck operator

backward operator of a Fokker-Planck pro-
cess

total probability flux of the reaction coordi-
nate

Planck’s constant

hQ2m) !

Boltzmann constant

reaction rate

forward rate

backward rate

transition-state rate

microcanonical transition-state rate, semi-
classical cumulative reaction probability
spatial-diffusion-limited Smoluchowski rate
mass of ith degree of freedom

probability density

stationary nonequilibrium probability densi-
ty for the reaction coordinate

momentum degree of freedom
configurational degree of freedom

quantum reflection coefficient

density of sources and sinks

quantum transmission coefficient

mean first-passage time to leave the domain
Q, with the starting point at x

constant part of the mean first-passage time
to leave a metastable domain of attraction
velocity of the reaction coordinate

reaction coordinate

location of well minimum or potential
minimum of state A, respectively

barrier location

location of the transition state

inversion temperature (kg T)™"'



Hénggi, Talkner, and Borkovec: Reaction-rate theory 253

Y damping relaxation rate

y(¢) memory friction

P(z) Laplace transform of the memory friction

) dimensionless energy loss

€ parameter measuring the small noise inten-
sity

() exponentially correlated Gaussian noise
(Ornstein-Uhlenbeck noise)

O(x) characteristic function for the reaction
coordinate

&(r) classical noise

T, noise correlation time

T, escape time (inverse rate)

T, local system relaxation time

A ~ first nonzero eigenvalue of a master opera-
tor

Ay eigenvalue describing the growth rate of a
deviation from the saddle-point
configuration

v classical rate prefactor

plx,v) phase-space nonequilibrium probability den-
sity

K rate transmission factor

5(x) nonequilibrium form factor

g angular frequency of the metastable state

), positive-valued angular frequency of the un-
stable state at the barrier

Q domain of attraction

Q(E) density of states

3 phase space

aQ boundary of domain of attraction

r master operator

I. INTRODUCTION

The problem of escape from metastable states is ubi-
quitous in almost all scientific areas. Reaction-rate
theory has received major contributions from fields as
diverse as chemical kinetics, the theory of diffusion in
solids, homogeneous nucleation, and electrical transport
theory, to name but a few. It was recognized early on
that rate processes are characterized by rare events, ie.,
rate processes are phenomena that take place on a long
time scale when compared to dynamic time scales
characterizing the states of local stability (see Fig. 1).

T2 137 50 t (ms)

X (1) (volts)
—
¥

FIG. 1. A typical stochastic realization sampling the random
sojourn times {T,,T,, etc.} in a symmetric bistable potential
U(x)=—4x*+1x* with the metastable states located at
x =%1. Data are from Hinggi, Mroczkowski, Moss, and
McClintock, (1985).
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The discipline of rate theory was created when Svante
Arrhenius gave an extensive discussion of various
reaction-rate data which, as a function of the inverse
temperature B=(kz T) !, vary on a logarithmic scale. In
other words, the rate coefficient k, or simply the rate of
escape, follows the Van’t Hoff-Arrhenius law (Van’t Hoff,
1884, Arrhenius, 1889)"

k=vexp(—BE,) , (1.1)

where E; denotes the threshold energy for activation and
v is a prefactor. Figure 2 depicts the Van’t Hoff-
Arrhenius plot for various reactions over a large temper-
ature range. Further quantitative progress in the field
was slow during the late 19th century. It was realized
that escape from a state of local stability can happen only
via noise-assisted hopping events. Therefore, the calcula-
tion of escape rate posed, at first glance, a daunting prob-
lem. The field had thus to await a theory of fluctuations.
This concern with fluctuations started with pioneering
contributions by Lord Rayleigh (1891), Einstein (1905),
Smoluchowski (1906, 1913, 1915), Fokker (1913, 1914),
Planck (1917), Ornstein (1917), Pontryagin et al. (1933),
and many others. The work in early Brownian motion
theory has been reviewed in an excellent paper by Chan-
drasekhar (1943). A more detailed account on early stud-
ies of Brownian motion can be found in recent review ar-
ticles by Pais (1982) and Coffey (1985). Certainly, a ma-
jor first piece of work in rate theory must be
attributed to Smoluchowski (1917). He evaluated the
diffusion-controlled rate coefficient k. of coagulation,
k.=4m(D +Dz)R  +Rg), where D,p and R ;
denote the diffusion constant and the radius of the
scavenger species 4 and B, respectively. The present
status of this important field of diffusion-controlled en-
counter reactions has recently been beautifully surveyed
by Calef and Deutch (1983).

The first quantitative ideas related to general activated
rate theory have their origins in the study of homogene-
ous nucleation in supersaturated vapors (Frenkel, 1955;
Zinsmeister, 1970; Abraham, 1974). Naturally, homo-
geneous nucleation is a rather complex subject for which
at present no complete solution is available, i.e., various
interesting fundamental questions still remain (Abraham,
1974; Binder and Stauffer, 1976; Langer, 1980; Gunton
San Miguel, and Sahni, 1983). In a pioneering paper,

'Beautiful historical accounts of the development of the Ar-
rhenius equation have been given by Logan (1982), Laidler
(1984, 1987), and Stiller (1989). On inspecting the original pa-
per of Arrhenius, the authors of this review were abashed when
they realized that Arrhenius does not present a single Arrhenius
plot and, furthermore, credits the equation k =vexp—(B /T),
commonly known as “the Arrhenius equation,” to Van’t Hoff.
In his discussion of rate data, however, he introduces a “hy-
pothetical body,” i.e., an active state commonly known as the
“activated complex,” and proposes an equilibrium between nor-
mal and active reactant molecules. This concept in itself is cer-
tainly a most important contribution to reaction-rate theory.
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FIG. 2. Van’t Hoff-Arrhenius plots of reaction-rate data for two different physical systems in which both thermal activation and
tunneling events occur: (a) Rate of CO migration to a separated B chain of hemoglobin (Alberding et al., 1976; Frauenfelder, 1979);
(b} diffusion coefficient D of atomic hydrogen moving on the (110) plane of tungsten at a relative H-coverage of 0.1 (data taken from
DiFoggio and Gomer, 1982). The diffusion D is directly proportional to the hopping rate k.

Farkas (1927) considered the rate of homogeneous nu-
cleation by treating the detailed kinetics of atoms arriv-
ing at the droplet or evaporating from it. He introduced
an approach that is known today as the “Markovian
birth and death process.”® Moreover, in his paper, Far-
kas described the cornerstone idea underlying any rate
calculation—clearly, the rate of escape from a metasta-
ble state is characterized by the flux of particles that pass
through the bottleneck separating products from reac-
tants. The key input in any modern rate calculation is
thus the evaluation of this very flux (normalized to one
particle) across the bottleneck. The flux follows from a
nonequilibrium probability, subject to the boundary con-
ditions that stationary equilibrium prevails inside the
metastable state and that the probability approaches zero
beyond the bottleneck region, where the particles are re-
moved (or absorbed) immediately and then reinjected
into the initial well, yielding a stationary flux. On p. 237
of his article Farkas (1927) explicitly introduced this cru-
cial concept, nowadays widely known as the flux-over-
population method (see Sec. I1.C), when he stated (freely
translated from German)

...In order to calculate for a diffusion problem the
number of particles that go through a bottleneck one
must know the concentration at two locations. In our
case the diffusion process is not allowed to perturb the
stationary distribution towards smaller particle numbers,
{i.e., for numbers n < ny, with ny denoting the size of the
critical nucleus); therefore one has an equilibrium con-
centration below (i1 <ng); above (n > n,), however, one
must have for very large n a vanishing concentration of
droplets. . .

2Note also that Farkas (1927) himself attributes the basic idea
for his treatment to L. Szilard.
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Here, the text in parentheses has been included for
clarification of the terms “below” and “above.” Farkas
then proceeded to derive an explicit result for the rate of
nucleation, which is identical with the result popularized
later on by Becker and Déring (1935). In the meantime,
the chemists had not been inactive. In the early twenties,
Lindemann (1922) developed a multiple-step mechanism
for unimolecular gas phase reactions (or more generally
first-order reactions, 4 — B, in which ¢ ,=—kc 4, with ¢
denoting the concentration). Soon after, Hinshelwood
(1926a, 1926b), among others, developed a quantitative
approach. This chemical reaction-rate theory, as well
as the early theory of bimolecular reactions (or
more generally second-order reactions, 4 +B—C,
é4=—kymc4cp) was reviewed by Fowler (1929) in
Chap. XVIII of his book, and also by Moelwyn-Hughes
(1933).

The next major development again came from the
chemical physics community. This is represented by the
works of Polanyi and Wigner (1928), Pelzer and Wigner
(1932), Evans and Polanyi (1935), Eyring (1935), and
Wynne-Jones and Eyring (1935). Polanyi and Wigner
(1928) and Eyring (1935) treated the case of a nonlinear
decomposing molecule consisting of n atoms. Eyring
(1935) expressed the rate in terms of quantities that are
available from the underlying potential surface and in ad-
dition made explicit use of (quantum) statistical mechan-
ics for the partition function Z , of the metastable state
( A) and the activated complex (#), respectively. In this
way he arrived at an epoch-making rate formula (Eyring,
1935; Laidler and King, 1983),

kyT
h

Z?&
exp( _BEb)EKkTST . (1.2)
ZA

k=«
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The parameter k was originally introduced by Eyring
(1935) as an ad hoc fudge factor (transmission coefficient),
which corrects for those reactive trajectories x (t) that re-
cross the transition state and return without decompos-
ing. Clearly, this fact always reduces the reaction rate k&
so that «<1. Within the chemical physics community
this “Grande Concept” (Hirschfelder, 1982) in Eq. (1.2)
has been the reigning method ever since. Its impact may
be construed from the fact that, in their textbook, Glas-
stone, Laidler, and Eyring (1941) refer to this approxi-
mate theory as the Absolute Rate Theory. Setting k=1
the result in Eq. (1.2) is commonly known as the
transition-state theory (TST) rate, krgr. As with all great
discoveries, there exist of course some precursors. For
example, we mention here that in calculating the ther-
mionic emission current, Richardson (1902, 1912), Laue
(1918), and Dushman (1923) all implicitly made use of a
simplified, one-dimensional version of TST (see also
Herzfeld, 1919) wherein an electron e, with the work
function ¢ (i.e., E, =e¢) crossed the threshold barrier in
free flight without dynamic influence from the surround-
ing lattice.

Hendrik Antonie Kramers (1894-1952) was engaged
in reaction-rate theory from early on. During his
Copenhagen years from 1916 to 1926 he pursued
research with Christiansen (Christiansen and Kramers,
1923) on the theory of unimolecular reactions. They
combined Boltzmann collision theory with Einstein’s
theory of radiation in an attempt to characterize within
an energy-chain mechanism the prefactor of the rate.
Within classical rate theory, all later theoretical efforts
up to the present day focus precisely on the behavior of
this complex prefactor quantity v in Eq. (1.1). Kramers
returned to the subject in 1940 with his celebrated paper
on “Brownian Motion in a Field of Force and the
Diffusion Model of Chemical Reactions” (Kramers,
1940). He understood well the mechanism of the escape
process as a noise-assisted reaction. Starting from a
derivation of the Fokker-Planck equation for the Browni-
an motion in phase space in the presence of a nonlinear
potential field {which historically had been derived ear-
lier by Klein (1922)], he pictured the escape process as
governed by Brownian motion dynamics driven by
thermal forces, which in turn are connected—via the
fluctuation-dissipation theorem-—with the temperature T
and the friction y. He analyzed separately the cases of
strong and weak friction. In particular, his work on the
weak-friction case was pioneering: For the first time he
derived a diffusion equation for the dynamics of the ac-
tion (or energy) of the reactive particle. For this part of
his paper he must surely have been guided by his early
work on unimolecular gas phase reactions (Christiansen
and Kramers, 1923), working along the lines developed
previously by Lindemann (1922), Christiansen (1926), and
Hinshelwood (1926a). In particular, the rate of uni-
molecular gas phase reactions had been given by Polanyi
(1920), Lewis and Smith (1925), Wigner (1925), Christian-
sen (1926), Hinshelwood (1926a, 1926b), and Polanyi and
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Wigner (1928) as

k =——g—)!(BEb)"_lexp( —BE,) .

— (1.3)

Here n denotes the number of strongly coupled vibration-
al modes and a denotes the collision frequency, which is
proportional to the pressure (concentration). Thus the
rate in Eq. (1.3) approaches zero for low pressure or weak
friction.

Kramers does not cite these papers, but he must have
been aware of these developments through Eyring’s and
Evans and Polanyi’s works (Evans and Polanyi, 1935;
Eyring, 1935) which he does cite. His mathematical in-
sight was remarkable. He did manage to evaluate, by use
of some subtle, almost acrobatic mathematics, the rate of
escape for very weak friction, thereby demonstrating that
the transition-state kqgr seriously overestimates the true
rate,

where I, denotes the action of the escaping particle at
the barrier. Moreover, for the case of moderate-to-strong
damping he succeeded in evaluating the stationary, non-
equilibrium probability current in two-dimensional phase
space (x,x =v; see Sec. IV below). In doing so, he invent-
ed an ingenious approximation scheme, which transforms
a partial differential equation in two variables into an or-
dinary differential equation [see Egs. (4.24)—(4.26) below],
yielding for the prefactor v in Eq. (1.1) the seminal result?
12

Y
2

(1.4)

@o

y= (1.5)

2
l;——i-w%,

2r0y

Here, w3=M ~'U"(x,) is the squared angular frequency

inside the metastable minimum, and w?=M ~'|U"(x, )|
denotes the squared angular frequency at the transition
state (see Fig. 3). For a long period, his result for the
Smoluchowski limit, ¥ >>w,, became the one most wide-
ly appreciated:

Y>>y w, @

y=—— (1.6)
Y 2w

There is certainly an irony here; this very case of over-
damped one-dimensional diffusion escape dynamics had
actually been solved prior to Kramers with greater gen-
erality, accounting also for state-dependent diffusion, in
papers by Farkas (1927), Kaischew and Stranski (1934),
and Becker and Ddring (1935), which all deal with the
rate of homogeneous nucleation. The overdamped result
had also been anticipated via the calculation of the mean
first-passage time of one-dimensional Fokker-Planck pro-
cesses in a paper by Pontryagin, Andronov, and Vitt
(1933). Curiously enough, Kramers did not cite any of
this prior work.

3See Eq. (25) in Kramers’ (1940) original paper. Note that
Kramers (1940) uses the symbol o to denote not the angular fre-
quency o =2mv but the frequency v itself.
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FIG. 3. Potential U(x) with two metastable states 4 and C. Escape occurs via the forward rate k* and the backward rate k ~, re-

spectively, and EF are the corresponding activation energies.

Although Kramers’ paper contained the term “chemi-
cal reaction” in its title, the chemical world at that time
had no direct use for his predictions. For unimolecular
gas phase reactions, a description of the rate in terms of
discrete energy exchanges was more suitable than the
continuous energy-exchange mechanism underlying ener-
gy diffusion in Kramers’ model (see Sec. V). Work on
chemical reactions in condensed phases, for which the
Kramers theory is most appropriate, had to await the ex-
perimental progress achieved in the late seventies and
eighties. Likewise, experiments in nonlinear optics and
condensed-matter physics, which can be interpreted rath-
er accurately in terms of Kramers’ rate theory, have been
undertaken only recently (see Sec. XI). This is probably
one of the reasons why recognition and appreciation of
the most elegant scheme Kramers had provided came
very slowly. In the years since 1940, only little cross-
fertilization between physics and chemistry has taken
place. It is somewhat striking to note that otherwise very
authoritative recent books on physical chemistry and ki-
netics (Berry, Rice, and Ross, 1980; Laidler, 1987) do not
discuss Kramers’ results. Likewise, rarely does one find a
book on kinetics or nonequilibrium statistical mechanics
written by a physicist in which is discussed the important
transition-state theory pioneered by Polanyi and Wigner,
Eyring, and others. Indeed, it took almost fifty years
after the work by Eyring (1935) before it was realized
that Kramers’ theory with (memory) friction (Grote and
Hynes, 1980; Hanggi and Mojtabai, 1982; Carmeli and
Nitzan 1984; Straub, Borkovec, and Berne, 1985, 1986;
Talkner and Braun, 1988) also resulted as a special form
of multidimensional TST in full phase space of all degrees
of freedom (Hanggi, 1986a; Pollak 1986a, 1986b; note
also Sec. III.C). Fortunately, the once fruitful cross-
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fertilization of the twenties between physics and chemis-
try has undergone a renaissance, beginning with the late
seventies, involving research on quantum chaos (Chiri-
kov, 1979; Pechukas, 1983; Casati, 1985) and on the
quantum theory of reaction rates (Miller, 1975; Wolynes,
1981; Caldeira and Leggett, 1981, 1983a; Weiss, Grabert,
Hanggi, and Riseborough, 1987; Hanggi and Hontscha,
1988).

In the following sections we have attempted to review
the present status of the field fifty years after Kramers’
historic cornerstone paper in 1940. The present time is
particularly suitable for such a comprehensive review.
The last two decades have produced (apart from a large
number of papers that could be classified as reformula-
tions, or rediscoveries of older findings) essential new in-
sights and profound developments, both in theory and
experiment. Worth mentioning are not only the above-
mentioned generalization of Kramers’ theory and the
many realistic applications of rate theory with memory
friction, but also the intriguing developments in rate
theory at weak friction (see Sec. V), the turnover between
weak and strong friction (see Sec. VI), and the recent de-
velopments in stationary nonequilibrium rate theory (see
Sec. VIII). Much of the exciting recent progress also has
had a quantum-mechanical flavor (see Sec. IX). More-
over, the recent experimental rate studies in liquids and
in Josephson-junction systems provided an additional im-
petus for the study of rate processes in complex situa-
tions. Some other, more confined review papers, which
in several aspects complement our account and provide
additional insight into topics covered herein, are those by
Slater (1959), Troe (1975, 1986), Hase (1976), Pechukas
(1976), Kapral (1981), Truhlar, Hase, and Hynes (1983),
Hynes (1985, 1986a), Fonseca et al. (1985), Frauenfelder
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and Wolynes (1985), Chandler (1986), Fleming, Courtney,
and Balk (1986), Hanggi (1986a, 1986b), Landauer (1987),
Berne, Borkovec, and Straub (1988), Nitzan (1988),
Sceats (1988), and Biittiker (1989).

ll. ROADWAY TO RATE CALCULATIONS

Before we elaborate on the various theoretical methods
used in rate calculations we begin with a few general con-
siderations relating to escape from a domain of attrac-
tion.

A. Separation of time scales

Let us consider two states 4 and C of local stability, as
pictured in Fig. 3. We shall assume that the coordinate x
describes the dynamics of the escape process, i.e., x plays
the role of a reaction coordinate which generally is cou-
pled to an environment (or a collection of physically
different surroundings), which can either donate or re-
move energy from the reaction coordinate. Due to such
a coupling the reaction coordinate is not a deterministic
dynamic variable, but becomes a stochastic process, i.e.,
x (¢) is a random trajectory (Fig. 1). In order to make an
escape from well A, the “random walker” x(¢) must
necessarily acquire energy to become activated toward
the barrier, and upon reaching the barrier top it must
again lose energy to become trapped inside the neighbor-
ing well C. In a more general situation, the two states A
and C correspond to two different attractors in a multidi-
mensional phase space, which are separated by a barrier
B, containing one or possibly more saddle points, possi-
bly unstable limit cycles, or even more complex unstable
attractors, including combinations thereof. For most of
the following we shall restrict our discussion of the
theory to the situation in which two attracting basins are
separated by a single saddle point. The time scale of es-
cape clearly depends on the size of the fluctuations f (¢),

fO=x()—(x()) . 2.1

If we relate the fluctuations f(¢) to an appropriate ener-
gy scale E, ., transitions between the two attracting re-
gions A4 and C will be infrequent whenever the condition

noise
Tbi <1 (2.2a)

holds, Here, E,;Jc denotes the barrier height for forward-
and backward-activated events, respectively (see Fig. 3).
For systems in contact with a thermal environment at
temperatures T the energy scale E . is given by
B '=kyT (kg is Boltzmann’s constant), i.e., the condi-

tion in Eq. (2.2a) reduces to
BEf>>1. (2.2b)

The time scale 7, describing decay within the attractor 4
is given by
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yree -12
d°U(x=>=4)

1/2
T.~M
s dx?

) (2.3)

where M is the effective mass of the reacting particle.
Thus, with the condition in Egs. (2.2a) and (2.2b), the
time 7, is well separated from the time scale of escape 7,,

7, ~T€XPlEE /E poise ) >> T - (2.4)

In"the above discussion of time-scale separation be-
tween the activation process and the relaxation of the lo-
cal system we have adopted a simplified picture in which
all of the fast scales could be characterized by a single
local-system relaxation time 7,. In reality, however,
there exist many such fast time scales, such as, for exam-
ple, the time of relaxation in either of the two (or many)
locally stable wells, the correlation time 7, of the noise,
the time 7, for a trajectory to cross the barrier region, or
the time 7 to lose (gain) the energy E ., etc. All these
various time scales will, of course, be of importance in
the detailed description of the rate of escape k,

k~7,1. (2.5)

The crucial requirement for a separation of time scales is
that 7, be much larger than all these other relevant time
scales {,,7,,7.,Tg, etc.} of the system dynamics. In this
sense, 7, stands for the collection of all these fast time
scales relevant to the process of activation.

B. Equation of motion for the reaction coordinate

As mentioned above, the stochastic motion of the reac-
tion coordinate x (¢) is a combined effect induced by the
coupling among a multitude of environmental degrees of
freedom. In principle all these may couple directly to the
reaction coordinate x(t). Let = denote the full phase
space of the system plus environment(s), which are
prepared according to some initial statistical weighting of
all initial (generalized) coordinates and (generalized) mo-
menta. Then the dynamics of the pair X(#)=[x(1),%(¢)]
(where the overdot refers to a differentiation with respect
to time ¢) is the result of a reduced description from the
full phase space Z—[x (¢),X(¢)]. This approach entails
new concepts, which can be characterized loosely as fric-
tion and entropy. The entropy factor concerns the reduc-
tion of all coupled degrees of freedom from a high-
dimensional potential energy surface in full phase space
to an effective potential (i.e., a potential of mean force)
for the reduced dynamics of the reaction coordinate.
Friction concerns the reduced action of the degrees of
freedom that are lost upon contraction of the complete
phase-space dynamics. Clearly, the two concepts are not
independent of each other. The mathematics of such a
reduction has been worked out in full generality within
the framework of statistical mechanics, using the tech-
nique of projection operators (Berne and Harp, 1970;
Berne, 1971; Forster, 1975; Hynes and Deutch, 1975;
Grabert, 1982).
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The ““coarse-grained” dynamics X(¢)=[x (¢),x(¢)] can
be cast either in the form of a generalized Langevin equa-
tion or in the form of a generalized master equation. For
a detailed account of this reduction scheme and the in-
teresting interrelationships between the two formula-
tions, we refer the reader to the discussion by Grabert,
Hiénggi, and Talkner (1980), in which the previous litera-
ture on this topic is also cited. One basic result of such a
reduction scheme is—depending on the detailed form of
the coupling among the degrees of freedom—the oc-
currence of a renormalization of mass as well as a renor-
J

X(=V[X(]+ [ 5 [X(t —5)] 20—
0 . oX(t —s

The effect of mass renormalization is contained in a gen-
eralized, time-dependent (memory)-friction tensor
I1(X;s), which obeys the fluctuation-dissipation relation
(Grabert, Hanggi, and Talkner, 1980)

(E(DE0)X(0)=X)=1I(X;1) , (2.6b)

while the renormalization of the bare potential occurs via
the drift field

V)= [ax(z)-X k()22
p(X)
where p(2) and p(X) denote the corresponding (thermal
or nonthermal) stationary probabilities carrying zero
flux.

This generalized Brownian motion dynamics for
X(t)=[x(t),x(¢)] forms the starting point for all further
approximations. In particular, for thermal systems with
extremely short noise correlation times 1,, one can use a
Markovian approximation for Eq. (2.6). Such a Markovi-
an description of X(¢) can be obtained from an underly-
ing Hamiltonian dynamics in full phase space £ with ini-
tial coordinates and momenta distributed according to a
canonical thermal equilibrium, and with the reacting par-
ticle (mass M) moving in a potential U (x) that is coupled
bilinearly to a bath of harmonic oscillators. With a suit-
able limiting procedure (Zwanzig, 1973; see Sec. II1.C),
Eq. (2.6a) then reduces with an infinite number of bath
oscillators to the familiar (Markovian) Langevin equation
for nonlinear Brownian motion,

dz , (2.6¢)

x=v, ¥X=p= —M“a—U—qurM“lg(t) .27
ox

In Eq. (2.7), £&(¢) denotes Gaussian white noise of vanish-

ing mean with the 8 correlation function

(E(DE(s)) =2k TYM8(t —s) . (2.8)

Here y denotes a uniform, temperature-independent ve-
locity relaxation rate.

Equations (2.7) and (2.8) are the starting point for Kra-
mers’ treatment of the reaction rate, reviewed in Sec. IV
[see Eq. (4.1)]. Without a clear-cut separation between
the system relaxation time scale 7, in Eq. (2.3) and the
noise correlation time 7, one is generally dealing with
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) {II[X(t —s);sP[X(t —s)]}ds +&(¢) .

malization of bare potential fields. Both are classical
effects, but they also affect the quantum treatment of the
escape process (see Sec. IX). Clearly, a reduction from
typically ~ 10% degrees of freedom in 3 phase space to a
single reaction coordinate X(r)=[x(¢),%(¢)] makes the
problem formally more tractable; the price to be paid,
however, is that the resulting dynamics generally contain
memory. In other words, the projection of the full dy-
namics in 2 onto X yield in general a non-Markovian
process with an equation of motion (Kawasaki, 1973;
Grabert, Hanggi, and Talkner, 1980)

(2.6a)

f
nonlinear non-Markovian Brownian motion dynamics

with memory friction [Eq. (2.6)]. In many applications,
however, the dependence on x and X of the friction tensor
might become negligible, yielding a non-Markovian gen-
eralization of Eq. (2.7) with a linear memory friction, i.e.,
the friction force yv may then be replaced by
f o (t —s)k(s)ds. The rate theory for this idealized
non-Markovian Brownian motion dynamics will be stud-
ied in greater detail in Sec. III.C.

C. Theoretical concepts for rate calculations

Here we present a discussion of the most familiar ap-
proaches used in rate theory.

1. The flux-over-population method

A common procedure, pioneered by Farkas (1927; see
Introduction), is to evaluate the steady-state current j
that results if particles are continuously fed into the
domain of attraction and subsequently are continuously
removed by an observer in the neighboring domain of at-
traction. This scheme results in a steady-state current
which builds up a stationary nonequilibrium probability
density p, inside the initial domain of attraction. This
nonequilibrium probability is subject to the boundary
conditions

po(x =x1 )=§(x1 ), po(x =x2)=0 . (2.9)

Here x,; denotes the value of the reaction coordinate in-
side the initial domain of attraction, and x =x, is the
value of the reaction coordinate beyond the transition
state x;, =x; inside the neighboring domain of attraction.
The stationary probability p(x) corresponds to a vanish-
ing current, j=0, along the reaction coordinate. The
second condition in Eq. (2.9) implies an absorbing bound-
ary, where the particles are removed immediately at an
infinite rate. If

ny= fx <pr0(x)dx (2.10

denotes the (nonequilibrium) population inside the initial
domain of attraction (which usually is normalized to one
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particle), the rate of escape k is given by the ratio

k=-L.
Ro

(2.11)

Clearly, this general procedure relies in practice on the
explicit knowledge of a (Markovian or non-Markovian)
master equation governing the time dependence for the
single-event probability p (x,?) of the reaction coordinate.
In view of the reduction procedure £ —x (¢), this corre-
sponding equation of motion for the single-event proba-
bility is generally strongly non-Markovian in structure.
Therefore, in practice, it is often preferable to work with
a less coarse-grained description of the escape dynamics
such as, for example, the full phase-space dynamics of
the reaction coordinate X(¢)=[x (¢),x(¢)] [see Eq. (2.7)].
The condition in Eq. (2.9) is then replaced by the require-
ment that near the attractor there exists stationary equi-
librium py(x,%)=p(x,%), whereas the flux-carrying
nonequilibrium probability p,(x,x) vanishes outside the
domain of attraction. The attracting domain Q is thus
separated from the neighboring domain of attraction by a
separatrix. We shall explicitly utilize this procedure in
Sec. 1V, where we elaborate on Kramers’ rate approach
for the Langevin dynamics in Eq. (2.7).

2. Method of reactive flux

In this subsection we confine ourselves to thermal sys-
tems only, with p denoting stationary thermal equilibri-
um. The dynamics of spontaneous fluctuations and re-
laxation toward stationary equilibrium of a large non-
equilibrium concentration are connected, if we note that
the (long-time) decay occurs in both cases on the same
time scale 7,. This concept, which is valid whenever
there is a clear-cut separation between time scales, is
known as the “regression hypothesis” (Onsager, 1931;
Chandler 1978, 1987, 1988). For example, consider the
dynamics (Fig. 3) of the two relative populations n,(t)
and n,(¢), corresponding to the two regions of local sta-
bility. In terms of the rate coefficients k *,k ~ the popu-
lation dynamics reads

h,=—k*n,+k"n, n=ktn,—k"n, . (2.12)

At equilibrium, ie., 0=—k 7, +k 7, we have in
terms of the equilibrium constant K the detailed balance
relation

—=K . (2.13)

f
|
1I

x| | N
»

x~

a

The relaxation of n,(t) from an initial nonequilibrium de-
viation, An,(0)=n,(0)—n,, thus reads

n (=R, _ An,(1)

An(0) = An,(0) =exp(—At) , {2.14a)
with the relaxation rate given by
A=kt4+k™ . (2.14b)
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The population n,(¢) can be described as a nonequilibri-
um average of a characteristic function 8(x) where

1, for x>0

O(x)= 0, for x <0 .

(2.15)
Here we have introduced a reaction coordinate x (q) that
is positive in the domain of attraction of the metastable
state A4 and is negative elsewhere. Moreover, throughout
this section and Sec. III we use a coordinate system such
that x =0 defines the dividing surface between the meta-
stable states 4 and C. The expectation value

(6)=n, (2.16)

denotes the equilibrium population. The fluctuations of
6 obey

(86°)=(6%)—(0)>=nm,7, , (2.17)

where (6%) =7, and 71, + 7, =1.

According to Onsager’s regression hypothesis, the
nonequilibrium average An,(¢) decays according to the
same dynamic law as the equilibrium correlation function
of the fluctuation

86[x (1)]=6[x (]—(0) ,
namely [see Eq. (2.14a)],
(86[x (0)136[x (1)]) _
(86%)
This relation, however, cannot be valid at all times ¢; for
short times ¢ < the transient behavior does not corre-

spond to an exponential decay. Next we introduce a time
scale 7, obeying

exp( —Atr) . (2.18)

1
T T, >>T>>T .

X (2.19)

Let us now consider the time derivation of Eq. (2.18) on
this intermediate time scale 7. The reactive flux is given
by

(80[x(0)16[x(1)]) _ _ (B[x(0)]x(0)8[x (1)])
(86%) (86%)

=—Adexp(—At)— —A . (2.20)

Thus, with exp(—Ar)~1, we obtain an explicit expres-
sion for the relaxation rate (Keck, 1960, 1967; Yamamo-
to, 1960; Fischer, 1970; Kapral, 1972; Anderson, 1973;
Rosenstein, 1973; Bennett, 1977; Chandler 1978, 1987,
1988; Stillinger, 1978, Montgomery, Chandler, and
Berne, 1979; Berne, 1985)

\= (8[x(0)1x(0)0[x (7)])
f_laf_lc .

(2.21)

Equivalently, by use of Egs. (2.13) and (2.14b), we find for
the forward rate
pt= (8[x (0)1x(0)0[x ()]}
(6(x)) )

(2.22)
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The results in Egs. (2.21) and (2.22) have been derived by
Chandler (1978) in more rigorous terms utilizing projec-
tion operators. In particular, his derivation makes expli-
cit that the correlation formula in Eq. (2.22) contains rel-
ative errors of the order exp(—E,/kzT), where E,
denotes the corresponding barrier heights for k* or k 7,
respectively. For activated events obeying Egs. (2.2) and
(2.3) such errors are of course negligible.

It is important to note that the validity of Egs. (2.21)
and (2.22) holds independently of the nature of the under-
lying dynamics. In particular, the expressions in Egs.
(2.21) and (2.22) hold equally well for situations in which
the reaction coordinate x () moves primarily via spatial
diffusion (i.e., strong friction) and those in which x(¢)
moves via inertia-dominated Brownian motion (i.e., weak
friction).

Formally, let us consider the limit of Eq. (2.22) as
7—07. In this case the rate can be expressed as an equi-
librium average of a one-way flux at the transition state
x7p=0,

_ (3[x(0)]1x(0)8[%(0)])
(6(x)) ’

Equation (2.23) equals the result of transition-state
theory (Hill, 1960; Keck, 1967; Rosenstein, 1973; Pechu-
kas, 1976, Hynes, 1985; Chandler, 1987; see Sec. III).
Upon comparison of Egs. (2.23) and (2.22) one finds that
transition-state theory always overestimates the true rate
(see, for example, Chandler, 1987),

ki >k

(2.23)

(2.24)

This important inequality is due to the observation that
within transition-state theory recrossings of reactive tra-
jectories are neglected. In other words, with
Orsrlx (1)]=1, if %(07)>0, and Orgrlx(7)]=0, if
%(0") <0, transition-state theory assumes that all trajec-
tories heading toward the product region from the transi-
tion state will indeed end up in the product region C.
The reactive flux in Eq. (2.22),

_ {x(0)8[x (0)16[x (£)])
(6(x)) ’

is sketched in Fig. 4. From Eq. (2.22) we note that the
asymptotic forward rate k * appears within a molecular
dynamic simulation (Montgomery, Chandler, and Berne,
1979; Berne 1985) after a time increment At > 7, as the
plateau value. If no such plateau value behavior can be
observed, we have no well-defined rate kT that is in-
dependent of time. The results in Egs. (2.21) and (2.22),
are rather suitable for a rate evaluation via computer
simulations (see Sec. X). Clearly, however, the plateau
value, or its inverse, the plateau time, are not appropriate
quantities to be calculated on analytical grounds. Thus
almost all of the analytical work discussed below rests
upon the flux-over-population method, the TST approxi-
mation in Eq. (2.23), or alternative concepts such as the
eigenvalue method or the mean-first-passage-time con-
cept, which will be discussed in detail in Sec. VIL

kt()

(2.25)
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k*(t)

+
kTST

kKt -
exp(-At)

1 /

s

t>>7 t

FIG. 4. Characteristic behavior of the reactive flux k*(¢) in
Eq. (2.25) with A=k *+k ™. At times ¢ <7, one observes tran-
sient recrossings. The rate k™ appears as the plateau value at
long times ¢ >>7,. At extremely long times t~{(k*)™! the
reactive flux exhibits an exponential decay, which is not yet no-
ticeable on the intermediate time scale 7 defined through Eq.
(2.19).

Equations (2.21)-(2.25) are analogous to the Green-
Kubo formulas for transport coefficients (Kirkwood,
1946, 1947; Green, 1952, 1954; Kubo, 1957, 1959; Zwan-
zig, 1965; Forster, 1975). Nevertheless, the form of Egs.
(2.21)-(2.25) requires that the velocity of the reaction
coordinate X (t=0) be well defined. Hence Eq. (2.21) can-
not be directly applied to stochastic trajectories that are
driven by white-noise forces, implying for x(t)
nondifferentiable trajectories of unbounded variation
(Hanggi and Thomas, 1982). In this latter case, a prefer-
able procedure consists in introducing for the correlation
in Eq. (2.18) the generalized version (Borkovec and
Talkner, 1990)

_ {f[x(0)]6[x (1)])
(fIx O

+

Tkt k-

C(r)

exp(—[kT+k7]t), (2.26)
where f(x) is a conveniently chosen function that essen-
tially equals unity inside the domain of attraction of the
metastable state and vanishes outside. The rate kT is
then obtained as

a3

kt=——
or

Cin=—C(r)

il

=—C0Tk<—-C"), 2.27)

where k=C(7)/C(07) is the transmission factor, and
— (0t )y=—2C(r=0")
or

_ {fIx@]6[x 0]
o (flx(O)D

presents an analog of the (TST) rate in Eq. (2.23). Note
that, for a well-defined velocity x(0), the choice
f(x)=6(x) in Eq. (2.27) equals the previous result in Eq.
(2.22).

(2.28)
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3. Method of lowest eigenvalue,
mean first-passage time, and the like

The flux-over-population method and the reactive flux
approach present general methods for the evaluation of
the escape rate. There exist, however, a number of other
techniques that, under certain circumstances, might be
invoked preferably. Most importantly, there is the con-
nection between the rate of escape and the smallest non-
vanishing eigenvalue governing the time evolution of an
initial nonequilibrium probability. An important exam-
ple is the case in which the escape dynamics is governed
by a (Markovian) master equation for the single-event
probability p (x, 1)

plx,0= [ T(x,y)p(y,t)dy . (2.29)

Here the master operator I’ is a time-independent, in
general nonsymmetric dissipative operator with generally
complex-valued eigenvalues (Hanggi and Thomas, 1982).
From Egs. (2.12)-(2.14) one obtains the connection

A=k*+k~~|Reh,| , (2.30)

where ReA; <0 denotes the real part of the (possibly
complex-valued) eigenvalue of I' possessing the smallest,
nonvanishing absolute value for the real part of the set of
eigenvalues {1} of I'. From Eq. (2.13) one finds in terms
of the equilibrium constant K the relations

1
k*=|ReA;| —— .
1 e}»1|K+1 2.31)
and
_ K
k~=|ReA,|——— . )
|Re 1|K+1 (2.32)

From a technical point of view, the quantity |ReA,| in
Eq. (2.30) can be calculated by a number of procedures,
e.g., the matrix-continued fraction method (Risken and
Vollmer, 1979, 1980; Risken, 1984), eigenfunction
analysis (Tomita et al., 1976; Visscher, 1976; Van Kam-
pen, 1977; Caroli et al., 1979; Edholm and Leimar,
1979), variational methods (Larson and Kostin, 1980; Bez
and Talkner, 1981; Brand, Schenzle, and Schroder, 1982;
Gaveau and Schulman, 1988), supersymmetry techniques
(Bernstein and Brown, 1984; Marchesoni, Sodano, and
Zannetti, 1988), correlation function and Laplace trans-
form techniques (Skinner and Wolynes, 1978; Grote and
Hynes, 1980), or path-integral methods (Weiss and
Haffner, 1980; Caroli et al., 1981; Weiss, 1982; Weiss,
Grabert, Hanggi, and Riseborough, 1987), to name but a
few.

Another alternative to the approaches already men-
tioned is the concept of the mean first-passage time
(MFPT). This is the average time that a random walker,
starting from a point x inside the initial domain of at-
traction, takes to leave the domain of attraction for the
first time, i.e., the MFPT is the average time needed to
reach the separatrix manifold for the first time (Talkner,
1987). At weak noise [see Eq. (2.2)] this MFPT, #(x,),
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becomes essentially independent of the starting point, i.e.,
t(xy)=typpr for all starting configurations away from
the immediate neighborhood of the separatrix. If we
note that the probability of crossing the separatrix in ei-
ther direction equals one half, the total escape time 7,
equals 2t rpr. Thus the rate of escape k itself is given by

k=—1 (2.33)

2tmppr

Unfortunately, the MFPT is a rather complex notion for
a general (non-Markovian) stochastic process x(t)
(Hanggi and Talkner, 1981, 1983). In particular, extreme
care must be taken in the choice of the correct boundary
(Hanggi, Jung, and Talkner, 1988). Moreover, the corre-
sponding boundary conditions on t (x) itself are general-
ly not readily constructed (Weiss and Szabo, 1983;
Hanggi and Talkner, 1985; Balakrishnan, Van den
Broeck, and Hanggi, 1988). The use of the MFPT is well
known for one-dimensional Markov processes x (¢) which
are of the Fokker-Planck form (Pontryagin, Andronov,
and Vitt, 1933; Weiss, 1967; Schulten, Schulten, and Sza-
bo, 1981), or for one-dimensional master equations of the
birth and death type involving nearest-neighbor transi-
tions (Weiss, 1967; Gillespie, 1979, 1981), as well as for
one-dimensional master equations with one- and two-step
transitions only (Hanggi and Talkner, 1981). In all these
cases t(x,) can be solved for exactly in terms of quadra-
tures, or corresponding summations; see Sec. VIL.

lli. CLASSICAL TRANSITION-STATE THEORY

Transition-state theory (TST) is fundamentally a classi-
cal mechanical theory. The basic assumption of the
theory—namely, that passage through a transition state
without subsequent return is a ““moment of decision” for
the reacting system—is an assumption that can be stated
with precision only within classical mechanics (Wigner,
1937, 1938). In Sec. IX a generalization of this concept is
presented which accounts for the leading quantum
corrections within semiclassical quantum mechanics.
Here we restrict ourselves to the classical approach. The
transition state is identified as a dividing surface separat-
ing reactants from products, or more generally, any two
physical states that are separated by a bottleneck in
phase space. There are two key assumptions to TST.

(1) Strong-coupling assumption: Thermodynamic equi-
librium must prevail throughout the entire system for all
degrees of freedom. All effects that result from a devia-
tion from the thermal equilibrium distribution, such as
the Boltzmann distribution, are neglected.

(ii) Point of no return: Any orbit crossing the dividing
surface will not recross it.

The TST rate is proportional to the total flux of classi-
cal trajectories from reactant to product side of the divid-
ing surface. This flux is calculated either with the
Boltzmann weighting function at a given temperature T
(canonical TST) or with a delta-function weighting ac-
counting only for the trajectories of a given total energy
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E (microcanonical TST). Canonical TST was originally
put forward by Polanyi and Wigner (1928) and developed
further by Pelzer and Wigner (1932), Eyring (1935),
Wynne-Jones and Eyring (1935), and Evans and Polanyi
(1935). Microcanonical TST was developed mainly by
Rice and Ramsperger (1927), Kassel (1928a, 1928b), and
Marcus (1952, 1965). When applied to unimolecular re-
actions it is known in the chemical physics community as
the RRKM theory (Hase, 1976; Callear, 1983).

The conventional choice for the dividing surface of a
reaction on an (electronically) adiabatic potential surface
with a saddle point located between reactants and prod-
ucts is the subspace perpendicular to the unstable mode,
determined by normal-mode analysis of small vibrations
around the saddle point. Therefore any other dividing
surface is by definition a ‘“‘generalized transition state”
(Pechukas, 1982). From the assumptions in (i) and (ii) it
follows that microcanonical TST is exact only if no tra-
jectory of a given energy crosses the transition-state di-
viding surface more than once; canonical TST is exact if
no trajectory, of any energy whatever, recrosses the di-
viding surface. We stress that for any dividing surface
the TST rate is always an upper bound to the true rate [see
Eq. (2.24)].

As will be demonstrated below, the number of recross-
ings of the reaction coordinate depends strongly on the
level of coarse graining in the phase space of the total
system. If the reaction is described by all degrees of free-
dom in the full phase space of the reacting system plus
bath, a classical trajectory has generally very little chance
of returning to the narrow bottleneck region around the
saddle point with activation energy E =E,. The proba-
bility of correlated recrossings increases with an increase
in the level of coarse-graining for the reaction coordinate.
In other words, simple TST is expected to fail badly in
complex systems, such as reactions in condensed phases
when these are being approximated in terms of only a few
coarse-grained degrees of freedom, so that the dividing
surface is restricted to lie on a low-dimensional subspace.

In view of the fact that TST always overestimates the
true rate, the dividing surface should be chosen so as to
minimize the flux through it. Within microcanonical
TST, the conventional choice for the dividing surface be-
comes increasingly suspect with increasing energy
E > E,. This conventional choice is usually good for en-
ergies just above the threshold energy E,. In this case
the bottleneck is still narrow, i.e., there is generally little
chance that any reactive trajectory will find its way back.
For canonical TST (and not too high temperatures) it is
this energy region that contributes most significantly to
the rate, due to the Boltzmann weighting. In micro-
canonical TST, however, one has no such helping hand
from the Boltzmann factor. Then both energetic factors
(i.e., minimization of the mean velocity of trajectories
passing the surface) and entropic factors (i.e., the size of
the dividing surface) must be accounted for in choosing
the best dividing surface. This variational problem has
recently been solved by Pollak and Pechukas (1978).
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They find that the only dividing surfaces worth consider-
ing for microcanonical TST are those whose space is
made up of unstable invariant manifolds on the multidi-
mensional, potential-energy surface (such as the unstable
periodic orbits in systems with 2 degrees of freedom). At
higher energies E >E,, it is then possible that the
bottleneck to reaction may move out from the saddle-
point region toward the asymptotic reaction (or product)
regime (Pechukas, 1976; Pollak and Pechukas, 1978;
Sverdlik and Koeppl, 1978; Pechukas and Pollak, 1979;
for reviews see Truhlar and Garrett, 1984; Pollak, 1985;
Wardlaw and Marcus, 1987).

As mentioned earlier, within a full phase-space
description of the system plus environment, assumption
(ii) is reasonable if within canonical TST the considered
temperatures are not too high (i.e., if the Arrhenius fac-
tor is not becoming too small). A difficulty of more fun-
damental nature results from assumption (i), namely, that
of thermodynamic equilibrium throughout the whole es-
cape process. In reaction-rate theory we are interested in
the process of evolution from one metastable state to
another neighboring state of metastable equilibrium.
This process sets the time scale for the problem (see Sec.
I1.A). A priori, it would be farfetched to assume that true
equilibrium prevails at all times throughout this escape
process. Equilibrium is assumed if the vertical thermali-
zation (inside the initial well) is more rapid than the
outflow into the product region (Hanggi, 1986a). The
consequences of a violation of assumption (i) have al-
ready been appreciated by Lindemann (1922), Christian-
sen (1926), Hinselwood (1926b), and Kramers (1940). For
the rest of this review we shall primarily confine our-

selves to energy-independent escape rates, i.e., to canoni-
cal TST.

A. Simple transition-state theory

We start with the simplest form of TST, namely, that
of a one-dimensional system that is not coupled to a bath.
If a particle with mass M and momentum p =M¢g moves
in a metastable potential U(q) of the form shown in Fig.
3, the reaction coordinate x equals the configuration
coordinate q. For this discussion we assume that thermal
equilibrium prevails in the presence of a vanishingly
small coupling or friction y =~0, i.e., we prepare a canoni-
cal equilibrium of particles inside the initial well—even if
this means that we must have recourse to Maxwell’s
demon. The transition-state forward rate kigp equals,
from Eq. (2.23),

1

k¥ST=ZElm

[ dq dp 8(g)36(4)

Xexp[ —B#(q,p)],

where we have identified the transition state with the lo-
cation of the maximum of Ul(g) at ¢=0, while
B=(kpT)~ ! is the inverse temperature, and Z, denotes
the partition function in the initial well,

(3.1
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1
= — . 3.2
Zy=> fq(odpdqexp[ B#(q,p)] (3.2

F(q,p)=p?/2M +U(q) is the Hamiltonian of the sys-
tem. Equation (3.1) can be evaluated by a transformation
from phase-space variables (g,p) to the energy-phase rep-
resentation (E,); that is, dp dq =dE dg/w(E), with
o(E)=27dE /dI(E), where I (E) denotes the action. In
terms of the barrier height E," for the forward transition
A — C (see Fig. 3), one finds

ot = 1 B_lexp(—BE,;L) (3.3
ST 5 & :
2 ﬁ_lf w(E exp(—BE)d
kBT 1 +
= — 34
. Z exp(—BE;") (3.4)
@
zgexp(—BEb+) 3.9

Here o,=w(E =0)=[(1/M)U"(g4)]'/? is the (angular)
frequency at the well bottom. Equation (3.5) is of course
a well-known textbook result.

B. Canonical multidimensional
transition-state theory

As before, let x denote the reaction coordinate of a
complex system (e.g., a molecule with N degrees of
freedom). The reaction coordinate x (q,,...,qy;
Pi» - - ->Py) is then a function of all these degrees of free-
dom. It is again chosen so that it is negative for products
and positive for reactants, i.e., we place the transition
state at x=x, =0. The forward multidimensional TST
rate k{gr is, in analogy to Eq. (3.1), given by [see Eq.
(2.23)]

ot _ {3[x(0)]x(0)6[%(0)])
ST (8(x)) ’
l; x>0

Here the average ( - - - ) denotes an equilibrium average
over the canomcal probablllty density p(q,,...,qy;
Pis--sPy)=Z lexp(—BH), where % denotes the
Hamiltonian of the total system. Equation (3.6) can be
simplified by integrating over the momenta explicitly. By
use of the mass-weighted coordinates

N

= - . ox -

Qi=qm”, P=pm % x=3F 20, (37
where {m;} are the masses of the corresponding config-

urational degrees of freedom, one finds after an integra-
tion over all the momenta

{8(x)|Vo(x)]}
k= 2 -1/2 Q
TsT = (273) %{G(x)} ,

} indicates an average over coordinates

(3.8)

where {---
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{qb s ’qN} Only:
{f(x)}
= [dg"flx(qy,. .. Jan)] -

(3.9

’qN)]eXP[ —BU(ql, e

The result in Eq. (3.8) can be further simplified by in-
tegrating over the coordinates of the center-of-mass posi-
tion R and all orientations () relative to a reference
configuration of the system. We introduce new coordi-
nates {Qy,...,On}—={R,Q;f,-..,fm}, Where the set
{f;} are internal coordinates whose total number shall be
denoted by m, for example, m =N —6 for a polyatomic
molecule. The Jacobian of this transformation, integrat-
ed over the center-of-mass coordinates and the orienta-
tions, is denoted by J (f). It contains the volume V of the
system and a factor stemming from the angular orienta-
tions. For the partition function {6(x)}, therefore, we
have

(6x)}= [df, - df,J(£)8]x(f)lexp[ —BU ()],

(3.10)

where U(f, ..., f,,) denotes the potential function as a
function of the internal degrees of freedom. With
BU(f)>>1, we can evaluate Eq. (3.8) with a Gaussian
steepest-descent approximation. The total effective po-
tential U 4(f), given by

U £)=U(f)—kyTInJ(f) , (3.11)

must be expanded up to a second order at the saddle
point (b) and at the local minimum (0), respectively. The
eigenvalues of the matrix (with respect to mass-weighted
internal coordinates)

GRY
Kijz eff :
af;9f;
are denoted at the saddle point by [AXY with

—AHY <0}, and at the minimum by (A2, This yields
for the TST rate (Borkovec, 1986)

ji=1,...,m (3.12)

ﬁ }\(_O)
I
"‘1 exp(—BE;)

IT A

i=1

1 M7 x)],

k= J”
TST 2

|V exly

(3.13a)

where M is the mass matrix

my

(3.13b)
my

The indices (b) and (0) in Eq. (3.13a) indicate that the cor-
responding quantities are evaluated at the saddle point
and the local minimum, respectively.

In the following we shall apply the transition-state for-
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mula in Eqgs. (3.6) and (3.13) to four archetypal situations
relevant to chemical reaction-rate theory.

1. Muitidimensional transition-state rate
for a collection of A vibrational bath modes

A straightforward application of Eq. (3.13) follows for
a metastable system consisting of a nonlinear coordinate
(i=0) coupled to N vibrational degrees of freedom only.
In the absence of rotational degrees of freedom the Jaco-
bian is a constant, J=const, thus yielding from Eq. (3.13)
with E"=FE, the well-known result (Polanyi and
Wigner, 1928; Eyring, 1935; Slater, 1956, 1959; Vineyard,
1957)

INI )\(_O)
1 i=o0 ‘
k;srz_ ~ exp(—BE,),

27 H A(-b)

=1

(3.14)

where the normal-mode eigenvatues (A1V>0, i =0,
L. N}, [=A'" <0, A2 >0, =1, . .N} have been
defined previously in Sec. II1.B, Eq. (3.12).

Using for the partition function Z, the harmonic ap-
proximation

hi

Zy=11

=0

kpT
i

) (3.19)

and setting for the partition function of the transition
state

kyT
ﬁl(-b)

Z' =]

i=1

, (3.16)

we can recast the result in Eq. (3.14) as (Evans and Po-
lanyi, 1935; Eyring, 1935; Wynne-Jones and Eyring,
1935; Glasstone, Laidler, and Eyring, 1941; Laidler,
1987)*

kgT | z#
h |z,

This result for the TST rate is in the familiar form com-
monly used by the chemistry community. By use of ther-
modynamic functions such as the Helmholtz free energy
F, the result in Eq. (3.17) can be recast in
various other forms which are of course all equivalent
with Eq. (3.14). In particular, with the substitution
Z =exp[ —B(E —TS)]=exp(—fF) the prefactor in Eq.
(3.14) can be formally recast as an entropy term,

AR
Al
:I=Io l kg #
= =——exp(AS” /kg),
H A’(ib)
i=1

(3.17)

kst = exp(—BE,) .

(3.18)

1
2T h

4For the origin of the notation (#) for the activated state,

note the amusing anecdote given by Eyring (1982).
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where AS™=S§"—S, denotes the change in entropy.
Likewise, for chemical reactions being monitored under

fixed pressure, the appropriate thermodynamic function
1s

Q(Tp,N)= [ Z(T,V,Noexp( —pb /k , T)d v
=exp(—BG)

with G denoting the Gibbs free enthalpy. With the ap-
propriate substitution Z-+Q(T,p,N) we obtain from Eq.

(3.17) the familiar result (Wynne-Jones and Eyring,
1935)*

kpT

kisy = [7‘ exp(—BAG) ,

(3.19)

where we defined AG =G - —G,. For the case in Eq.
(3.17), in which we account only for vibrational degrees
of freedom, we have AG =AF, because the corresponding
reactive volume AV = () 7 — Vo) is vanishing.

2. Atom-transfer reaction

For a one-dimensional bimolecular atom-transfer reac-
tion, 4 +BC — AB + C, we have a potential of the torm
depicted in Fig. 5. Let % =y denote the velocity, u the
(reduced) mass, and L the typical length on the side of
the reactant region. With

(9(x)>5f0def% dv exp( — LBuv?)

172

Cul (3.20)

Bu
the TST atom-transfer rate & is given by

‘o exp( —BE,')fnwdu v exp( —Buv?/2)
LQ2m/Bu)t’?

=L

Here, E is the barrier height in Fig. 5(a), and Ky
denotes the well-known bimolecular rate of product for-
mation with dimension (sec ' 'm) (Pechukas, 1976).

3. Dissociation reaction

As an illustration of the effect of a nonconstant Jacobi-
an J(f) [see Eq. (3.11)], we consider the dissociation
AB-> A4 + B of a diatomic molecule in an adiabatic po-
tential of the form sketched in Fig. 6.

When Eq. (3.6) is used, the TST rate for dissociation
kp follows as

3The reader might have noticed that we refer to the rate
coefficient k simply as the “rate,” whereas with ¢ deno}mg the
concentration a rate almost universally means —dc /dt in kinet-

. . . -1
ics. In our notation the rate k carries the dimension sec™ .
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qu?dv?qu%dvzr()(r )8(r —a)exp{ —BLU(r)+L1m vi+1m,v3]]

(3.22)

>~ qu?dv?qu%dvzexp{—B[U r)+

where r=|q,—q,| denotes the internal coordinate and
q,=v,, ..., etc. With the reaction coordinate x =r —a,
that is, r,=a (see Fig. 6), one finds in terms of the in-
tegrated Jacobian J(r)=4xVr2, and with the reduced
massp”'=m; ' +m; ],

47rV(B,u)71f0wdr r:8(r —a)exp[ —BU(r)]
47rV(27r//3’y)+1/2f0adr rlexp[ —BU(r)]

D:

(3.23)

Using a harmonic approximation for the well region,

Ulr —rg)=Ul(ry)+Luod(r —ry )% one thus obtains
ko= |9 | 2 e —p,) (3.24)
D re | 27 P d .

where the factor (a /ry)*=J, /J, denotes the ratio of the
corresponding two Jacobians in Eq. (3.13).

4. Recombination reaction

Likewise, one finds for the inverse reaction 4 +B —C
= AB the TST recombination rate k, (see Fig. 6),

(a) (ABC)pgr

E;

A+BC AB+C

T
BC

FIG. 5. Atom-transfer reaction: (a) the typical potential form
vs the reaction coordinate x; (b) the potential-energy surface for
a hypothetical one-dimensional reaction A +BC—(ABC),

— AB +C. The dashed line indicates the reaction coordinate
x.
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mlv,+'m2v2]}

[
a’exp[ —BU(a)]
der rlexp[ —BU(r)]

Upon noticing that the volume Vis ¥V =(47/3)L>, we see
that Eq. (3.25) can be reduced approximately to
172

aZexp( —BE,)

kp=(2mBu)""2 (3.25)

87

Bu

This result for the TST recombination rate should be
contrasted with the corresponding result in the position-
diffusion-controlled regime described in terms of a
Smoluchowski-Fokker-Planck equation [see Eq. (4.54)
below]; for detailed reviews see Calef and Deutch, 1983;
Sceats, 1988.

For the case in which U(r)=const for r >a, and is
strongly attractive for » <a, one has E, =0, i.e., the free
molecular limit is given by (Wagner and Kerker, 1977)

172

kp= (3.26)

1
v

T

k,=V"!
. Bu

a’=v kR | (3.27)

where k { is the bimolecular recombination rate. For a
realistic dissociative potential, such as the Morse poten-
tial with no local maximum, one must optimize the value
of the transition point 7, =a by looking for the minimum
of  the product riexp[—BU(r)], that is,
a’exp] —U(a)]—rexp[— U(r;)]. It should be pointed
out that the existence of the three-dimensional metric
factor r? is important for the existence of such a transi-
tion point 7. Thus in dimension d=1 there exists gen-
erally no well-defined transition state for potential forms
such as the Morse potential sketched in Fig. 7; see also
Eq. (7.34). In addition note that the prefactor of the rate
exhibits a different dependence on temperature, i.e., T'/2
in Eq. (3.26) versus T dependence of D in Eq. (7.38).

U(r)

(AB) (A+B)

FIG. 6. Schematic representation of a dissociation reaction
(AB)—(A +B) with rate kj, and a recombination reaction
(A +B)—( AB) with rate k.



266 Hanggi, Talkner, and Borkovec: Reaction-rate theory

The above considerations can of course be generalized
to more complicated situations (Borkovec, 1986; Sceats,
1988). For example, with a triatomic molecule one has
three internal coordinates (m=3), and the center-of-mass
integrated Jacobian then reads

J(£)=V8x*r’s%sind , (3.28)
where r and s denote the corresponding two bond
lengths, and @ is the angle between the two bonds.

C. Model case: particle coupled bilinearly
to a bath of harmonic oscillators

1. The model

As a model for a particle of mass M that interacts via a
linear dissipative mechanism with a thermal environment,
we consider a bath composed of an infinite set of harmon-
ic oscillators coupled bilinearly to the particle coordinate
x of a metastable system. The total Hamiltonian # of
the system and bath is then of the form (Zwanzig, 1973;
Gross, 1980; Caldeira and Leggett, 1983, Pollak, 1986a;
Levine, Shapiro, and Pollak, 1988)°

2
7_[:P_+U(x)+7[bath(ql’ :

M QNP> - - DNX)
(3.29)
where
1N g
ﬂbathzf > m; g f+w% q;+ ’ 7 X (3.30)
i=1 m;;

Here the coupling to the bath of harmonic oscillators
with masses {m;} and frequencies {w;} is of a form such
that no coupling-induced renormalization of the metasta-
ble potential U(x) occurs. A detailed discussion of relat-
ed, similar harmonic bath models can be found in Ford
et al. (1988). In this context, it should be pointed out,
while each bath mode may perturb the particle only
weakly, the combined effect of all the bath modes on the
particle motion is not necessarily weak, i.e., the coupling

%Coupled harmonic-oscillator models such as Egs. (3.29) and
(3.30) have a long history. With nearest-neighbor couplings
only, the model is known as the “Bernoulli Chain,” and its sta-
tistical mechanical treatment has been studied by various au-
thors (Hemmer, 1959; Rubin, 1960, 1963, 1968; Ford, Kac, and
Mazur, 1965; Nakazawa, 1966, Ullersma, 1966). Its classical
mechanics was first considered by D. Bernoulli (1732, 1734),
who studied the small-amplitude coplanar vibrations of a com-
pound pendulum consisting of particles suspended in series ina
gravity field by means of weightless connecting strings. These
two papers contain a treatment of the oscillations of a double
and a triple pendulum, and a figure depicting a five-particle pen-
dulum, as well as the classic treatment of the continuum limit in
which the Bessel function Jy(x) occurs.
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2 -
Ux)

-2

0 S
10 15 X 20

FIG. 7. The one-dimensional Morse potential U(x)
=—Ept+Ep{l—exp[—(x —x,)/b]})% with E,=1, x,=b =3,
The state x7 =a denotes the arbitrarily chosen transition point.

can also cause strong dissipation for the reaction coordi-
nate. Upon integrating over all the bath variables
{91, -.,qy}, one finds from Eq. (3.29) the generalized
Langevin equation (Zwanzig, 1973)

(3.31)

., U
Mi+Z54M [ (e —miindr=&) .

When the total system is prepared initially in thermal
equilibrium, the random force £(f) becomes a stationary
Gaussian noise of vanishing mean,

N C.
§)=— 3 C; | |¢,(0)+ —lzx(O) cos{w;t)
i=1 m;o;
g,(0)
+ sin(w;t) | , (3.32)
@;
obeying the fluctuation-dissipation theorem
(E(NE(S)) =ky TMy(t —s) . (3.33)
The friction kernel y(z) itself reads
1 X Ci2
()=— cos(w;1) , (3.34)
4 M = miw%

which with N finite is a (quasi)-periodic function in time.

Thus a phenomenologically decaying memory friction
y(t) [y(t)—>0 as t — ] can be modeled by a suitable
choice of parameters in Eq. (3.30) by performing a con-
tinuum limit for the distribution of frequencies which
densely extends down to zero frequencies (elimination of
Poincare recurrences).

2. Normal-mode analysis
The partition functions entering the transition-state

rate may be evaluated via normal-mode analysis at the
saddle point of the full Hamiltonian and at the well bot-
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tom. We assume that the potential U (x) can be approxi-
mated at the well bottom as

U(x)=iMaod(x +x¢)% x>0, (3.35)
and at the barrier by
Ux)=~E,— ‘Mwjx? . (3.36)

The harmonic approximation given in Egs. (3.35) and
(3.36) implies that the total Hamiltonian may be written
in the vicinity of the well and the barrier in a separable
form as a sum of (N +1) harmonic oscillators. Using
standard techniques we first transform to mass-weighted

coordinates,

x'=M'"x, q/=m!"q,, (3.37)
and then diagonalize the (N +1)X (N +1) force-constant
matrix K (with respect to the mass-weighted coordi-
nates). From Egs. (3.29) and (3.35)-(3.37) it follows that
the saddle point is located at x'=0, ¢;=0; j=1,...N.
Likewise, the well is located at x'=-—xg,
g;=[C;/(m;M)'?}1xy, j=1,...N. The second
derivative matrix at the saddle point, denoted by K®,
has the structure (Pollak, 1986b)

N C?
-0+ 3 —A;—z Cilm M)™V2 Cy(m,M)~1/? CylmyM)~172
j=1m;Mo;
Ci(m M)~ w? 0
K= Cy(m,M)~ 12 0 w? 0 (3.38)
CN(mNM)¥1/2 0 ﬂ)%v

The second-order derivative matrix K'?’ at the well bot-
tom is of the same structure as K'?, the only difference
being that —w} <0 is replaced by wg>0. We denote the
eigenvalues of K by {A%}. From Eq. (3.38) one can now
prove the following useful identities for the determinants
of K" K'® (Pollak, 1986a):

det(K'?)= —(A{P')?

N
: (3.39)
=1

N
(Al = —w} 11 w?
i=1

~

and

N N
det(K') =) [T M”P=w} [ o .

i=1 i=1

(3.40)

3. Therate of escape

The TST rate [see Eq. (3.14)] is given in terms of the
product of all stable mode frequencies at the minimum
and the inverse product of stable mode frequencies at the
saddle point, respectively. By use of Eqgs. (3.39) and
(3.40) we can thus recast Eq. (3.14) as (Pollak, 1986a)

AP o

krsp=— _Oexp( —pBE,) .

w0, 27 (3.41)

Next we express the positive-valued, unstable normal
mode frequency A{® in terms of the friction kernel y(t) or
its Laplace transform $(z),

N Cl.2

1 z
2
M <, m; @;

zz+a),2

Plz)= . (3.42)
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By virtue of Pollak’s relation (Pollak, 1986b), in which I
denotes the identity matrix,

det(K'®+221)

N
:[_(}\(b))2+22] [(}\2!7))2_'_22]
0

i=1

N
=[—wy +2°+z9(D] [] (0} +2?),
i=1
one finds, with z=A{’>0 (assuming that all P>,
©;>0, i>0) from det[K“+(A)1]=0, that is,
— 0} AP +APP(AP)=0, the central result

o}

(3.43)

(b — i
}»é)b)‘i‘?(}\é)b))

In this context, note also the application to a finite, two-
dimensional oscillator reaction system by Van der Zwan
and Hynes (1983). With all A{*’>0 for i >0 and all @, >0
for i 20, the solution of Eq. (3.44) has a unique positive
solution. Alternatively, the quantity A}"’ can from Eq.
(3.44) be given the appealing form

(3.44)

Az VI
AP =p= -L‘(‘&)+a)i —ﬂz&). (3.45)

In conclusion, the many-body (TST) rate in Eq. (3.41)
reads explicitly

12

ﬁ&) +w2 — M
e 4 b 2 g
TST o —z?exp( BE,) .

(3.46)
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This is a cornerstone result in rate theory: Equation (3.46)
coincides precisely with the Kramers rate result for general
memory friction y(t) (Grote and Hynes, 1980; Hinggi
and Mojtabai, 1982; Carmeli and Nitzan, 1984;
Dakhnovskii and Ovchinikov, 1985; Pollak, 1986a).
Ohmiclike damping is realized whenever $(z=0)>0. In
particular, with a memory-free friction, y(1)=2y8(1),
that is $(u)=79(z =0) =1y, and we recover precisely Kra-
mers’ rate expression. In contrast to Kramers’ result in
Eq. (1.5), however, it is not the static friction value
7(u=0)=v that determines the transmission factor in
the presence of memory friction, but rather the friction
value on the short time scale 7, that is To~p !
~O(w, '). This latter friction value P(up~w,) might
drastically differ from the static value y.

Moreover, the result that Eq. (3.46) is obtained from
multidimensional TST in full phase space of a metastable
system coupled bilinearly to a bath of harmonic oscilla-
tors implies, in view of Eq. (2.24), that this (generalized)
Kramers rate itself presents (within the validity of the
harmonic approximation)’ an upper bound for the true
rate k as given by the reactive flux result in Eq. (2.22) or,
likewise, by the exact lowest eigenvalue expression in Eq.
(2.31).

The central result for memory friction in Eq. (3.46) re-

quires further discussion. For a memory friction y(t),
consisting of a sum of exponentially decaying terms, the
above generalization of Kramers rate theory was derived
originaily within the Markovian stable-state picture (see
Northrup and Hynes, 1980) by Grote and Hynes (1980).
Applying the flux-over-population method to a general
metastable non-Markovian Brownian dynamics with a
nonrestricted memory friction y(¢), Hanggi and Mojtabai
(1982) subsequently obtained the result in Eq. (3.46). Ad-
ditional insight along the same line of reasoning was pro-
vided by Carmeli and Nitzan (1984). In all these cited
derivations of Eq. (3.46) no explicit reference was made
to a bilinear coupling between reaction system and har-
monic bath. The crucial assumptions made in obtaining
the generalized Kramers result in Eq. (3.46) are, however,
as follows.

(i) Strong-coupling assumption: Deviations from the
thermal equilibrium distribution away from the immedi-
ate neighborhood of the barrier region, or more general-
ly, the influences of the well dynamics, are negligible.
Put differently, the rate is truly controlled by the diffusive
barrier dynamics.

(ii) The effective potential near the barrier is assumed
to be parabolic, and the barrier dynamics itself can be ap-

TEquation (3.46) follows from Eq. (2.23) as a rigorous upper
bound only under the assumption that the influence of anhar-
monicity effects for Z, and Z” [Eq. (3.17)] can safely be
neglected. Variational upper bounds for the transition-state
rate in dissipative systems that do take into account the non-
linearity of the metastable potential have recently been put for-
ward by Pollak, Tucker, and Berne (1989) and Pollak (1990).
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proximated by a linear generalized Langevin equation
(GLE), i.e., withy =x —x, one has

y=w§y—f0’y(z—s)y(s)ds +M T, (3.47)

with £(¢) a Gaussian random force obeying the
fluctuation-dissipation theorem in Eq. (3.33).

Such a linear GLE was originally postulated by Kubo
(1966) on a purely phenomenological basis, but has since
found wide applications in a variety of physical situations
(e.g., Forster, 1975; Hynes and Deutch, 1975; Grabert,
1982). Clearly, a GLE of the form in Eq. (3.47) can with
an appropriately chosen (although not unique) set of cou-
pling parameters {Ci,w;,m;} also be embedded into a
model Hamiltonian of the form in Eq. (3.29), thus show-
ing again the formal equivalence with a harmonic, mul-
tidimensional TST. Nevertheless, while the TST result in
Eq. (3.46) holds rigorously in the harmonic limit for the
model in Eq. (3.29), the result itself might hold approxi-
mately in a great variety of realistic physical systems (see,
for example, Bergsma et al., 1987; Grabert and Linkwitz,
1988; Zhu, Lee, and Robinson, 1988a; Gertner et al.,
1989) with possible nonlinear bath couplings—if the
combined effect of the bath on the barrier dynamics
could be satisfactorily modeled by a linear GLE over a
corresponding range of parameters involving the temper-
ature, barrier height, friction strength # (u), friction-
relaxation or noise correlation time T, etc. In general,
however, the above central result is subject to a series of
limitations, even for the case in which the linear GLE
turns out to be a valid approximation of the barrier dy-
namics (Hanggi, 1986a; see, as well, the peculiarities and
the limitations discussed in Sec. VI.C for an exponential-
ly decaying memory friction). In particular, realistic sit-
uations such as chemical readctions in condensed phases
might require a strongly nonlinear friction mechanism of
the form in Eq. (2.6a), where the memory friction de-
pends both on the actual state x and possibly on its veloc-
ity x. For example, while the effective barrier friction is
sufficiently strong, the effective well friction might be of
quite different form, approaching a critical regime so that
nonequilibrium effects in the energy population may no
longer be negligible, hence violating assumption (i). See
also Secs. IV.D and VI.C.

In conclusion, the role and, particularly, the regime of
validity of the memory-friction Kramers rate result in
Eq. (3.46) is at present not settled when it is applied to
realistic situations involving strong nonlinear interaction
potentials for the bath degrees of freedom and/or
system-bath interaction, notwithstanding claims made to
the contrary (Bergsma et al., 1987; Hynes, 1988; Gertner
et al., 1989).

IV. KRAMERS RATE THEORY

A. The model

Kramers’ (1940) model for a chemical reaction consists
of a classical particle of mass M moving in a one-
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dimensional asymmetric double-well potential U(x) (see
Fig. 3). The particle coordinate x corresponds to the re-
action coordinate, and its values at the minima of the po-
tential U(x), x, and x_, denote the reactant and product
states, respectively. The maximum of U{x) at x,
separating these states corresponds to the transition state
{or activated complex). In this simple model all of the
remaining degrees of freedom of both reacting and sol-
vent molecules constitute a heat bath at a temperature T,
whose total effect on the reacting particle is described by
a fluctuating force £(¢) and by a linear damping force
~Myx, where y is a constant damping rate. These
forces enter Newton’s equation of motion of the particle
in the form of a Langevin equation, Eq. (2.7),

Mi=—U'(x)—yMx +£t), (4.1)

where the prime indicates the differentiation with respect
to the coordinate x. The fluctuating force £(¢) denotes
Gaussian white noise with zero mean, which obeys the
fluctuation-dissipation theorem,

(&) =0,
(E(DE(s))=2MykyT5(t —s) .

4.2)
(4.3)

The resulting two-dimensional stochastic dynamics for
the reaction coordinate x and the velocity v =X are Mar-
kovian. The time evolution of the probability density
p(x,x=v,t) is governed by the Klein-Kramers equation
(Klein, 1922; Kramers, 1940; Risken, 1984),

ap (x,v,¢) _ _iv_'__a_ U'lx)+Myv
ot dax dv M
vksT
+ M 8yl plx,v,t). (4.4)

Equation (4.4) provides a complete description of the
process defined by Eqgs. (4.1)-(4.3). Although known for
a long time, a detailed numerical treatment of the dy-
namics in Eq. (4.4) with U(x) a metastable nonlinear po-
tential, such as for example, U (x)=—%x2+}x4, has
been given only recently (Visscher, 1976a, 1976b; Blom-
berg, 1977; Marchesoni and Grigolini, 1983; Baibuz
et al., 1984; Marchesoni, 1985a; Risken and Voigt-
laender, 1985; Voigtlaender and Risken, 1985; Hu, 1986;
Cartling, 1987; Ebeling, 1988).

The qualitative behavior of the nonlinear dynamics in
Eq. (4.4) can readily be elucidated. If the thermal energy
kpT is much smaller than the respective barrier heights,
the random force is acting only as a small perturbation,
whose influence may typically be neglected on the time
scale of the unperturbed damped deterministic motion
(see Fig. 8),

U'lx) _
M

(4.5)
Hence the reaction coordinate will relax toward one of

the minima of the potential, say x,, and the system will
stay there for an extremely long time until eventually the
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FIG. 8. Dissipative separatrix line of the deterministic motion
in Eq. (4.5) in a symmetric double-well potential in the presence
of weak friction. The blackened region denotes the domain of
attraction of the metastable state located at x =—1, x =v=0,
which is separated by the boundary (separatrix) from the neigh-
boring domain of attraction (white), with the metastable state
located at x=1, v=0.

accumulated action of the random force will drive it over
the barrier into a neighboring metastable state (see Sec.
II). Although rare, such events will surely occur within
finite time. The average of this (escape) time equals the
inverse of the rate k , . [see Eq. (2.5)].

On the other hand, if the thermal energy kT is com-
parable with, or even larger than, the barrier height(s)
E;, the particle can move almost freely from x, to x,.
In this case, there is no separation of time scales, and a
rate description makes no sense. Below we shall not con-
sider the latter case and shall always assume the condi-
tion in Eq. (2.2),

Within this simple phenomenological model the strength
of the interaction between the reaction coordinate and
the remaining degrees of freedom is fixed by a single con-
stant, the damping rate y. Two limiting regimes may be
distinguished, one with strong friction (spatial-diffusion
regime) and the other with a low damping rate (energy-
diffusion regime); see Fig. 9.

For strong friction y the reaction coordinate under-
goes a creeping motion, and the velocity may be eliminat-
ed adiabatically from Eq. (4.1):

Xx=—(My) U (x)+(My) &) . 4.7)

The time evolution of the corresponding reduced proba-
bility
+
px,0=[""dvpix,u,0) (4.8)

is governed by the Smoluchowski equation (Smolu-
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chowski, 1915; Fiirth, 1917),

P00 ()12 gy
dt dx

2
+(My)"kBT% p(x,1) . (4.9)
X

In order for the Smoluchowski equation to hold, Kra-
mers (1940) requires that both —U’(x) and p (x,?) be al-

most  constant on the thermal length scale
(kg T/M)'?y~!. More explicit conditions in terms of
U(x) can be read off from the corrections to the Smolu-
chowski equation (Tikhonov, 1960; Lee, 1971; Wilemski,
1976; Titulaer, 1978, 1980; Chaturvedi and Shibata, 1979;
Skinner and Wolynes, 1979). For the lowest-order
correction one still obtains a Smoluchowski equation but
with an effective, y-dependent potential and an x- and y-
dependent diffusion term,

dp (x,1 ~1 0 —2as—1y7
gf L= (My) Y MU x)) kﬂ%”"w pix,1) (4.10)

Higher-order corrections in powers of ¥ ~! can no longer
be cast in such a Fokker-Planck form. The next correc-
tion is of order ¥ ~° and contains derivatives whose de-
gree is higher than second order, thereby breaking the
Fokker-Planck structure (Skinner and Wolynes, 1979;
Risken et al., 1980; San Miguel and Sancho, 1980; Titu-
laer, 1980; Kaneko, 1981; Haake, 1982; Gouyet and
Bunde, 1984; for reviews see Grigolini and Marchesoni,
1985; Marchesoni, 1985b; Van Kampen, 1985).

In the case of extremely weak friction, the energy, or
equivalently the action

HE)=$pdg ,

is almost constant compared with the rapidly changing
angle variable ¢ (see Fig. 9). The averaging procedure

(4.11)

+2
it

S T
BUNIND ~

(a)

20 I00 200 300 400 -05 0 05
twy i/owb

|
a/“"""‘
N — | 3
| (b)
0 500 1000 1500 2000 -04 0 04
twy, x/owb

FIG. 9. Typical sample trajectories of a particle that starts at
the barrier top of a symmetric double well, with the minima
separated by a distance 2a, showing the noisy trajectory and the
phase-space motion x vs Xx. The dashed lines indicate the posi-
tion where the curvature changes sign: (a) the weak-damping
regime where the escape is governed by energy diffusion; (b) the
spatial-diffusion-controlled high-damping regime. Data are
from Straub, Borkovec, and Berne (1986).
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I

over the angle ¢ then yields a diffusion equation for the

probability density of the action (Kramers, 1940; Zwan-

zig, 1959),

2wkpT 3
o(l) al

ap (I,1) 0

a oI

I(1+ pLt),  (4.12)

where (1) is the angular frequency at the action 7,
OE _ o(l)

Al o (4.13)

Although, in principle, the same methods apply as for
the Smoluchowski equation (Titulaer, 1978), finite y
corrections to Eq. (4.12) are rather difficult to obtain.
This is due to the fact that the transformation
(x,v)—(I,@) now contains both fast and slow contribu-
tions, to the slow action I and the fast angle variable @,
respectively. Thus far, such corrections have been ob-
tained only for the case of a potential with a single well
(Renz, 1985).

B. Stationary flux and rate of escape

Following the original reasoning of Farkas (1927) and
of Kramers (1940), we determine the steady-state escape
rate, say from 4 to C, by considering a stationary situa-
tion in which a steady probability current from 4 to C is
maintained by sources and sinks. The sources supply the
A-well with particles at energies that are a few kT
below the barrier top. These particles first thermalize be-
fore they eventually leave the well over the barrier.
Beyond the barrier the particles are removed again by
sinks. The total probability flux j over the barrier is then
given by the product of the escape rate from 4 to C,
k 4 ¢, and the population of the A-well, n,. Equivalent-
ly, the rate equals the flux over the population, i.e., from
Eq. (2.11),

kt=k,_ o=-L. (4.14)
na

For the construction of a stationary current whose
probability density is denoted by p(x,v), several require-
ments must be fulfilled. Clearly, neither sources nor
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sinks should exist at the barrier. The probability p(x,v)
around the barrier obeys the stationary Fokker-Planck
equation, i.e., with oy =—M ~ ! U'(x,)>0,

3 3
el —g[w%(x —xp)—yv]
vkpT @
M 32 plx,v)=0, x=x, . (4.15)
Here we have assumed the linearized potential
Ux)=Ulx,)—iMaol(x —x, ), (4.16)

because x is confined to a small neighborhood around the
(parabolic) barrier top. Near the bottom of the A-well all
particles are thermalized. Therefore, with Z ~! denoting
a normalization constant, we find the condition

p(x,0)=Z lexp{ —[tMv’+U(x))/kyT} ,

x=x_,, andallv . (4.17)

a?’

On the other hand, near the bottom of the C-well, all par-
ticles are removed by the sinks,

plx,v)=0, x>x, . (4.18)

Once the probability density p fulfilling Egs. (4.15)-(4.18)
is known, the population of the A-well and the flux over
the barrier can be readily calculated to give

= 4.19
n, fA_we“dx dv p(x,v) (4.19)

and
. +
i=f
Moreover, the density of sources and sinks s (x,v) follows

from the stationarity of the nonequilibrium probability
p(x,v) wherein s{x,v) enters the right-hand side in Eq.

dvvp(x,,v) . (4.20)

(4.4). Thus we obtain
__|_9 a4 | Ulx)
s(x,v)= ax”+au YR +yv
vkpT 32
+ M B—U—Z— p(x,v) . 4.21)

Obviously, s >0 corresponds to sources and s <0 to
sinks, respectively. We recall that the validity of the ap-
proach requires that there be no sources injecting parti-
J

Lx,v)=2" 'wz\/M/21rkaTl+f exp | —

(x —x;, )= (k+v/w§)

where A, has been chosen in order to obtain the physi-
cally correct asymptotic behavior for large positive x
given by Eq. (4.18). The asymptotic behavior for x =X,

[see Eq. (4.17)] determines the normalization factor in
front of the integral. With Eq. (4.19) we obtain in leading
order (kpT) for the well population from Egs. (4.22) and
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cles with energies comparable to, or even higher than,
the barrier energy E,.

The next objective is to construct p(x,v). Still follow-
ing Kramers (1940) we make the ansatz

px,0)=§(x,0)exp{ —[Mv*+ U (x)]/ky T} . (4.22)

When x is in the neighborhood of the barrier top, Eq.
(4.15) yields a partial differential equation for &(x,v),
reading

—ui—[w,z,(x

0
ax x, ) t+yv] %

vkpT 32
M 32

fx,v)=0. (4.23)
We observe that this is simply the adjoint equation for
the time-reversed process in Eq. (4.1). According to the
boundary conditions in Egs. (4.17) and (4.18), the func-
tion {(x,v) must approach unity inside the well and van-
ish beyond the barrier region. This behavior may be
achieved if {(x,v) is allowed to depend on a linear com-
bination of x and v only (Kramers, 1940),

u=(x—x,)+tav . (4.24)
Equation (4.23) therefore transforms into
2

—[(1+yah +ota(x —x, )]§'+3ﬁ;li§”=0 ,  (4.25)

where the prime now denotes the derivative with respect
to u. In order that Eq. (4.25) become a proper ordinary
differential equation, the factor in front of the first deriva-
tive must be proportional to u,

(1+yah +ola(x —x,)=—Au ,

forall x=x, and allv . (4.26)

From Egs. (4.24) and (4.26) the coefficients A and a are
readily obtained as

A= —lﬂ/mb +(y /2?7, (4.27)
=)
a.=—5 (4.28)
@yp
The solution of Eq. (4.25) thus reads
M(of;u 2 d
2wk, Th, u (4.29)
[
(4.29) assuming the linearized potential U(x)=U(x,)
+iMoj(x —x, ),
s LY Ulx,) (4.30)
he= a2 expl—BUx,)] .
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The probability current, Eq. (4.20), becomes

+m “lexp[ —BU(x,)] .

J=A (4.31)
Thus, combining Eq. (4.14) with Egs. (4.27), (4.30), and
(4.31), we find with the activation energy E,=U(x,)

—U(x,) the celebrated Kramers result (Kramers, 1940)

Ar | o
kA—»CZ(o_ ;exp( ‘BE,,) (4.32)
b
" 172
v
- 20 expl( —BE,) 4.33)
o . exp ) . .

This result describes the spatial-diffusion-controlled rate
of escape at moderate-to-strong friction ¥, see Secs. C
and G below. In Eq.(4.32) the expression in large
parentheses is the result of simple transition-state theory
ks, given in Eq. (3.5). One observes that with Plu)=y,
the result in Eq. (4.33) coincides with the multidimen-
sional TST rate in Eq. (3.46) for a heat bath describing
strict Ohmic friction, i.e., y(6)=2y8(¢). The ratio
k 4_.c/k1st versus friction y is sketched in Fig. 10. As
can be deduced from Fig. 10, in the presence of a finite-
damping rate y the diffusive transmission factor
k=(Ay/w,) is always less than one, due to the ever-
present diffusive recrossings (see Fig. 9). A correction of
order (BE,y/w,)”! to the transmission factor in Eq.
(4.33) has recently been evaluated by Ryter (1987).

For strong friction, the transmission factor simplifies
further to give the rate in the overdamped regime, i.e.,
for y >>w, (Kramers, 1940)

Doy
Jc overdamped — exp(—BE,) ,

(4.34)

which approaches zero as y — . This same result may
also be obtained directly by working with the Smolu-
chowski equation, Eq. (4.9); see Sec. IV.E.

1.0

A—C
krsT

0.5

1 1 1 i I 1 1 L [l
Y 10

FIG. 10. The Ohmic transmission factor of the Kramers result
in Eq. (4.33) vs the (dimensionless) friction ¥, with w, =1.
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FIG. 11. Contour plot of the density of sources and sinks
s(x,v) [see Eq. (4.35)] in a symmetric double-well potential
Ulx)=—3x?+ tx* dotted line, the separatrix in the presence
of friction [see Eq. (4.5)]; solid line, a deterministic trajectory
that starts out at the maximum of the source density. Here we
address the spatial-diffusion-controlled situation with BE, =10
and moderate friction at ¥ /w, =1.

C. Energy of injected particles

In order to elucidate the limits of applicability of the
Kramers rate in Eq. (4.33) we focus here on the energy of
the injected particles.

For the density of sources and sinks rendering p(x,v)
stationary, we find from Eqgs. (4.21) and (4.22) combined
with Eq. (4.29) (Talkner, 1989; see Figs. 11 and 12 below)

! )

Y

-1 T
-2 -1 X 0

FIG. 12. Same as in Fig. 11, but now for an energy-diffusion-
controlled situation with SE, =10 and y /w, =0.01. Note that
in this case the density of sources is located mainly beyond the
separatrix, i.e., the injected particles assume an energy E > E,.
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1/2

2

A«+ Ma)zﬂ A«+v
= — V' — —x,)———— (x,v) . 4.35)
s{x,v) 2y Mk, T (x)exp 27hs (x —x, p Peq
l
Here peq(x,v)=Z~lexp{ —B[%Mv2+ U(x)]} is the AE =yI(E), (4.42)

thermal equilibrium probability. The potential V(x) is
given by

V(x)=U(x)+%w,2,(x —x, 2. (4.36)
The maximal values of s (x,v) lie on the line

v =k+(x _xb) (437)
and are located at those x values which solve

[V(x)P=kyTV"(x) . (4.38)

For the archetypal symmetric Ginzburg-Landau poten-
tial,

U(x)=E,—tMw}jx*+1bx* b>0, (4.39)

where with U(x,)=0 the barrier energy becomes
E,=M?w} /(4b), one finds, besides the trivial solution
x =x, where s vanishes, two solutions of Eq. (4.38),
namely,

3k, T 1/4

b

X, =x,x (4.40)

The strength of the sink and the source, respectively, is
thus maximal at x , and x_. The particles injected at

x _ have from Eq. (4.37) an energy
E=IM[A(x_—x,)P+U(x_)
3E, 1/2+ 3

. YAy

@}

kyT+E, . (441

At moderate and large values of the Jriction y the first
term renders this energy smaller than the barrier energy.
Thus almost all injected particles are caught by the stable
attractor at x,<0 and v =0, where they undergo
thermalization before they eventually escape; see Fig. 11.
However, if at constant temperature the damping rate y
decreases, the energy of injected particles becomes
greater than the barrier energy E,. At the same time the
energy loss along the deterministic trajectories (see Fig.
8) decreases with decreasing damping rate. As can be de-
duced from Fig. 12, the injected particles assume an ener-
g8y E>E, performing one round trip at a high energy
level and become trapped immediately after reaching the
region behind the barrier. In Eq. (4.33) these events with
E 2 E, are counted as if a particle from the bottom of the
well had escaped at once. Consequently, Eq. (4.33)
overestimates the true rate for weak friction, thus indi-
cating a breakdown of the Kramers method in the low-
friction regime. At low damping rates the energy loss
AE during a round trip at initial energy E <E, follows
from the deterministic limit of Eq. (4.1),
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where Eq. (4.11) has also been used. In conclusion,
Eq.(4.33) can be safely applied only if during one round
trip the energy dissipated is greater than the thermal en-
ergy,

YI(E)>kyT . (4.43)

D. Energy-diffusion-limited rate

If the condition in Eq. (4.43) is violated, the Kramers
method described in Sec. IV.B fails, and the rate must be
evaluated along a different line of reasoning. With Eq.
(4.43) strongly violated, both the energy and the action
are necessarily slowly varying quantities undergoing
diffusive motion. The diffusion of the action given in Eq.
(4.12) can immediately be transformed into a diffusion
equation for the energy E,

W(E)

d
“;p(E,t) .

14k, T

E, £)=y 3
B(E,t)=y——I(E) 3E

3E (4.44)

For the moment we consider the simplest case of a poten-
tial U(x) with only one metastable well, as sketched in
Fig. 13.

As soon as the particle has acquired an energy slightly
larger than the threshold energy E,, the particle escapes
from the well. The rate is then given by the probability
flux of particles in energy space through E, over the pop-
ulation of the well. Equivalently, the probability flux in
action space through I, =I(E,) may be used. In this

U(x)

FIG. 13. Metastable potential field used in text. Particles are

injected at x_ and immediately removed when they arrive at
X 4.
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case one solves for the stationary probability distribution
p(I) with an arbitrarily prescribed probability current j,

2aky T Kl

I+ o(l) al

j=—yI p(I), 0<I<I, . (4.45)

Imposing an immediate absorption at I =1I,, that is,
p(I =I,)=0, one finds with B=(k, T)~! from Eq. (4.45)

jykgT) lexp[ —BE (I)]

I ’
Xf b exp[BE (I] cozl)
T

pll}=

(4.46)

kilzno/j:('ka

At I =0, p(I) has a logarithmic singularity which origi-
nates from the fact that the probability source is concen-
trated at 7 =0,

=j[8(D—8(I~1,)] . (4.47)

However, for BE, >>1 this singularity does not contrib-
ute to the population n, in the well,
I

no= [ "ptndr .

By virtue of Eq. (2.11) one obtains the inverse rate as

I
T)‘lf0 "dI exp[—BE(I

In the limit of a high barrier (BE, >> 1), a change of vari-
ables, that is, dE =[w(I) /27 ]dI, yields to leading order

27TkB
Hence, for very weak damping, y <<w,, we recover pre-

cisely the result derived by Kramers (1940) for the
energy-diffusion-controlled rate of escape,

__1:

exp(BE,) (4.48b)

)
k =yBI(E, ) ~exp( —BE,) (4.49)
which is a valid expression for the rate if
kpT/E, <<1, and yI(E,)<<kgT (4.50)

Note that, in contrast to Eq. (4.33), the result in Eq.
(4.48) or Eq. (4.49) involves the value of the action at the
barrier energy, i.e., the anharmonic part of the well dy-
namics affects the final result for the energy-diffusion-
controlled rate.

In the more general case of a potential with two meta-
stable wells, as depicted in Fig. 14, a particle that ac-
quires sufficient energy to escape, say, from inside the left
well may bounce back and forth until it thermalizes with
a probability p inside the right well, or with probability
(1—p) falls back into the initial well. Hence the forward
rate k¥ reads

4 I(Eb+) (l)a +
k™ =k, .c=py KT 5~ exp(—BE) 4.51)
and vice versa
I(E; ) o, 3
k™ =ke_ ,=(1—p)y ka Soexp(—BE, ), (4:5)

where w, and o, are the angular frequencies in the left
and right wells, respectively.

The two rates are connected by the principle of de-
tailed balancing, Eq. (2.13). Since the equilibrium poau-
lations {,,7,} are known, that is, i, <@, 'exp(BE; ),
7, « @, 'exp(BE, ) [see Eq. (2.13)], one finds for the yet
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]f dr’ a)(I ) exp[BE (I’ )]

Iz (4.48a)

undetermined probability p the result
I(E,)

P= HEN+1E,)

{4.53)

For a symmetric bistable potential U (
sumes the obvious value of p =1.

—x)=Ul(x), p as-

E. Spatial-diffusion-limited rate:
the Smoluchowski limit

In this subsection we address in greater detail the es-
cape dynamics in the Smoluchowski limit [see Eq. (4.9)].

In the limit of large damping v, the rate in Eq. (4.33)
decreases inversely proportional to the friction,

Wpw

0@
k= 277 exp( —BE,)

(4.54)

This result may also be obtained directly from Eq. (4.9),
which in the form of a one-dimensional diffusion equa-
tion may be treated analogously to the energy-diffusion
equation. A source may be placed at x _ <x, and a sink
at x >x, (see Fig. 13). The stationary solution p(x),
which carries the current j and obeys the absorbing
boundary condition in Eq. (2.9), p(x =x )=0, becomes

FIG. 14. Asymmetric potential field U (x)} with two metastable
wells.
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p(x)=%%jexp[—U(x)/kBT]
B

x f:+exp[ Uy)/kyT)dy (4.55)

while the population n, is readily found to read
no=fjl;dx plx).

By virtue of Eqs. (2.11) and (4.14) we therefore obtain

k™'=nosi=[ " dy expl = U(y)/k,T]

x exp[U(z)/kgT
Xf +dz pl BT]
¥ (kgT/My)
(4.56a)
By use of a partial integration this becomes
x exp[U(y)/kgT
k_1=f +dy pLU(y)/kgT]
—w (kyT/My)
x [ dzexpl—U(2)/k,T], (4.56b)

1 U%Wix,) 1

Wy

U(4)(xa)

which precisely equals the MFPT result, f(x = — ),
with x = — o0 a natural boundary and x =x , absorbing®
[see Eq. (7.8) below]. With BE, >>1, Eq. (4.56b) can be
evaluated within a Gaussian steepest-descent approxima-
tion as

k~'=2my(wqw, )" 'exp(BE,) , (4.56c)

whose inverse again coincides with the rate in Eq. (4.54).

Skinner and Wolynes (1979) have calculated correc-
tions up to order ¥ ~° to this overdamped Kramers re-
sult, induced by the ¥ corrections to the Smoluchowski
equation [see Eq. (4.10)]. These corrections coincide, of
course, with the corresponding terms in the series expan-
sion of the rate in Eq. (4.33), in powers of ¥ ~'. More-
over, the correction to the steepest-descent approxima-
tion for the rate in Eq. (4.56¢c) can from Eq. (4.56b) ex-
plicitly be evaluated to give (Larson and Kostin, 1978;
Edholm and Leimar, 1979; Bez and Talkner, 1981; Mar-
chesoni, 1985b)

5 [U(J)(xb)]Z 5 [U(J)(xa)]Z

)
k= exp( —BE,)

l—kgT
2wy B

where U™  indicates the nth-order  derivative
d"U(x)/dx", and the vertical bars indicate the absolute
value.

F. Spatial-diffusion-limited rate
in many dimensions and fields

It has already been remarked by Kramers (1940) that a
Markovian description [see Eq. (4.1)], with a one-
dimensional model for the potential field may fail to yield
correct rate expressions in cases where other slow vari-
ables are present that may interact with the reaction
coordinate x. In this section we shall—by definition—
call the rate spatial-diffusion-controlled whenever non-
equilibrium effects for the energy population dynamics of
the type discussed in Sec. IV.D can safely be neglected.
As has been demonstrated in Secs. IV.B and IV.C, this
regime is not exclusively restricted to the overdamped
Smoluchowski region, but might also involve inertial dy-
namic effects, like those expressed with the Klein-
Kramers equation, if the rate-determining parameters,
such as the dimensionless barrier height SE » and the fric-
tion value, are of sufficient strength. The generalization
of Kramers’ moderate-to-strong friction treatment in Sec.
IV.B to multidimensional metastable potential fields did
not come immediately. In the late fifties, Brinkman
(1956), Landauer and Swanson (1961), the dislocation
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8 [U(Z)(xb)]Z _E [U(Z)(xa )]2

2 n 2
+ 24 [UP(x,)]? 24 [UP(x,)]} } +O[(kzT))

(4.57)

f

physicists Stenzel (1965), Seeger and Schiller (1966), and
Langer (1968) were among the first to generalize Kra-
mers’ treatment to an N-dimensional Smoluchowski
equation, i.e., to the case of overdamped motion in an N-
dimensional potential landscape. In terms of an N-
dimensional generalization of the Klein-Kramers equa-
tion, Langer (1969) subsequently gave a most thorough
treatment of the nucleation rate governing the early stage
of a first-order phase transition. In the following we shall
discuss this work in some detail. The earlier results for
the overdamped, N-dimensional Smoluchowski equation
may be obtained from this result as a special limiting
case.

1. The model
Langer (1969) considered the following (2N)-
dimensional Fokker-Planck equation:
ap({n},1)
ot
0 oFE 0
=25 M | ——+kyT— Ip({n},), (4.58)
ij o, Y a77j a77j

8In order that the results in Eqs. (4.56a) and (4.56b) exist we

assume a confining potential that grows faster than x2 as
X——o00,
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where the phase-space point {m} =(n1; «««, TN ) CODSISts
of an order-parameter field 7(x) such as the magnetiza-
tion in a magnet or the density in a fluid taken at N fixed

space points X;,

n=nx;), =L N, (4.59a)

The conjugate momentum field m(x) is taken at the same
points,

many=mlx), i=1. N (4.59b)

E({n}])isa (Hamiltonian) energy function having a lo-
cally stable state at {n*}, which is separated by an ener-
gy barrier from another stable state with lower energy.
The point {1’} with minimal energy on the barrier ridge
is a saddle point of E ({n}), which must be overcome in
Jeaving the original metastable state {n1}.

In the deterministic limit the system moves according
to the solutions of

. oE
M, S M; an, , (4.60)
where, for the sake of simplicity, the transport matrix
(M;;) is assumed to be constant. Langer (1969) assumes
that the matrix (M;;) is the sum of a non-negative definite
symmetric matrix (D;;) and a symplectic matrix (A4;)
(see Goldstein, 1980), which accounts for the inertial

motion,

M,-j=Dij+ 4; (4.61)
With D=0, the motion according to Eq. (4.60) would be
purely conservative, while in the presence of a nonzero
diffusion matrix D energy would be dissipated,

U_BE <0, (4.62)
an;
where 7, is found from Eq. (4.60).
At finite temperatures the stationary equilibrium prob-
ability density reads

peq({n})—-—Z—lexp[—BE({‘n})] . (4.63)
The rate at which the metastable state decays may again
be calculated in terms of the ratio of the total probability
flux crossing the energy barrier, and the population of
the metastable state corresponding to a stationary,
current-carrying situation. Because of the presence of
the saddle point, the total probability flux over the bar-
rier will essentially be concentrated in a narrow region
around {7°}.

In the following calculation of the rate we shall consid-
er the more general case in which A;; is only antisym-
metric but not necessarily symplectic. As a consequence
the number of components of {7} need no longer be re-
stricted to an even number.

. oE
E=-3—D
ij 377.'

2. Stationary current-carrying probability density

As in the one-dimensional case dealt with in Sec. IV.B,
the stationary current-carrying probability density
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p({n}) obeys the following conditions.

(i) There are no sources and sinks in the neighborhood
of the saddle point, i.e., p({n}) obeys near {n} = {7} the
relation

0
2 TMU

d
e (n, —m)+kgT—— |pt )=0,
> 3, % ke T Mk B an p({n}

j
(4.64)

where it is sufficient to consider the energy in the har-
monic approximation

E ({7} )=E,—35 eij(m_flf)("lj“flj') ’
ij

(n)={n°} .

(ii) Near the metastable state {74}, p{n}) agrees with
the equilibrium distribution in Eq.(4.63),

(4.65)

p{n))=pegl{n}), for (m}={n"}. (4.66)
(iii) Beyond the saddle {n%], p({m}) vanishes,
p(n})=0, (7} beyond{n5} . (4.67)

The conditions (i)—(iii) present a straightforward gen-
eralization of the reasoning pioneered by Farkas (1927).
By use of the same ansatz for p({n}) as in the one-
dimensional case, Eq. (4.22),

pl{n=5({n}pgt{n})
one obtains from Eqs. (4.63) and (4.64)

(4.68)

an;

d d
XM —zejk(nk_ni)—kBT—-a ]——§({n})=0,
ij k j

for {9}=(n’} . (4.69

In view of Eq. (4.29) we make for &l {n}) an ansatz that
already satisfies the boundary conditions (ii) and (iii),

1 ® z?
({n))=—=——=—=) exp|—
5({m]} \/ZﬂkBTfu xv‘ 2, T

Here u is assumed to be linear in the deviations from the
saddle point:

u=3 Uln;,—n) .

dz . (4.70)

4.71)

By insertion, we find that the U, are the components of
the left eigenvector of the time-reversed ( ~) dynamical
matrix 3,; M,-je .« belonging to the unique positive eigen-
value A describing the growth rate of a small deviation
from the saddle point,

-3 UM ej =k Uy . (4.72)
ji
The normalization of U is fixed so that
A= UM;U;. (4.73)

ij

This requires that the component of the diffusion matrix
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in the dynamically unstable direction is not vanishing.
For later use we note that the normalization of U, Eq.
(4.73), is equivalent to

ij

(4.74)

where (e,-j—l) denotes the inverse matrix of (e;;). We shall
comment on the case in which this matrix may not be in-
verted [see Eq. (4.83) below].

3. The rate of nucleation

From the general form of the probability current

BE 4 5@

({n},0)  (4.75)
an, o, p{n}

Ji([n},t)=—EMij
J

we obtain with Egs. (4.63), (4.70), and (4.71) for the sta-
tionary current density

b UiMij Uj
ij 1
S U, 'U, ‘1/2 2w

ij

j=
j

where detE'S denotes the determinant of the matrix
E'®'=(¢;) [see Eq. (4.65). With Egs. (4.73) and (4.74)
the flux simplifies further to give

A
j = ldet[(2mks T)'E'S)| =122 ~exp(—BE, ) .

(4.79)

In order to obtain the rate, we must divide the flux by the
population n , inside the initial well, which in the Gauss-
ian approximation emerges as

n,={det[2mkyT)'E)} ~12Z2 71 | (4.80)

with E'? denoting the Hessian matrix of the energy at
the metastable point {n?} where the energy is assumed
to vanish. If we combine Egs. (4.79) and (4.80) we find
for the rate the important result (Langer, 1969)

Ay [ detl@mkyT)TIEA] )12
2 | |det[(2mk, T) " 'E'®]|

exp(—BE,) .

(4.81)

Hence the rate is given by the deterministic growth rate
A+ [see Eq. (4.72)] of a small deviation from the saddle
point times the relative frequency

{det[ 27k T)"'E' ]/ |det[(27k, T) ~'E]| } 172
Xexp(—E, /kyT)
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|det(E'S 727k 5 T)| ~1/2Z ~'exp(—BE,,) ,

Ji{n}=V'kpT /2w 3, M;U;p.. ({1} exp(—1Bu?) .
J

(4.76)

In order to obtain the total probability flux over the
barrier, we would in principle have to integrate the
current over a hypersurface containing the saddle point
and surrounding the metastable state {54}. As already
mentioned above, because the probability current is
strongly concentrated in a small neighborhood within the
bottleneck region it is sufficient to integrate the current
over a plane containing the saddle point. The orientation
of the plane may be chosen almost arbitrarily. We re-
quire only that the probability current not flow complete-
ly parallel to the chosen plane. We now integrate the
current over the plane u =0,

j=2 fu=0dS,-J,~([n}) : (4.77)

Within the harmonic approximation for the energy near
the saddle point, Eq. (4.65), the integration yields for the
total flux (see Appendix A)

(4.78)

[

of finding the system at the saddle rather than at the
stable state {n“}. Earlier, Langer (1967) obtained this
frequency factor as the imaginary part of the equilibrium
free energy of a metastable state, evaluated in a steepest-
descent approximation about the stable point and the
saddle point,

ImF _ 1 | det[(2mkz ) "'E'Y] 12
kgT 2 ldet[(Z*rrkBT)—lE(S)]l

exp(—E, /kgT) .

(4.82)

Therefore the rate in Eq. (4.81) may also be expressed as
(Langer, 1969, 1980)

k="t Im
_kaTm )

(4.83)

The form of the result in Eqs. (4.81) and (4.83) makes
explicit that this generalization of the Kramers rate is
equivalent with a harmonic, multidimensional TST rate
in which the dissipative motion is modeled in the full
phase space of the total system, i.e., one treats explicitly
the coupling to the degrees of freedom of the heat bath.
Put differently, just as the multidimensional TST rate in
Eq. (3.46) exhibits equivalence with the spatial-diffusion-
controlled Kramers escape rate in Eq. (4.33), the result in
Eq. (4.81) can be obtained as the TST rate in full phase
space of all degrees of freedom. In particular, the growth
rate A, plays the role of a generalized, friction-
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renormalized barrier frequency [see Eq. (3.44)], which is
known in the chemical physics community as the
“Grote-Hynes frequency” (Grote and Hynes, 1980).

So far, we have completely neglected the influence of
symmetries that may lead either to a discrete number of
equivalent saddle points or to a whole continuum of sad-
dle points, as would be the case for a continuous symme-
try. In the first case, Eq. (4.81) gives the escape rate over
one saddle and the total escape rate is this rate multiplied
by the number of equivalent saddle points. In the case of
a continuous symmetry, the matrix of second derivatives
of the energy at the saddle point has vanishing eigenval-
ues corresponding to Goldstone modes. These must be
excluded from the calculation of the Hessian. Integra-
tion over the Goldstone modes yields a factor propor-
tional to the volume of the symmetry group, which for
the case of translational symmetry of an extended system
is determined by the physical volume of the system
(Langer, 1967, 1980; Giinther, Nicole, and Wallace,
1980).

In the special case of Smoluchowski dynamics where
the transport matrix is proportional to the unit matrix

1
MU—WSU , (4.84)
and the energy function E consists of a potential energy
U(q), Eq. (4.81) simplifies to (Brinkman, 1956; Landauer
and Swanson, 1961; Langer, 1968)

@y H,-a)[A
2y Woj

Here {o?] are the angular frequencies of the stable

modes at the saddle point, @, >0 denotes the unstable
angular frequency, and the set {o A} denotes those at the
metastable state {174]. The notation (II') indicates that
the unstable angular frequency mode has been excluded
from the product.

As we point out below Eq. (4.83), the appealing treat-
ment by Langer for the escape rate does not hold in all
physical situations, but applies only in the strong-
coupling limit, when effects of nonequilibrium due to
energy-diffusion-controlled processes can safely be
neglected. The regime of its validity will be discussed in
greater detail next.

exp{ —E, /kgT) . (4.85)

G. Regime of validity for Kramers' rate theory

In conclusion, various results for the Kramers’ escape
rate are derived in Egs. (4.33), (4.49), (4.54), and (4.81)
under the condition of weak thermal noise, BE, >>1.
This condition assures a clear-cut separation of time
scales, as noted previously [see Eq. (2.2)]. The regime of
validity of the various results depends further in a
characteristic way on the dimensionless coupling param-
eter (y/w,). With (y/w,)>1 we generally find that
thermal equilibrium prevails throughout the escape pro-
cess, and the rate k becomes spatial-diffusion limited
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(Fig. 9). This in turn implies the validity of Egs. (4.33),
(4.34), and (4.56), as well as of Egs. (4.81), (4.83), and
(4.85) in the multidimensional generalization. The escape
dynamics becomes controlled by energy diffusion when-
ever the condition in Eq. (4.43), YI(E ) > kT, starts to
fail. Since the action I(E,) is of the order (E, /w,), we
find a turnover region (see Sec. VI) around kzT/E,
=(y/w,), with kzT/E,<1. When yI,=(y/w,)E,
<kgT, the thermalization process inside the metastable
well takes place on a time scale 7, comparable to, or even
larger than, the time scale set by the simple transition-
state theory in Eq. (3.5), i.e., 7, 2 (27 /wg)exp(BE, ). This
in turn implies a deviation from the thermal equilibrium
probability inside the metastable well, as specified by the
current-carrying stationary nonequilibrium energy densi-
ty in Eq. (4.46). With p(E)=p(I)[27/w(E)], one finds
deviations from the Boltzmann distribution within a nar-
row region of order kg T below the barrier energy E,. In
particular, we note that from Eq. (4.46), p(E =E,)=0.
The two dimensionless parameters, kT /E, and (y /o),
therefore characterize the regimes of validity of the
different results for the rate in the spatial-diffusion limit-
ed regime and in the energy-diffusion limited regime.
This behavior can be characterized by the classical rate-
phase diagram depicted in Fig. 15.

In view of the rate treatment for the energy-diffusion-
controlled regime, it should also be stressed here that so
far we have treated the dynamics of energy exchange
within Kramers’ model in terms of a Fokker-Planck
equation only [see Eq. (4.44)]. In other words, the energy
dynamics has been approximated by a continuous Mar-
kov process for which the change of energy upon a single
collision is continuous. More realistic, however, is a
model in which the energy upon a collision may change
by a finite amount. The latter situation is typical for
chemical reactions in the gas phase. Rate theory at weak
friction has therefore been a topic of considerable interest
within the chemical physics community, where it is
known as “unimolecular rate theory.” A survey of the

kgT/Eyp

.. moderate - to-strong
friction

weak
friction

| y/wy

FIG. 15. Regime of validity of Kramers rate expressions for
weak friction [see Eq. (4.49)], and for moderate-to-large friction
[see Eq. (4.33)], as a function of the two relevant dimensionless
parameters, the inverse Van’t Hoff-Arrhenius factor kzT/E,
and the friction strength y /o,
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recent major developments in this field in one and many
dimensions is the subject of the following section.

V. UNIMOLECULAR RATE THEORY

The theory of unimolecular reactions (or first-order re-
actions ¢ = —kc) in the gas phase is a classical topic of
physical chemistry. Pioneering work of Lindemann
(1922) and Hinshelwood (1926a, 1926b) initiated the for-
mulation of the theory by Rice and Ramsperger (1927),
Kassel (1928a, 1928b), and Marcus (1952, 1965), com-
monly known as RRKM theory. Recently it has been
further developed, by among others, Keck and Carrier
(1965) and Troe (1975). The topic is well documented in
the chemical physics literature, in review articles, and
monographs (Forst, 1973; Hase, 1976; Callear, 1983).
Probably because this theory has been applied mostly to
unimolecular chemical reactions, it has remained virtual-
ly unknown within the physics community. Only recent-
ly has it been recognized that several results in the
reaction-rate theory of weakly damped systems can be
obtained as special cases of unimolecular rate theory.
One example, which we shall discuss in detail below, is
the energy-diffusion-limited rate in Eq. (4.49) of the Kra-
mers problem. In this section we review the most impor-
tant aspects of unimolecular rate theory in thermal sys-
tems and investigate within this framework the predic-
tions for weakly damped systems.

The basic physics of the problem was set forth by Lin-
demann (1922). He considered the dissociation of a mol-
ecule 4 in an inert bath gas. As the molecule A under-
goes collisions with the gas molecules M, a Very energetic
collision may impart more than the barrier energy to the
molecule. As the energy of the resulting activated mole-
cule 4 * is now above the dissociation threshold, the mol-
ecule may cross the barrier and dissociate into the prod-
uct B. Collisions, in turn, may also remove energy and
deactivate the molecule. Therefore we have the reaction
scheme

kl
A+M —— A*+M (activation) ,
kZ
A*+M —— A +M (deactivation)

2

k3
A* —— B (dissociation) .

The kinetic equations for these reactions read

éA:'—kICACM+k2CA*CM’ (5,1)

éA"’:leACM_kZCA"CM_k:icA* B (5.2)
where ¢; denotes the number concentration of species i.
Assuming that the inert bath gas M is in excess of species

A4, A* and that the number of activated molecules 4*
reaches a steady state, that is ¢ A.=O, the rate for the

unimolecular decomposition of 4 becomes
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kikycy

= 7 (5.3
M kytkye,, )

In a dilute gas the number concentration €y 1S propor-
tional to the pressure of the gas, i.e., to the collision rate
a or the damping rate y. The dependence of the overall
rate on pressure (or collision rate) is shown in Fig. 16. If
the pressure is large, the rate constant becomes indepen-
dent of pressure, namely, k,; =k;k, /k, =krgr. As we
shall discuss later, the high-pressure limit is equivalent to
transition-state theory. For low pressures, on the other
hand, k,; =k c)y; =k, that is, the rate equals the rate of
collisional activation and increases in proportion to the
pressure (or collision rate a). Note that Eq. (5.3) can be
rewritten as

ki =kc'+hrgr .

uni

(5.4)

This relation can be interpreted as the sum of two aver-
age lifetimes, and therefore the dissociation can be
viewed as a succession of two steps. A collisional activa-
tion step, characterized by a rate k¢, and the barrier-
crossing step, with a rate krgr. At low pressures the col-
lisional activation is slow, and thus ko determines the
overall rate. At higher pressures, on the other hand, the
collisional activation is rapid and the overall rate is deter-
mined by the rate kgy for the barrier crossing.

Let us pose the problem more precisely. Consider an
isolated molecule described by the classical Hamiltonian

n 2

Pi

H=3 s tU@, g, (5.5)

where the {gq;}

i=1,...

are the coordinates of particles
»n with masses m,, and the {p,} are the conju-
gate momenta. We assume that the n degrees of freedom
are strongly coupled so that a rapid equipartitioning of
the total energy E is possible. The potential energy U has
a single metastable well with its minimum given by
U =0, and the saddle point is located at a barrier energy
U=E,. We introduce a reaction coordinate x (q), which

kTsT -

—-

[0

FIG. 16. Schematic plot of the transition of the rate between
weak and strong collision rates & solid line, behavior for a sin-

gle degree of freedom; dashed line, behavior for several degrees
of freedom [see Eq. (5.32)].
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is positive for the undissociated species 4 and vanishes at
the dividing surface, which passes through the saddle
point. Let us investigate the situation in which the
species ( 4) is assumed to undergo a dissociation reaction
in a dilirte gas. At zero pressure (¢, =0) the molecule
undergoes no collisions and the total energy of the isolat-
ed molecule E =% is a conserved quantity. At low pres-
sures, the molecule will experience infrequent collisions
with the gas molecules. During these collisions the ener-
gy of the molecule will change in a jumplike manner. As

long as the pressure is low enough, the collisional events
will be uncorrelated, because the average time between

the collisions is much longer than the typical duration of
a collision. As soon as the energy of the molecule is
higher than the dissociation energy E,, the molecule will
dissociate with an energy-dependent rate. Therefore the
probability density p(E,t) of finding the undissociated
molecule with an energy E can be modeled by a Markovi-
an master equation (Montroll and Shuler, 1958; Widom,
1959; Ree et al., 1962; Keck and Carrier, 1965; Nikitin,
1966; Forst, 1973; Troe, 1975) of the form

QP%”: [ “dE'[K(E,E"p(E',t)~K (E',E)p(E, 1)]
0

—k(E)p(E,1) . (5.6)

The change in energy of the molecule due to collisions is
described by the integral term in Eq. (5.6), while the loss
of molecules due to dissociation is taken into account by
the last term in Eq. (5.6). The transition probability
K(E—E’)=K(E',E) per unit time obeys the detailed
balance condition

K(E,E')peq(E’)=K(E’,E)peq(E) . (5.7)
Here we have introduced the thermal distribution
peq(E)I%Q(E)exp( —BE), (5.8)

and denoted the density of states of the undissociated
molecule by

UE)= [ dq*Ndp*V§[E —#(p,q)] . (5.9)
The normalization is given by the partition function
Z= f0°°dE Q(E)exp(—BE) . (5.10)
We abbreviate the canonical average as
dq*dp* exp[ —BH(p,q)1f (p,q)
(fr= I , (5.11)

qu3Ndp3Nexp[—37¥(P,Q)]

and the microcanonical average constrained to the energy
E of the undissociated molecule as

[ dq*¥dp**s[E —7(p,q)1f (p,q)
[ dq**dp**s[E —#(p,q)]

For a single degree of freedom the density of states equals
the period
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(5.13)

For a collection of n harmonic oscillators with (angular)
frequencies {w, }, one has the well-known power-law ex-
pression (Polanyi, 1920; Troe, 1975)

. En*l n
E)= (n —1) I1

i=1

2m

«xE"T1, (5.14)

i
The transition probability density can also be written as

K(E',E)=aP(E"E), (5.15)

where a is the collision frequency and P(E',E) denotes
the conditional probability density of a molecule with ini-
tial energy E which after collision assumes the energy E’'.
In general, the collision frequency a will also depend on
the energy of the molecule prior to the collision, but we
shall simplify the present discussion by neglecting this
energy dependence.

The dissociation rate constant k (E) can be estimated
using microcanonical transition-state theory. In analogy
to Eq. (2.23) we write

(X)X 8(x))

(00x)) (5.16)

Obviously, molecules with an energy below the threshold
barrier cannot dissociate, and hence

k(E)=0, for E<E, . (5.17)

For a single degree of freedom Eq. (5.16) reduces to the
frequency of motion

k(E)=6(E —E,)/E) , (5.18)

where 7(E) is the round trip time for a particle starting
out at x =x, to go to the domain of attraction of state x,
and to return to x =x, (see Fig. 3).

For a collection of n harmonic oscillators Eq. (5.16)
yields the RRKM expression (Forst, 1973; Troe, 1975)

n
T o -

, for EZE, ,

(5.19)

where the set {©”'} are the angular frequencies at the

bottom of the well and {w!”’} are the stable angular fre-
quencies at the saddle point.

Even for sufficiently low collision frequencies, a simple
equation such as Eq. (5.6) cannot describe the dynamics
of an arbitrary molecule exactly. We shall discuss in Sec.
V.D the approximations inherent in Eq. (5.6) and demon-
strate how to relax some of these assumptions. Now, let
us consider the wide variety of results that follow from
Eq. (5.6).

The most popular method of evaluating the rate k
from Eq. (5.6) is the flux-over-population method, which
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was discussed in Sec. II.C.1. To build up a steady-state
current, we feed in particles at E =0 which give rise to a
steady-state distribution p(E) satisfying Eq. (5.6). The
loss term’ proportional to k (E) in Eq. (5.6) is responsible
for the removal of the injected particles. The rate k,
(i.e., the dissociation rate of the molecule) is related to
the constant probability flux j by [see Eq. (2.11)]

. - j_ Edek(E)po(E)

uni

E
"o fo "dE py(E)

(5.20)

The steady-state distribution satisfies [see Eq. (5.6)]°

[ “dE'[K(E,E")po(E')—K (E',E)po(E)]=k (E)p,(E) .
0

(5.21)

In the present context it is useful to introduce
a normalized steady-state distribution such that
ff”dEpo(E): [ ZdE po(E)=1. The extension of the
upper integration limit to infinity is permissible as it in-
troduces only exponentially small errors. The rate con-
stant then equals the probability flux j, and Eq. (5.20)
simplifies, with k (E)=0, E <E,, to

K yoi = fE‘:dE k(E)py(E) . (5.22)

In principle, given K (E',E) and k (E), Eq. (5.21) can be
solved for the normalized steady-state distribution Pol(E)
with the rate k,; then evaluated from Eq. (5.22). Unfor-
tunately, this involves the solution of the integral equa-
tion in Eg. (5.21), for which an explicit expression is gen-
erally not available. In some special cases, however, this
solution can be obtained in closed form.

First we consider the special cases of high and low col-
lision rates a, respectively, as discussed in the beginning
of this section in connection with Lindemann’s (1922)
work. In the case of a high collision rate (implying a
high pressure, i.e., @— ) the dissociation rate k (E)
(which is of the order of a typical vibrational frequency)
becomes much smaller than the collision rate a. The col-
lisions will then maintain the equilibrium distribution, so
that po(E)=p,,(E). In this case Eq. (5.20) becomes

K yni = Kyst

“dE k(E)p, (E)
Eh

€q

Eb
fo dE py(E)

_ (8(x)x0(x))
(o(x)y
Here we have used Eq. (5.16). This obviously is the result
of canonical transition-state theory discussed in Sec. III
[see Eq. (3.6)]. For a collection of harmonic oscillators
Eq. (5.23) simplifies to [see Eq. (3.14)]

for a— o . (5.23)

9To obtain from Eg. (5.6} a nonvanishing steady state, one
reinjects the lost particles back at E =0 with a rate k

uni*
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5o
IT %
1 i=1

=_————¢exp(—BE,) . (5.24)

On the other hand, in the low-collision-rate limit (imply-
ing low pressure, i.e., «—0), the collision rate is less than
the dissociation rate k(E) of an activated molecule.
Therefore the barrier threshold acts as a perfect sink, im-
plying py(E)—0 for E>E,, as a—0. In this case, Eq.
(5.22) shows that the rate vanishes in the low-collision-
rate limit. With a—0, the rate of energy activation be-
comes proportional to the collision rate, k,; =k, «a.
To obtain the explicit expression for k. we integrate Eq.
(5.21) from E=E, to E = . Using Eq. (5.22) and the
fact that py(E)~0 for E > E,, we obtain for the rate in
the low collision limit

*® Eb ! ! ’
kui=ke= [, dE [ "dE'K(E,E'po(E" ,

asa—0. (5.29

A useful quantity of a given collision kernel K (E’,E) is
its first moment, which is related to the average loss of
energy per unit time [see Eq. (5.15)],

A(E)= [ "dE'K (E',EXE'~E)=a(AE) , (5.26)

where we have introduced the average energy transferred
per collision,

(AE)= [ “dE'P(E',E)E'~E)<0 (5.27)

The case in which the energy transfer is very effective,
such that |(AE )| >>k, T, is commonly termed the strong
collision limit. In the opposite case of ineffective col-
lisions with |(AE }| <<k, T we encounter the weak col-
lision limit. Before we investigate the general case in Sec.
V.C, we discuss these two limits in more detail.

A. Strong collision limit

The collision kernel which allows for large energy
transfers is independent of the initial energy of the mole-
cule. From Eq. (5.7) it then follows that

Ksc(El,E)zapeq(E’) . (5.28)

In this strong collision approximation, a collision simply
resamples the energy from a thermal ensemble. Inserting
this collision kernel, Eq. (5.28), into Eq. (5.21) and using
the fact that the probabilities are normalized, one finds

a

= m (5.29)

Po(E) peq(E) -
Inserting Eq. (5.29) into Eq. (5.22) we obtain the explicit
expression for the rate in the strong collision approxima-
tion,

ak (E)

m . (5.30)

ksc= fE‘:dEpeq(E)
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A typical plot of the rate constant as a function of col-
lision frequency is shown in Fig. 16. As a— oo, Eq.

(5.30) reduces to the transition-state theory [see Eq.
(5.23)], while

ksc=afE°:dEpeq(E), as a—0 . (5.31)
This result can also be obtained by inserting Eq. (5.28)
into Eq. (5.25) and observing that in this case
PolE)=p.(E) for E <E,. Equation (5.31) can be inter-
preted as the collision rate a times the probability of
finding a molecule above the threshold barrier in a
thermal ensemble. For a harmonic density of states, Eq.
(5.14), we obtain from Eq. (5.31) for high barriers
(BE, >>n, with n the number of strongly coupled degrees
of freedom) the well-known result (Polanyi, 1920; Lewis
and Smith, 1925; Wigner, 1925; Christiansen, 1926;
Hinshelwood, 1926a, 1926b; Polanyi and Wigner, 1928)

(BE,)" !
ﬁexp( —BEb ), as a—0.

Note the rapid increase of the rate constant with increasing
number of degrees of freedom n (see the dashed line in
Fig. 16). Other strong collision models have been sug-
gested in the literature (Montgomery et al., 1979;
Skinner and Wolynes, 1980; Borkovec and Berne, 1985b).
Nevertheless, the corresponding results are always well
approximated by the strong collision approximation in
Eq. (5.28).

ke ~a (5.32)

B. Weak collision limit

In the case where the energy exchange upon a collision
is small, |(AE )| <<k, T, we perform a Kramers-Moyal
expansion of the master equation in Eq. (5.6) up to
second order (for the details of this procedure the reader
is referred to Hanggi and Thomas, 1982). We thus obtain
an energy-diffusion approximation of the form

2
PEL _ 3 ED]+-2—[D(Ep(E.1)
. gL A (Ep(ED] aEZ[ p(E,1)]

—k(E)p(E,1) , (5.33)

where we have introduced the energy-diffusion coefficient

D(E)=1 [dE'K(E",E)E'~E}'=1a{AE?) (5.34)
with
(AE?)= [dE'P(E',EXE'—E) . (5.35)
D (E) is related to the rate of energy exchange by
A(E)= peql(E) ng-[D(E)peq(E)]
— —pp(E)+ DB+ D (EyHIHEL (536)

dE

This relation follows from the detailed balance condition
in Eq. (5.7). Note that for energies £ >> kg T and smooth
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D(E), Eq. (5.36) can be approximated by

A(E)=—PBD(E), (5.37)

ie.,

(AE?*)~28""|{AE)]| . (5.38)

The energy-diffusion equation, Eq. (5.33), is a good ap-
proximation of the full master equation (5.6) when the
truncation of the Kramers-Moyal expansion is permissi-
ble. This applies if BI(AE™ ") <<|(AE™)| for all
m 22 (Hinggi and Thomas, 1982). In most cases the
condition B|{AE )| <<1 is sufficient, since common col-
lision kernels are of the form P(E',E)=f(E,x) where
x =(E'—E)/a, with a approaching zero. Unfortunately,
the general steady-state solution of Eq. (5.33) has not
been found. We can consider several special cases, how-
ever. For energies E <E,, where k(E)=0 [see Eq.

(5.17)], the steady-state solution of Eq. (5.33) can be writ-
ten as

E
dE)=C,+c, [ '—2E

5 D(Ep(E)’ (5.39)

where we have abbreviated the deviation of the steady-
state distribution from the equilibrium distribution as

EEY=py(E)/po,(E) , (5.40)

with C; and C, being two integration constants to be
determined. In the low-collision-rate limit a—0, the
steady-state distribution vanishes above threshold, i.e.,
PolE)=0 for E>E,. From the related continuity re-
quirement, {(E, )=0, one thus finds C,=0. The second
integration constant C, can be obtained from the nor-
malization condition, and C, is found to equal the
steady-state probability flux j, that is, C, equals the in-
verse rate kyc. After a partial integration [see Eq.
(4.48a)], the result reads explicitly

—1
B, dE E

= = ————— | dE'p. (E') )

k=kwe fo D(E)peq(E)fo Peq

as a—0. (5.41)

The energy-diffusion coefficient is given in terms of the
collision kernel by Eq. (5.34). For a collection of n
damped degrees of freedom this quantity can be directly
related to the damping rate. In the case of a non-
Markovian (NM), time-dependent memory friction one
assumes the equation of motion [see Egs. (2.6) and (3.31)]

U r t R
G ——— dt’'n;(t—t")g;(t")
m;q; 3q, izl fo 7 q;

+&(t), (5.42)
where 7;;(¢) are the elements of the time-dependent fric-
tion matrix and {&;(¢)} are the random forces. The cor-
responding energy-diffusion coefficient has been evalu-
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ated by Zawadzki and Hynes (19885) to give
kpT

m,-mj

Dyu(E)=3 fo‘”dt N, ({p0)p,(1)) g ,

(5.43a)

f

Dym(E)=

kpT ~o
;[ fo y(r){p(T)p(0)) pdT

=kp TIE)@(E)/27] [ “y(1){p(7)p(0)) ; /(p?) a7,

where I (E) denotes the action variable in Eq. (4.11).

In the case of Markovian (M) friction 7;;(8)=2n,;,8(¢),
Eq. (5.43a) simplifies further to give (Borkovec and
Berne, 1985a)

kT
Q(E)

s (5.44)

Dy (E)=
M i=1 M

fOEdE’Q(E’) .

Kramers (1940) solved the problem for a one-dimensional
system (n =1) using the action I as a slow variable; see
Sec. IV.D. This approach is entirely equivalent to the
present discussion, which uses instead the energy E as a
slow variable. Kramers’ model [Eq. (4.12)] leads to an
energy-diffusion coefficient

D(E)=ykyTI{E)o(E)/27 , (5.45)

where w(E) is the angular frequency and Y =n/M plays
the role of the collision rate @. Using Eq. (5.13) and the
fact that Q7 YE)=dE/dl =w(E)/(2m) (Goldstein,
1980), we can readily verify that for n =1 Eq. (5.44)
reduces to Eq. (5.45). The resulting rate in Eq. (5.41)
simplifies in the limit of high barriers, BE; >>1, to the
Kramers result given in Eq. (4.49),

_ “o
k =kwc=7vBI(E, )Eexp( —PBE,)

=yBI(Eb)kTST, as y—0, (5.46)
where k gy is the simple TST rate in Eq. (3.5).

A further simplification can be obtained if we approxi-
mate the action with the result for a harmonic oscillator
where I (E)=27E /o, yielding

k=kwc=yBE,exp(—BE,), n=1. (5.47)

To obtain the rate for the case of n strongly coupled de-
grees of freedom, we again approximate the density of
states by that for a collection of harmonic oscillators [Eq.
(5.14)]. With BE, >>n and y=(1/n)3,;m,; /m;, we find
with Eq. (5.44) the n-dimensional generalization of Eq.

(5.47) (Matkowsky er al., 1982; Borkovec and Berne,
1985a),
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where - -+ ) denotes the microcanonical average.

In one dimension, this result simplifies with
n(t) /M =y(t) [see Eq. (3.31)] to (Zwanzig, 1959; Carmeli
and Nitzan, 1982, 1984; Grote and Hynes, 1982)

(5.43b)
(5.43¢)
f
(BE, )"
k=kwc=v (n _bl T exp(—BE,) ,
asy—0, n=1. (548

Again, the approach to the TST limit with increasing
friction is considerably accelerated with increasing num-
ber of degrees of freedom n. Moreover, note that upon a
comparison with the corresponding answer for the strong
collision limit, Eq. (5.32), the dependence on the thresh-
old energy (BE,) is raised in Eq. (5.48) from the power
(n —1) to the power n. The additional factor (BE,) is due
to the weak collisions in energy space, |[{AE )| <<k,T,
which imply a nonequilibrium density for Do(E) of width
(kpT) below the threshold barrier with p,(E =E,)=0.
This is in contrast to the strong collision limit, where
po(Ey)70. The limitation of the result in Egs. (5.46) and
(5.47) will be further discussed in Sec. V.D.

The asymptotic weak-noise solution of Eq. (5.33) has
been extended for weak-to-moderate friction y for a one-
dimensional system (n = 1) by Biittiker, Harris, and Lan-
dauer (1983), and its non-Markovian generalization
[memory friction y(¢)] has been put forward by Hinggi
and Weiss (1984). For E <E, the density of the steady-
state distribution is still given by Eq. (5.39). For
E~E,>>kT, the deviation of the steady-state probabil-
ity from the equilibrium distribution &(E) [see Eq. (5.40)]
obeys from Eq. (5.33)

2 2
%—B%—%Q':O, E=E, , (5.49)
where
z=yBIE,)=kwc/k1st . (5.50)

The solution of Eq. (5.49) is an exponential function
S(E)=Csexp(—vE),E > E,, where v is the positive root
of the characteristic equation v2+Bv—B2=0. The three
unknown constants C,, C,, and C; are found from the
normalization condition of py(E) and the continuity re-
quirements of {(E) and d{/dE at E =E,. The rate k;
then equals the steady-state flux j =C 2, yielding
kui _ V1+47z —1

z e b
kst V1+4/z +1

n=1. (5.51)
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This result agrees with that of the RRKM theory in Eq.
(5.33), where the loss term k(E) is defined in Eq. (5.18)
(Borkovec and Berne, 1987).

The analysis can be generalized to the case of an arbi-
trary number of strongly coupled degrees of freedom n,
where the corresponding density of states Q(E) [Eq.
(5.9)] and the energy-dependent rate constant k (E) enter
[Eq. (5.19)]. Performing for n =2 the same analysis as

led to Eq. (5.51), we obtain with z=k}c?/k%:?
=kwc/k1st
kuni _ K2/3(Z/12)_K1/3(Z/12)

n=2. (5.52)

krst Kanz/12)+K, 5(2/12)

Here K (x) denotes the modified Bessel function. For
n 21, one again defines z as z =k /kygr. The leading
corrections to Eq. (5.48) can be evaluated for general n
with the result (Borkovec and Berne, 1987)

kuni:kWC(l—anzl/(n_H)'l_ ) > (553)
where in terms of the gamma function I'(x)
+2 n
+1 2F 1/(n+1) F n /F
@, =[(n ) ] n+1 n+1
(5.54)

The first coefficients a,,n =1, ...,5 are listed in Table 1.
Note that a, increases slowly with increasing ».

Equation (5.53) can be verified for n =1 and 2 by ex-
panding for small z Eqgs. (5.51) and (5.52), respectively.
Note that the correction to the weak collision limit in Eq.
(5.41) is nonanalytic in y. The presence of these nonana-
lytic corrections has been pointed out by Troe (1967,
1975, 1977), Leuthauser (1981), Biittiker, Harris, and
Landauer (1983), and Melnikov (1984). They have also
been verified in numerical studies by Risken and
Voigtlaender (1985) and Risken, Vogel, and Vollmer
(1988) for n =1, and by Straub, Borkovec, and Berne
(1987) for n =2.

TABLE 1. Numerical coefficients {a,} for the leading, nonana-
lytic correction to the low-friction result of Kramers as a func-
tion of the number n of coupled degrees of freedom undergoing
an energy diffusion. The RRKM theory in Egs. (5.19), (5.33),

and (5.54) predicts equal coefficients for a metastable well and a
symmetric double well. The last two columns show the accu-
rate results for a single degree of freedom, i.e., a one-
dimensional metastable potential U{x) obeying the Kramers
equation (4.4), with a small friction coefficient y (Melnikov,
1984; Risken and Voigtlaender, 1985; Melnikov and Meshkov,

1986).

Double well,
periodic potential

RRKM Metastable
n theory well

1 0.8239 0.483

1.372
1.759
2.148
2.536

(VR
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C. Between strong and weak collisions

The transition between strong and weak collision mod-
els has been studied in detail by Troe (1977). Even in the
limit of a low collision frequency (@ —0), the calculation
of the steady-state distribution involves the solution of an
integral equation that is obtained from Eq. (5.21) by ob-
serving thatpo( )—0for E > E,, namely,

f dE'K(E',E){(E')=a{(E), for E<E, , (5.55)
and {(E)=0 for E >E,. The function {(E) defined in
Eq. (5.40) represents the deviation of the steady-state dis-
tribution from the equilibrium distribution. It should be
noted that the function {(E) is discontinuous at the
boundary E =E,, except in the weak collision limit, Eq.
(5.39). This behavior is illustrated schematically in Fig.
17. Upon solving the integral equation (5.55) for {(E) we
can insert the steady-state distribution
PolE)={(E)p.(E) into Eq. (5.25), which yields the rate
constant in the low collision limit. Numerical solutions
of Eq. (5.55) have been investigated for different collision
kernels. In cases when K(E',E)=f(E'—E), Eq. (5.55)
becomes a Wiener-Hopf-type integral equation, and
analytical solutions may be extracted. In a different con-
text this technique has been applied by Melnikov and
Meshkov (1986) in the case of a Gaussian kernel (Sec.
V.D).

I
,
()
(a)
E L 4 -
ﬂt
1
1))
(b)
A ’
1 —
¢(E)
(c)
- L -

FIG. 17. Behavior of the form function in Eq. (5.55) near the
exit energy E, denoted by the solid circle on the E axis: (a) the
weak collision limit equivalent to the energy-diffusion limit in
Eq. (4.46), where p(I,)=0, that is, {(E =E,)=0; (b) intermedi-
ate case between weak and strong collision limits [see Eq.
(5.56)]; (c) strong collision limit.
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Troe (1975, 1977) has presented a simple analytical
solution in the case of the exponential collision kernel,
witha >0, 5 >0,

a r_ '
a+bexp( |E'—E|/a), for E'>E,
K(E',E)=

—|E'— for E'<E
a+bexp( |E'—E|/b), for ,

(5.56)

and found the rate k., Eq. (5.25), to be determined by the
implicit relation

Mc  _ _ |{AE)]
1—v"c kgT

for a—0, (5.57)

where 7 =kc/kgc is the collision efficiency, with ks
defined by Eq. (5.31) and (AE) given by Eq. (5.27).
Note that this equation correctly reduces to 5 =1 in the
strong collision limit, where [(AE )| >>k,T and to Eq.
(5.48) in the weak collision limit, where [(AE )| <<k, T.
Numerical studies (Troe, 1977) have shown that Eq.
(5.57) is approximately valid for many different collision
kernels.

These ideas can be generalized to the case of more than
one metastable well. In this case one must consider
several coupled master equations which describe the evo-
lution of the energy probability density for the particle’s
being in either well. The coupling arises from rate pro-
cesses that result from the loss or gain of particles from
the other well. In the low collision limit, the rate con-
stant can be determined from the rate of energy activa-
tion. The energy activation rate is given by Eq. (5.25),
but reduced by a finite probability p for the trapping in
the other well. The trapping probability p can be deter-
mined using the detailed balance condition. This has al-
ready been discussed in connection with the Kramers
problem in Sec. IV.D {see Eq. (4.53)] and carries over to
the more general situations discussed in this section.

1—exp —%(1+y2)

k /ktgr =exp {%fj dyIn

with z defined in Eq. (5.50). This solution exhibits the
proper V'y correction [Eq. (5.53)]. The coefficients
a,=0.824 for the metastable well and a, =0.683 for the
symmetric double-well potential (see Melnikov and
Meshkov, 1986) are in close agreement with the numeri-
cal studies by Risken, Vogel, and Vollmer (1988). Before
we proceed it should be pointed out here that—in con-
trast to the turnover theory treatment in Sec. VI—the
result in Eq. (5.60) is restricted to the weak-friction re-
gime only, where the quantity z just agrees with the di-
mensionless energy loss in Kramers’ energy-diffusion-
limited regime. Formally, the result in Eq. (5.60) ap-
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J/(l+y2)

D. Beyond simple unimoiecular rate theory

Serious problems arise if one attempts to investigate
more general models. These approaches can be most
easily reviewed in discussing the assumptions involved in
unimolecular rate theory. In the beginning of this sec-
tion we shall focus on one-dimensional systems without
memory. Then we elaborate on systems with more di-
mensions (without memory), and finally we shall point
out some subtleties for memory friction.

The only approximation in applying unimolecular rate
theory to a one-dimensional system without memory is
the treatment of the isolated system by RRKM theory.
A more accurate description was put forward by Iche
and Nozieres (1976) (see also Leuthiuser, 1981) in a
different context. Following this same line of reasoning
Melnikov and Meshkov (1986) evaluated the Kramers
rate at weak-to-moderate friction by considering the
probability per unit time f(E) of finding a system with
energy E in the barrier region near a classical turning
point of the trajectory. In analogy to Eq. (5.22) they
wrote for the rate constant

k= fEde fIE). (5.58)
This function f(E) obeys the integral equation {see also
Eq. (5.55)]

E
[ TdE'P(EIEf(EN=F(E) . (5.59)

P(E|E’) is the conditional probability that a system leav-
ing the barrier region with energy E' will return with en-
ergy E. Assuming a high barrier, BE, >>1, one can ap-
proximate the kernel P(E|E’) by a Gaussian with its
mean value ((E’'—E)) centered around the energy loss
(AE). In the Kramers case (AE) equals —vI(Ey),
and 1ts variance is given by Eq. (5.38); that is,
(AE*)=2kzT|(AE)|. Using the Wiener-Hopf tech-
nique Melnikov and Meshkov (1986) found for a single
metastable well the explicit solution

) (5.60)

f

proaches unity with z>1, i.e., the rate k rapidly ap-
proaches the simple TST value in Eq. (3.5), but fails to
cross over into the spatial-diffusion-controlled regime
where the rate k —0, as y — .

Let us next consider more complex situations with
several coupled, dissipative degrees of freedom, but
without memory friction. While the unimolecular rate
theory applies for a single degree of freedom without
memory friction to good accuracy, it can fail seriously in
the case of many degrees of freedom, or in the presence
of memory.

The simplification inherent in unimolecular rate theory
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for a many-dimensional system was introduced with the
assumption that the total energy of the isolated molecule
is the only slowly varying variable. Obviously this is not
true, as for a molecule the total angular momentum L is
also approximatively conserved (and possibly some other
hidden variables as well) and will therefore also relax
slowly if coupled to a dilute bath gas. Multidimensional
master equations describing such processes have been
studied in some detail for the strong collision model
(Forst, 1973) and for exponential models (Troe, 1977).
Such problems become more tractable in the weak col-
lision limit, where the resulting multidimensional
diffusion equations can be solved by use of asymptotic
techniques (Matkowsky et al., 1982; Borkovec and
Berne, 1986).

The most severe limitations in using unimolecular rate
theory for a multidimensional system are the assump-
tions of ergodicity near barrier energies and rapid relaxa-
tion on the energy shell. The importance of this effect in
rate theory was recognized by Rice (1930). More detailed
discussions had to await the developments of nonlinear
mechanics (Lichtenberg and Lieberman, 1983). While
for a single degree of freedom a trajectory explores the
energy shell in a periodic fashion, this need not be so for
2 or more degrees of freedom. The validity of unimolecu-
lar rate theory rests upon full ergodicity of the motion in
phase space. In general, a trajectory will cover only a
fraction of the whole energy shell. In the present context
it is useful to distinguish between crossing tori and trap-
ping tori (de Leon and Berne, 1981, 1982; Berne, 1984).
In the isolated system, trajectories of crossing tori will
cross to the other side of the barrier. On the other hand,
trajectories of trapping tori are trapped on one side of the
barrier and thus will never cross. Because such trapping
tori exist also above the threshold energy their presence
will reduce the overall rate constant. The failure of the
ergodicity assumption inherent in unimolecular theory
can be seen if we consider a damped two-dimensional sys-
tem without memory, a bistable well coupled to a stable
oscillator (Borkovec, Straub, and Berne, 1986; Straub and
Berne, 1986). Suppose that for a certain coupling
strength the motion is ergodic and the rate constant is
well described by Eq. (5.48) with n =2. As the coupling
strength is decreased, the stochastic two-variable system
must approach a one-dimensional system with a rate
given by Eq. (5.48), but now with n =1. This transition
cannot be described by unimolecular rate theory. It is
caused by the progressive shrinking of the crossing re-
gion of the phase space. This crossover between n =2
and n =1 has been demonstrated numerically for the
BGK model (Borkovec, Straub, and Berne, 1986) and the
Kramers model (Straub, Borkovec, and Berne, 1987).

Similar, but more subtle, effects may arise in a one-
dimensional system with non-Markovian memory (Straub
and Berne, 1986). Consider a bistable system that is bi-
linearly coupled to damped harmonic oscillators (see Sec.
I11.C). This system can be described by a Langevin equa-
tion with a memory friction y(¢) [see Eq. (3.31)]. One is
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thus tempted to apply Eq. (5.43) for n =1 in order to
evaluate the (non-Markovian) rate at low friction [see Eq.
(5.41)]. Nevertheless, such a procedure is applicable only
when the coupling between the system and the harmonic
bath is sufficiently weak. With increasing coupling
strength to the damped oscillators, the prediction might
severely underestimate the correct result (Straub and
Berne, 1986).

Vi. TURNOVER BETWEEN WEAK AND
STRONG FRICT!ION

In Secs. III and V we have considered two familiar ap-
proximations to classical activated rate theory, namely,
multidimensional transition-state theory and unimolecu-
lar rate theory or, more generally, rate theory at weak
dissipation. Both theoretical approaches are based on
some simplifying assumptions and, as we have discussed
in Sec. IV.G, thus accurately describe the rate in specific
regimes only. For example, the Kramers rate in Eq.
(4.33), which coincides with the multidimensional TST
approach in Eq. (3.46), will be correct for moderate-to-
large friction y, whereas at very weak friction, y —0, the
rate becomes energy-diffusion limited. In particular, one
observes from the corresponding limiting rate expres-
sions in Egs. (4.33), (4.34), (4.57), and Eq. (4.49) that the
rate approaches zero both for y— o and y —0. As al-
ready noted by Kramers, these two limiting behaviors
imply a maximal rate at some damping value intermedi-
ate between the two limits. The transmission factor
K=k(‘y)[(w0/217)exp(—BE,,)]_I, therefore, undergoes a
turnover in the form of a bell-shaped curve (see Fig. 18).

A. Interpolation formulas

Many attempts have been made to provide a single ex-
pression for the rate k which would bridge the two limits

K

i = TST
moderate-to-
strong damping

0

weak damping Y /W

FIG. 18. A sketch of the transmission factor « for classical ac-
tivated escape vs the friction y. With increasing friction the
transmission factor undergoes a turnover from linear behavior
at very weak friction to an inverse behavior in the Smolu-
chowski limit ¥ /@, >>1. The dashed line indicates the upper
limit for , given by simple TST theory [see Eq. (3.5)].
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(Troe, 1975; Grote and Hynes, 1980; Carmeli and Nitzan,
1984; Hinggi and Weiss, 1984; Matkowsky, Schuss, and
Tier, 1984; Zawadzki and Hynes, 1985; Straub and
Berne, 1986; Straub, Borkovec, and Berne, 1986; Janssen,
1988). Perhaps the most frequent suggestion made is the
ad hoc formula [see also Eq. (5.4)]
k~'=k " (low damping)
+k ~!(moderate-to-large damping) . (6.1)

For the Kramers model in Sec. IV this gives for the for-
ward rate k *

(k*)~'=|lpyBI(E;)]™

(6.2)

with p given in Eq. (4.53). An alternative bridging for-
mula can be obtained if one applies a multiplicative form
(Troe, 1975), i.e., if we recall that the unimolecular rate
in Eqs. (5.4), (5.23), (5.51), and (5.53) approaches for high
friction (i.e., high pressure) the result of the simple
transition-state theory in Eq. (3.5), where we set for the
overall rate
_ k(unimolecular )k (moderate-to-large damping)

= (wo/2m)exp(—BE,) '
(6.3)

For the Kramers model in Sec. IV one finds with Egs.
(4.33) and (5.51) the explicit ad hoc expression

(1+4[yBI(E,)] "} 21

k=vBIE
vBI(E,) (1+4[yBI(E,)]"}/2+1
(O]
><m[(ﬂ/z+w§)1/2—%7]exp(—BEb) , (6.4)

where we used p =1. Still other, more sophisticated
bridging formulas have been proposed (Skinner and
Wolynes, 1980; Melnikov and Meshkov, 1986; Cartling,
1987). In all these bridging formulas, however, there is
always an element of arbitrariness. Even the recent beau-
tiful approach for the low-friction regime by Melnikov
and Meshkov (1986) uses an ad hoc multiplicative
transmission factor, given by the last part in Eq. (6.4), to
assure that the bridging expression reduces to the correct
spatial-diffusion limit [see Eq. (4.34)] when y/w, >>1.
For the Kramers problem, the above bridging expres-
sions yield results that agree roughly to within <20%
with the numerically precise answers inside the turnover
region. In higher dimensions, and for the case of
memory friction [see Eq. (3.31)], these interpolation for-
mulas may eventually fail seriously, however, and it be-
comes difficult to assess the regions of their validity
(Straub, Borkovec, and Berne, 1987). Generally speak-
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ing, the multiplicative form in Eqgs. (6.3) and (6.4) yields
better results than the additive form in Egs. (6.1) and
(6.2).

B. Turnover theory: a normal-mode approach

As mentioned previously, the application of the above
interpolation formulas in Eqgs. (6.1) and (6.3) sometimes
requires caution. What is needed, therefore, is an analyt-
ical theory for the rate of escape that covers the whole
damping regime on a common basis. Such a theory,
which is applicable also for memory friction, does indeed
exist (Pollak, Grabert, and Hanggi, 1989). Following the
reasoning put forward by Grabert (1988), the basic idea
underlying the approach is the observation that the es-
cape dynamics is governed by the unstable normal-mode
coordinate—and not the particle configuration coordi-
nate. The final result for the rate can be expressed solely
in terms of the quantities that enter the generalized
Langevin dynamics in Eq. (3.31). Here we present only
the main result and refer the reader for details to the
original papers (Grabert, 1988; Pollak, Grabert, and
Hinggi, 1989). In Fig. 19 we compare the results for this
turnover theory with recent numerical computations
(Straub, Borkovec, and Berne, 1985, 1986) of the Kra-
mers theory with exponential memory friction,

y(t)=a lexp(—t/ay), (6.5)

in a piecewise continuous parabolic single-well metasta-
ble potential U (x),

%Mmﬁ[x +x)3, x<—x*,

Ulx)=
E,—iMaolx? x=—x*,

(6.6)

Here x* is the smooth matching point, E, =LMao}x,x*,
with x *=x,(1+w} /03) "\

This theory is based on the following two observations.

(i) The multidimensional normal-mode TST theory in
Eq. (3.46) equals the spatial-diffusion-controlled Kramers
rate in Eq. (4.33); and

(i) the unstable normal-mode dynamics decouples
from the other modes in the close vicinity of the barrier,
where the normal-mode dynamics are virtually exact.

These facts make possible a formulation in terms of a
one-dimensional stochastic process for the energy in the
unstable mode. The loss of energy AE in this unstable
mode then determines the conditional probability
P(E|E')dE that a system leaving the barrier region with
energy E’ in the unstable mode returns to the barrier
with an energy between E and E +dE. The quantity
P(E|E') satisfies detailed balance and determines the
probability f(E) per unit time of finding the system
within the energy E and E +dE in the normal unstable
mode near a turning point as the solution of the integral
equation

E
f(E)=[ "dE'P(EIE")f(E") . (6.7)
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FIG. 19. Turnover in the presence of exponential memory fric-
tion [see Eq. (6.5)] as a function of the dimensionless damping
P(w=0)/w, =" in the metastable potential of Eq. (6.6) for
various frequency ratios, with w, denoting the barrier frequen-
cy and w, the well frequency, respectively: solid circles with er-
ror bars, the SBB transmission coefficient data (Straub, Borko-
vec, and Berne, 1986) for a single-well potential; solid lines, the
theory of Pollak, Grabert, and Hanggi (1989). The data are for

an Arrhenius factor of BE, =20, and a* =aw} = %.

For E — «, f (E) approaches zero, while deep inside the
well, E/E, <<1, f(E) assumes its equilibrium value,
f(E)eq=PBoyu2mw,) " 'exp(—BE), with p defined in Eq.
(3.45).

In terms of this steady-state probability f(E), the rate
of escape equals

k=[, dEf(E), (6.8)

since all particles reaching the barrier with energy
E > E, will escape with probability one. In the limit
BE, >> 1, the probability P(E|E’) becomes a Gaussian, in
the variable (E —~E'), and the integral equation in Eq.
(6.7) can be transformed into a Wiener-Hopf equation
that can be solved by standard methods (Melnikov and
Meshkov, 1986; Pollak et al., 1989). The final answer for
the transmission coefficient «, for the single-well poten-
tial then reads (Pollak, Grabert, and Hinggi, 1989)
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B k
Ksw= (g /2m)exp( —BE, )

1 r=o d
A Y R
a)b m — 1+y

XIn{l1—exp[—8(1+y?)/4]} |, (6.9a)
where p is the unstable normal-mode (angular) frequency
[see Eq. (3.45)], and where'®

0=BAE (6.9b)

denotes the dimensionless (positive-valued) energy loss of
the unstable normal-mode motion, i.e., AE is generally
not the energy loss along the physical particle coordinate.
For 8§>>1, the transmission factor in Eq. (6.9a) ap-
proaches the multidimensional TST value, p/w,, ex-
ponentially fast. For § of order one, or smaller, the prob-
ability per unit time f(E) of finding the system in the
barrier region assumes nonequilibrium effects which yield
a transmission factor below the multidimensional TST
value. For very weak damping, the transmission factor
in Eq. (6.9a) approaches

i
@y

Koy = BAE, §5<<1, (6.10)

which reduces for Kramers’ model [Sec. IV, where
AE=yI(E,), as 8<<1] to the well-known energy-
diffusion-limited rate in Eq. (4.49).

The above turnover theory for a single metastable well
can readily be generalized to an asymmetric double-well
system. Let 8, p denote the dimensionless energy loss
for the left-hand and right-hand wells, respectively. If we
denote the exponential on the right-hand side in Eq.
(6.9a) simply by E (8), we obtain for the transmission fac-
tor kg, for the double-well system the generalization

_ u E(8)E(8)

Kaw™= ), E(8,+85) (6.11)

This result is consistent with Egs. (4.51)~(4.53) as §,; and
8g approach zero. With a strong asymmetry one finds,
for example, for a deep right well 8z >>1, that is,
E(8z >>1)~1, so that «,, again approaches kg, in Eq.
(6.9a).

In the intermediate regime the result of the turnover
theory in Egs. (6.9a) and (6.11) intrinsically exhibits the
proper nonanalytic damping contributions discussed in
Secs. V.B and V.D. In conclusion, Eqs. (6.9) yield a
smooth description of the turnover for the escape rate,
covering both weak and strong damping simultaneously
{see Fig. 18). For a detailed discussion of the regime of

10For an explicit presentation of AE in terms of the quantities
entering the generalized Langevin equation, Eq. (3.31), we refer
the reader to Pollak, Grabert, and Héanggi (1989).
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validity of Eq. (6.9) in the presence of arbitrary memory
friction we refer the reader to the original literature (Pol-
lak, Grabert, and Hanggi, 1989). Moreover, Eq. (6.9a)
does not account for anharmonic corrections within the
potential barrier [see Eq. (4.57) for the Smoluchowski
case).

C. Peculiarities of Kramers' theory
with memory friction

Although Kramers’ (1940) landmark paper on the rate
of escape has found numerous applications, it still lacks
general applicability owing to the Markovian assumption
made for the stochastic forces in Egs. (4.1)-(4.3), i.e.,
that the particle moves very slowly compared to the time
scale 7, set by the correlations of the random forces.
However, in certain situations (Beece et al., 1980; Hasha
et al.,, 1982; Velsko et al., 1982, 1983; Doster, 1983;
Rothenberger et al., 1983; Courtney and Fleming, 1984;
Otto et al., 1984; Maneke et al., 1985; Fleming, Court-
ney and Balk, 1986; Bergsma et al., 1987; Seifert and
Dietrich, 1987; Grabert and Linkwitz, 1988; Gertner
et al., 1989; Turlot et al., 1989) the relevant motion of
the escape dynamics takes place on the same time scale
T, Or may even be more rapid than 7,. Therefore
memory effects of the type exhibited by the generalized
Langevin equation in Eq. (2.6) or Eq. (3.31) must be ac-
counted for. In many applications typical barrier fre-
quencies are of the order 10''-10' sec™!, and the envi-
ronmental forces are likely to be correlated on this same
time scale, ie., P0=10" sec™H#EPw=0), with
Plw)= [ $y(t)exp(—wt)dt. Grote and Hynes (1980) and
Hiénggi and Mojtabai (1982), as well as Carmeli and Nit-
zan (1984), extended the original work of Kramers de-
scribed in Sec. IV.B to an arbitrary memory friction y(t)
and found that the rate can often be much greater than
one would obtain from the Kramers theory evaluated at
the static friction value. Memory effects were also found
to modify the rate in the limit of weak damping (see Sec.
V.B), where the energy-diffusion mechanism is the rate-
limiting process (Carmeli and Nitzan, 1982; Grote and
Hynes, 1982; Hianggi and Weiss, 1984).

Indeed, these versions of Kramers theory with memory

E_Eb=%kBT_Eb 1_

&

where p is given in Eq. (3.45) and a* =aw?. If the right-
hand side in Eq. (6.12) is larger than zero, the injected
particle energy exceeds the barrier energy E,, implying a
breakdown of the many-body TST result in Eq. (3.46). In
particular, this occurs whenever e

p—wi, or
a*[1—(u/w,)*]—>1. The set of sufficient and necessary
conditions for the breakdown of validity of the Kramers
(exponential) memory-friction result in Eq. (3.46) thus
reads
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friction have proved to be quite useful in correctly
describing recent experiments, whereas the Markovian
theory of Kramers may fail considerably in a number of
realistic physical situations (Beece et al., 1980; Doster,
1983; Bergsma et al., 1987; Seifert and Dietrich, 1987;
Grabert and Linkwitz, 1988; Zhu, Lee, and Robinson,
1988; Gertner et al., 1989; Turlot et al., 1989).

The various rate theories for frequency-dependent
damping were tested numerically over a very wide range
of parameters in two illuminating papers by Straub, Bor-
kovec, and Berne (SBB; 1985, 1986). This work was
based on the exponential memory friction (Berne et al.,
1966) in Eq. (6.5), and in certain parameter regimes it re-
vealed striking deficiencies in the existing predictions of
current non-Markovian rate theories. In particular, the
results of SBB presented a twofold challenge.

(a) Previous theories were not able to predict correctly
the SBB rate k when y*=9(0=0)/0, — «.

(b) A novel turnover was observed, for which the rate
becomes limited by energy diffusion in both low and high
damping limits f(0=0)=1y.

Thus SBB stimulated quite a few theoretical papers.
Hinggi (1986a) realized that for their strong damping
limit the bath correlation time is long, leading to a
memory-induced energy-diffusion-controlled limit. He
derived a corresponding set of conditions [see Eq. (2.60)
in Hénggi (1986a)], which allowed for the safe application
of Eq. (3.46). Similar ideas were developed subsequently
by Straub and Berne (1986) and by Zwanzig (1987). An
insightful solution for both the weak and the strong
damping limits which contains no adjustable parameters
was obtained only recently by Talkner and Braun (1988),
thus answering the first challenge. Without a restriction
to exponential memory friction, both challenges can be
met within the turnover theory presented in the previous
subsection (Pollak, Grabert, and Hinggi, 1989), see Fig.
19.

For the SBB problem, a sufficient and necessary set of
conditions for the breakdown of the Grote-Hynes-
Hanggi-Mojtabai rate expression in Eq. (3.46) can be ob-
tained if we follow the reasoning put forward in Sec.
IV.C (see also Talkner, 1989). By use of the work of
Talkner and Braun (1988) one finds for the energy E of
the injected particles [Eq. (4.41)], in the SBB case

2 2 21-1
o, kgT w,
2 1+ | = :
H wy 2E, ( wg ] ’ (6.12)
|
2
(i) |2 | 51, ie., p*—0
@y
or
2
(i) a* |1— |- ‘-»1, ie, y*—>o ,
Dyp
with a*2>1. (6.13)
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These criteria are in accordance with the numerical
findings of SBB (1985, 1986).

VIl. MEAN-FIRST-PASSAGE-TIME APPROACH

A. The mean first-passage time and the rate

For every stochastic process x (¢) with values in a state
space X, the mean first-passage time (MFPT) tq(x) is
defined as the average time elapsed until the process
starting out at point x leaves a prescribed domain Q of 2
for the first time (Schrodinger, 1915; Pontryagin, Andro-
nov, and Vitt, 1933; Darling and Siegert, 1953; Montroll
and Shuler, 1958; Widom, 1959; Kac, 1962; Stratonovich,
1963; Weiss, 1967; Goel and Richter-Dyn, 1974). The
connection of this mathematical notion with a reaction
rate is simply established by taking the phase space = of
the reacting system as the state space. Further, the point
x, that characterizes the reactant state is identified with
the starting point x, and a domain ) is chosen which
does contain x,, but not the product state x.. For exam-
ple, one may take a small ball with the center located at
x, as the part of = not belonging to (. Starting from any
point inside this excluded part of  the product state x,
is readily reached. Provided that the transition from the
reactant to the product may be characterized by a rate,
i.e., that there is a reasonable separation of time scales
(Sec. II.A), this rate is simply determined by the inverse
mean first-passage time,

ki c=tgl(x,). (7.1)

Under such conditions the mean first-passage time is
rather insensitive to various simplifications of the model.
For example, it remains unchanged if rapidly varying
variables are adiabatically eliminated and only the slow
ones are taken into account. Further simplifications may
result from the fact that the domain Q can be modified
up to a certain extent; for some cautions, however, see
Hanggi, Jung, and Talkner (1988). Nevertheless, the
class of processes for which the mean first-passage time
may be calculated explicitly is rather limited (Pontryagin,
Andronov, and Vitt, 1933; Kac, 1962; Stratonovich,
1963; Weiss, 1967; Hinggi and Talkner, 1981, 1985).
Other important cases can be treated by asymptotic
methods (Ventsel and Freidlin, 1970; Matkowsky and
Schuss, 1977; Talkner, 1987). In all these cases one uses
a Markovian process as the appropriate starting point.
For a formal connection between the MFPT and the
flux-over-population method we refer the reader to Ap-
pendix B.

B. The general Markovian case

We shall summarize here what may be termed the
traditional approach to first-passage-time problems in
continuous time (Kac, 1962; Stratonovich, 1963; Feller,
1966; Weiss, 1967; Goel and Richter-Dyn, 1974; van
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Kampen, 1981). Consider a Markovian process x(f)
starting at x in a domain ). For the mean first-passage
time to(x) the random trajectory x () is only important
up to the moment it leaves 3. Therefore we may assume
that the whole exterior of ( is absorbing. This guaran-
tees that the trajectories cannot recross the boundary 3Q
of the considered domain . A process so modified is
still Markovian and hence may be completely character-
ized by its conditional probability density Pg(y,t|x) of
visiting the point y € at time ¢, if it started out at time
t =0 from x €Q and did not leave Q. In terms of this
probability the MFPT reads

ta(x)= [ “dt [ dy Pa(yrlx)

where in the derivation of this result it is assumed that
lim,_, ¢ [ oPo(ytlx)dy  vanishes, otherwise rq(x)
diverges. Being a conditional probability of a Markov
process, Po(yt|x) obeys the backward equation

(7.2a)

%Pﬂ(yﬂx):ﬂpﬂ(ydx), x€EQ, (7.2b)
with
Po(ytlx)=0, x&Q, (7.2¢)

where T'T is the adjoint master operator, known as the
backward operator (Feller, 1966; Hanggi and Thomas,
1982), acting on the x dependence of Pq(yt|x). Combin-
ing Egs. (7.2a)-(7.2¢) yields an equation for the mean
first-passage time

(7.3a)
(7.3b)

tox)=—1, x€qQ,
to(x)=0, x&Q.

In the particular case of a Fokker-Planck process, the
trajectories are continuous, and thus it is sufficient that
only the boundary 98} of Q be absorbing. Provided that
the diffusion across 3Q) does not vanish, the MFPT 1, (x)
approaches its boundary value zero continuously when
x (t) reaches the boundary. This is quite clear, because
though the trajectories are continuous they nevertheless
are extremely shaky. Hence, for a Fokker-Planck pro-
cess, Eq. (7.3b) may be replaced by a proper boundary
condition,

to(x)=0, xE€3Q . (7.4)

For all other Markov processes random jumps occur
with a finite probability. If the process may jump from
dQ into Q) with nonvanishing probability, the MFPT ex-
hibits a discontinuity at dQ) (Troe, 1977; Weiss and Sza-
bo, 1983; Hianggi and Talkner, 1985; Knessl, Matkowsky,
Schuss, and Tier, 1986). The same phenomenon happens
for Fokker-Planck processes at those parts of 3 over
which neither the drift nor the diffusion can drive the
system (Kac, 1962). Finally we note that nth-order mo-
ments of the first-passage time ¢{(x) may be iteratively
calculated by use of the formula (Weiss, 1967)
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I“Tt}'l(x)=—nt§'{1(x), xXEN, (7.5a)

£ (x)=0, x&Q . (7.5b)

C. Mean first-passage time for a one-dimensional
Smoluchowski equation

For a process described by a one-dimensional Smolu-
chowski equation [see Eq. (4.9)], the MFPT out of the in-
terval [a,b] is a solution of the differential equation [see
Eq. (7.3a)]

—(My)T U () +H(My) kTt (x)=—1,

a<x<b, (7.6)
where we have dropped the index [a,b] at f(x) indicating
the domain out of which the process escapes. Note that
Eq. (7.6) is of first order in t'(x), where the prime denotes
differentiation with respect to x. In order to fix the
boundary conditions one must know whether the process
may directly escape from both boundary points a and b,
or whether one point, say a, is reflecting and b is the only
exit point.'! At a reflecting point the slope of ¢#(x) van-
ishes and at an absorbing point ¢ (x) itself vanishes (Fell-
er, 1966; Goel and Richter-Dyn, 1974). In these two
cases we obtain the explicit quadrature formulas

b
My __L_dy exp[U(y)/kBT]f”ydz expPU(z)/kg T

t(X)_ ]
kyT ["ay explU () /k5T]
Xfxdy exp[U(y)/kBT]—%fxdy exp[U(y)/kBT]fydz exp[—Ulz)/kgT], (1.7)
a B a a

when both a and b are absorbing; and (Pontryagin, Andronov, and Vitt, 1933)

M b y
t(x)-k—;;—fx dy exp[U(y)/kpT] [ "dz expl —U(2)/kp T1 , (7.8)

when a is reflecting, and b is absorbing.x=We shall next discuss these results for a number of archetypal potential forms.

1. The transition rate in a double-well potential

We consider a double-well potential U(x) (see Fig. 20), with well and barrier frequencies o, and w,, respectively.
Further we choose the interval [e,b] such that it contains one stable point x, to the left of the barrier x,,
a <x, <x,=0<b (see Fig. 20). We shall consider the case in which the boundary point a is reflecting, and b is absorb-
ing. Then the relation k =¢  (x =x,) yields, with the quadrature formula in Eq. (7.8), an explicit result for the rate
that includes all the steepest-descent corrections [Eq. (4.57)] in closed form. For a high barrier, i.e., for
U(x,)—Ul(x,)=E, >>kpT, the integrals in Eq. (7.8) can be evaluated by a steepest-descent approximation, yielding in
terms of the error function erf(x)=27""/2 f oexp( —t2)dt

1 fora<x=<-—1,,
1—erf(x /)] for |x|<I ,
)

tix)=k~! IT&”\/kBTM/Zﬂ(I—exp[—(b —x)|U'(x)| /kg T])Py(x) (7.9)

for Iy, <x <b and Ulx,)<Ul(x),

knyxb|U'(x)|_1dx for I, <x <b and U(x,)2U(x) ,

where I, =(2kz T/Mw?)!/? is the thermal length scale
and Py(x)=exp{ —[U(x,)—U(x)]/kpT}. Here k coin-
cides with the spatial-diffusion rate in the potential U (x)
[Eq. (4.54)],

WDy
2my

In order to obtain the result in Eq. (7.9) one has to as-
sume that the potential U(x) is growing faster than |x|

k= (7.10)

exp{ —[U(x,)—Ulx,)1/kgT} .
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for large negative a and x; otherwise t(x) increases
indefinitely for large negative x. The different qualitative
behavior in the three regions (see Fig. 21) is easily under-
stood. If the particle starts out at a point x to the right

One may still impose other boundary conditions describing,
for example, a partial absorption; for a review see Calef and
Deutch (1983).
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F
U(x)

FIG. 20. Double-well potential used in text.

of the barrier, I,;, <x =¥, it will typically move along a
deterministic trajectory and will leave the interval in the
deterministic time 7, =y M f g |U'(x)] " 'dx. However, in
very rare cases, which occur with a frequency propor-
tional to exp{—[U(x,)—U(x)]/kgT}, the random
force pushes the particle over the barrier into the well
bottom x,, from whence it escapes in a time of the order
of magnitude of the inverse rate k ~!. The product of
k! and the frequency factor contributes to the mean
time and dominates it as long as Ul(x,)<U(x). In the
immediate neighborhood of the barrier top, |x| <1 th» the
fluctuating force will govern the dynamics. Hence, if the
particle starts exactly at the top, it has equal probability
of going to either side. Again, it is the long escape time
7~k ~! which dominates ¢(x). Finally, if the particle
starts at x somewhere inside well 4, a <x =< —1, it will
typically move almost deterministically along a trajectory
to the bottom of the well, where it sits for most of the
time before it eventually is pushed out of the well by the
random force. Clearly, the time needed to relax toward
x, is negligible compared with the time spent in the im-
mediate neighborhood of x,. Therefore in this region the
mean first-passage time is almost constant and equals the
inverse escape rate. Moreover, the mean first-passage

t(x)

j
a b

FIG. 21. Sketch of the behavior of the mean first-passage time
t(x) to leave the domain of attraction to the left of the barrier.
The value of 1k ~! corresponds to the barrier location.
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time for these points is almost independent of the precise
location of the exit point b, as long as b is located at a
sufficiently remote distance from the barrier, i.e.,
x.>b>1,. If b coincides with the location of the bar-
rier top, one finds

I, as=x=—1,,

erfl [x] /1], —Il4 <x<0.

()= (2k)"! 7.11)

Hence, compared with Eq. (7.9), t(x) is reduced by the
amount —1k !, The factor J [see Eq. (2.33)] is due to
the fact that all trajectories arriving at x, =0 contribute
with their arrival time with a probability + to the MFPT,
and not with a weight of one as is the case for b located
beyond the barrier b > x,. Finally we note that, for 5 =0
and for x inside the well, the higher moments of the
first-passage time follow from Egs. (7.5) and (7.11)
(Shenoy and Agarwal, 1984; Talkner, 1987), as
n!

t(") __v ,
=

if a <x<—Q2kyT/M)? /0, . (1.12)

Therefore the first-passage time 7(x) (a random quantity)
is exponentially distributed on time scales beyond the lo-
cal relaxation time,

P(r€[t,t +dt])=2k exp(—2kt)dt ,

with t>wy ! . (7.13)

Hence, in this simple model, the negative part of the real
axis can be identified with a single metastable state with a
waiting time distribution without memory (Weiss and
Rubin, 1983).

2. Transition rates and effective diffusion
in periodic potentials

For a Brownian particle obeying a Smoluchowski dy-
namics in a periodic potential, each period constitutes a
metastable state'? (see Fig. 22). There exist rates to
neighboring states that can be determined by means of a
MFPT out of one period, say [0,L]. If one end point, say
x =0, is chosen to be reflective, Eq. (7.8) yields (Lifson
and Jackson, 1962; Jackson and Coriell, 1963)

E(x)==t(xg)

2
~ XEM (ol U () /7y T]) Cexpl — U (x) /Ky T]
2y T

(7.14)

2For the sake of simplicity we disregard potentials with
several local minima within one period. These can of course be
treated by the same method.
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U(x) 4

T -

X, L x

FIG. 22. Periodic potential exhibiting an infinite number of
metastable states separated by a distance L.

for all x with 0<x <L —(2k,T/M)""*/w,. The brack-
ets denote an average over one period,

=1
(=1 [ htxdx . (1.15)

Hence, the rate k between neighboring states is given by
(Lifson and Jackson, 1962)

k=[2t(x4)]"!

_kyT/M

K (exp[U(x)/kBT]>_l

X{exp[—U(x)/kzT]) " . (7.16)

In terms of the rate k the effective diffusion constant is
D s=kL? The Cauchy-Schwartz inequality can be used
to show that

D g=D(exp[U(x)/kpT]) 'exp[— U(x)/kyT]) "

=D, (71.17)

where
kgT
yM

=(yMB)~! (7.18)
is the free diffusion constant in the absence of a periodic
potential.

Within a steepest-descent approximation the free
diffusion is reduced by the factor

(exp[U(x)/kgT]) " exp[ —U(x)/k,yT]) !

Moyw, L*
- 2wkgT

If both ends of a period are absorbing, the mean first-
passage time is given by Eq. (7.7). The presence of a
second exit point identical to the first leads to a reduction
of the mean first-passage time by a factor of one-half for
almost all starting points, except for those near the addi-
tional exit point where ¢ (x) vanishes.

exp(—BE,) . (7.19)

3. Transition rates in random potentials

Diffusion in random potentials has recently been stud-
ied in the context of relaxation, transport, and chemical
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kinetics in various disordered media such as glasses
(Binder and Young, 1986; Jickle, 1986), polymers (De
Gennes, 1975), and proteins (Ansari et al., 1985), or in
electrical transport in disordered solid-state systems
(Alexander er al., 1981; Weiss and Rubin, 1983; Ebeling
et al., 1984; Bernasconi and Schneider, 1985; Haus and
Kehr, 1987; Engel and Moss, 1988; Tao, 1988). Asa par-
ticularly simple model we consider a Brownian particle
of mass M in the Smoluchowski limit, moving in a
quenched random potential ¥ (x). The average V(x)
over the realization of V' (x),

Vix)=U(x), (7.20)

is assumed to have a single metastable well (see Fig. 23).
The fluctuations 6% (x) are superimposed about this
mean potential and are assumed to be Gaussian, spatially
homogeneous, and short ranged compared with the dis-

tance between the local extrema of the mean potential
Ulx),

SV (y)oVix)=g(y —x), (7.21)
with
glx,—x,)=0. (7.22)

The mean sojourn time ¢, in the metastable well of a
fixed realization of the potential ¥ (x) can be calculated
as a MFPT by Eq. (7.8),

ty(x)=ByM fxbdy exp[BV (»)]

X [Ydzexp[—BV(2)], (7.23)

where x is a point in the well and where a and b are
reflecting and absorbing boundaries, respectively (see Fig.
23). The mean waiting time is still a random variable,
which may be averaged over the realizations of the ran-
dom potential ¥ (x):

FIG. 23. Averaged metastable, random potential used in text.
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ty(x)=ByM exp[Bzg(O)]fbdy fydz exp[B(U(y)—U(z
X a

where we have used the familiar formula

exp(§)=exp(%5:2) )

(7.25)

which is valid for any Gaussian random variable & of
vanishing mean.

Because g (x) is short ranged [see Eq. (7.22)], it does
not contribute to the integrals in Eq. (7.24). As a result
one finds that the averaged MFPT becomes enhanced ex-
ponentially over the MFPT for the averaged potential
(De Gennes, 1975; Zwanzig, 1988); i.e., substituting U (x)
for ¥(x) in Eq. (7.23), we find

ty(x)=ty(x)exp[B*% (0)] > t,(x) . (7.26)

Note that the sojourn time is no longer exponentially dis-
tributed. This can already be seen from its second mo-
ment ¢'Y. Because for a fixed random potential the
MFPT is exponentially distributed, one has [Eq. (7.12)]

tP=2(t,)? . (7.27)
With Egs. (7.22), (7.23), and (7.25) we obtain in leading
orderin kzT

1P =21, {1~ 28g"(0) /(Mwd)] 12
X[1—2Bg"(0}/(Mw})]™?exp[2B%5(0)]
(7.28)

where wy and w, denote the well and the barrier frequen-
cies, respectively, of the averaged potential U(x). The
second derivative of the correlation function, g"(x), is
non-negative at x =0,

—g"(0)>0, (7.29)

so that Eq. (7.28) stays always positive.

The exponential enhancement factor exp[28%g(0)]
may also be obtained from an ensemble of Arrhenius-
type waiting times with Gaussian distributed activation
energies. In this simplified model a much slower than ex-
ponential decay is observed (Vilgis, 1988). The prefactor
[1—2Bg"(0)/Mo}] ™' [1—2Bg"(0)/Mw}]™'/? is al-
ways smaller than unity. For small but very irregular po-
tential fluctuations the prefactor may compensate for
even the exponential enhancement factor.

4. Diffusion in spherically symmetric potentials

A special case that allows the explicit solution of the
MFPT in higher dimensions is that of diffusive probl.ems
in a spherically symmetric potential U(7), in a spherlf:al-
ly symmetric domain (Lifson and Jackson, 1962; Tachiya,
1978; Deutch, 1980; Szabo, Schulten, and Schulten, 1980;
Shoup and Szabo, 1982); this case is governed by the
Smoluchowski equation
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Nlexp[Bg(y —2)] ,
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(7.24)
|
9 =ppl-n 9 n-1[p,0U 8
31 (r,Q,t)=Dr i B?_{_E p(r,Q,1)
+Dr'""L2p(r,Q,1) . (7.30)

Here, (r,{) denotes the spherical coordinates in » dimen-
sions, D is the diffusion constant, and L} denotes the La-
placian restricted to the surface of an n-dimensional
sphere. The MFPT ¢(r) out of a spherically symmetric

domain depends only on the radius r and consequently
obeys

i l—ni n—li
drt(r)-i-r drr t(r)

d
Bdr U(r) o

=—D7!, ry<r<R. (131

Again, different boundary conditions may be imposed at
the inner and outer spheres with radii ro and R, respec-
tively. For an absorbing boundary condition at re>and a
reflecting one at R, one obtains from Eq. (7.31)

1 r
t(r)=3frodpprda o

n—1
;—’ exp{B[U(p)—U(o)]} .

(7.32)

For r, reflecting and R absorbing,

n-—1
1 R
t(r)=3fr dpfera exp{B[U(p)—U(c)]} .

o
p

(7.33)

Equation (7.32) has been used to determine the recom-
bination rate of a diffusing molecule in the short-range
potential U (r) (see Fig. 24) of a fixed molecule (for a re-
view, see Calef and Deutch, 1983). If the absorbing
boundary r is put inside the attractive part of the poten-

U

FIG. 24. Potential form used for a recombination reactipn, ex-
hibiting a short-range attracting part. Absorption takes place
at ro and reflection at » =R, while r, denotes the initial separa-
tion.
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tial, and the initial separation is assumed to be large com-
pared to the range of the potential, one obtains from Eq.
(7.32) for the mean time of recombination

1
S, (n—2)aly?’ n=d
V.(R) {1 ry
Hr)=—"7 Z“‘Z’ n=2, (7.34)
ry, n=1,

where V,(R) denotes the volume of an n-dimensional
sphere with radius R, S, is the surface of the unit sphere
in n dimensions, and a.; denotes an effective range of the

potential defined by
-1
(n —Z)f I—-—eXp[BU(r)]dr

lig rn—l

n—2_—

Aeg (7.35)

We note that in dimensions larger than n =2 the mean
recombination time is independent of the initial separa-
tion r, >>r,. Therefore one may define a recombination

rate for n = 3 by setting

(7.36)

where kg, denotes the Smoluchowski rate (Smolu-
chowski, 1917; Debye, 1942)

ky,=DS,(n —2)alg? . (7.37)

In three dimensions it takes the familiar form

ky,=4mDa g . (7.38)
For a constant potential, a4 is given by the radius rj of
the absorbing inner sphere. The above theory has also
been generalized to partially absorbing boundaries (Col-
lins and Kimball, 1949; Wilemski and Fixman, 1972;

Shoup and Szabo, 1982).

D. Mean first-passage times for Fokker-Planck
processes in many dimensions

Except for highly symmetrical problems such as
effectively one-dimensional escape problems from n-
dimensional spherical potential wells (studied in Sec.
VII.C.4), the MFPT generally cannot be calculated exact-
ly in more than one dimension. Because ordinary pertur-
bation theory fails to give the nonanalytical temperature
dependence of the MFPT, asymptotic methods have been
invoked to obtain the leading behavior for large Ar-
rhenius factors, or more generally, for low noise levels
(Matkowsky and Schuss, 1977; Schuss and Matkowsky,
1979; Talkner and Ryter, 1982, 1983; Talkner and
Hianggi, 1984; Talkner, 1987). In order to apply these
asymptotic methods it is convenient to consider the first
passage out of the domain ) of attraction of the reactant
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state.'’ Just as for the one-dimensional case [see Eq.

(7.13)], in the limit of weak noise the first-passage time is
exponentially distributed (Shenoy and Agarwal, 1984).
Further, its mean assumes an almost constant value
fmepr practically everywhere on the domain of attraction
1. Therefore one may write with x denoting a point in Q

t(X)ZIMFpr(X) 5 (739a)
where the form function f(x) equals
f(x)=1 almost everywhere on {1 . (7.39b)

When approaching the boundary 9{} from the interior,
S (x) steeply decreases to zero,

f(x)=0,- x €00 . (7.40)

As in the one-dimensional case, the almost constant value
tmrpr for the escape time out of the domain of attraction
of the metastable state determines the decay rate (Schuss
and Matkowsky, 1979),

k=2t\ppr) " (7.41)

Using the backward equation (7.3) for ¢ (x) together with
Eq. (7.39) one obtains an equation for the form function,

reading

LIf(x)=—tytpr, xEQ, (7.42a)

and

f(x)=0, x€3Q, (7.42b)

where £ is the backward operator of the considered
Fokker-Planck process possessing a drift vector K and a
diffusion matrix eD,e << 1. The drift field K may gen-
erally contain a fluctuation-induced part which is propor-
tional to €; this merely modifies the prefactor of the solu-
tion w in Eq. (7.45), i.e., the quantities {Z ,,Z;] in Egs.
(7.47a) and (7.55) below. Assuming that D is bounded,
L reads

Ox;0x;

e
L= S K0 +e >
i hnj

(7.43)

ox; AL

1

Because the form function f(x) is expected to vary at
o only on a thin boundary layer, one may neglect the
small inhomogeneity fyfpy in Eq. (7.42a) and replace it
by a matching condition (Matkowsky and Schuss, 1977)

Lfx)=0, (7.44a)

13To be more precise: In the deterministic limit the metastable
reactant state becomes a stable state with a proper domain of
attraction. If the domain of attraction happens to be unbound-
ed, it often suffices to consider a suitably chosen bounded part
of it, which defines the exit domain Q (Talkner and Hinggi,
1984). B
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with

f(x)=1 inside the interior of Q , (7.44b)

f(x)=0, x€00 . (7.44¢)

We recall that Q is a complete domain of attraction of
the drift field K and that, consequently, its boundary d{}
is a separatrix of the drift field K, i.e., there exists no
transverse drift on Q. Before we proceed to solve Eq.
(7.44) we express the constant part ¢yppy of the MFPT in
terms of the form function f(x) and a stationary solution
w(x) of the Fokker-Planck equation,'* obeying

Lw=0.

For this purpose Eq. (7.3a) is multiplied by the stationary
probability density w(x) and subsequently integrated
over the domain Q. Using the Gauss theorem and Eq.
(7.39a), one finds (Matkowsky and Schuss, 1977)

fnd"x w(x)

(7.45)

IMPPT= — afx) (7.46)

£ ; fanSi % D,-j(x)w(x)—a‘

where dS denotes the oriented surface element on 9{).
The fact that for weak noise the stationary probability
density is sharply peaked at stable stutionary points of
the drift field K allows one to evaluate both integrals in
Eq. (7.46) in Gaussian approximation. The integral in
the numerator in Eq. (7.46) is dominated by the immedi-
ate neighborhood of the considered attractor, and yields
in leading order in the noise strength ¢

P, Efnd"x w(x)
-172

det—(pf— Z lexp(—¢ 4 /¢),

2mE

(7.47a)

~

where the quantities Z 4, ¢ 4, and the matrix @ ,=(@/)
are determined by the local Gaussian approximation of
the stationary solution about the attractor 4,

w(x 4 +6x)

—7~1 1
=Z 4 'exp(—¢ 4 /elexp [—Z—Elzj¢),~'}8x,-8xj

(7.47b)

Clearly, if the well dynamics is not parabolic, the popula-
tion P, differs from the Gaussian approximation in Eq.
(7.47a). For example, for a Brownian motion in a quartic
well, +ax 4 the only change occurs in the prefactor,

14For an equilibrium system the stationary probability density
is always known; it may present a major problem, however, to
obtain it for a nonequilibrium system. It is worth noting that
Eq. (7.45) need only hold on (), the only restriction being that
its integral over £ exist.
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which now assumes a temperature dependence. If we
denote in this quartic case the integral in the numerator
of Eq. (7.46) by P, we find the correction

1/2 -1

Ll (akyT)V'*| P, . (7.48)

2
Moy

2

QW —
P ()

A

The impact of a quartic barrier on the rate is referred to

in Sec. VILE.1.
The integral in the denominator in Eq. (7.46) is dom-

inated by the saddle point on the separatrix 912, exhibit-
ing maximal probability density on 3. Again, one may
expand the probability density about the saddle point,
yielding'®

w(xg+8x)

(7.49)

exp

=Zs lexp

_28_ % (p,_,Sx,ij

Note that the eigenvalues of the matrix qos=(<p;§-) are all
positive, except for one that belongs to the unstable
direction at the considered saddle point.16 For the form
function f(x) obeying Eq. (7.44) it is then convenient to
make the following ansatz (Talkner and Ryter, 1982):

F(x)=V2/me fo"‘*’dz expl —22/(2e)], (7.50)

where p(x) vanishes at the separatrix and increases when
x leaves the separatrix. From Eq. (7.44a) one obtains in
leading order in & the following first-order partial
differential equation for p(x):

ZK,,_@&_ D _a&_a&p=0 .

Vox; 3x; 7.5

i ij
In the neighborhood of the saddle point that dominates
the integral in the denominator of the MFPT in Eq.
(7.46), one finds as the solution of Eq. (7.51)

p=(D,, /A )", (7.52)

where r is the unstable direction of the vector field K at
the saddle point. In Eq. (7.52), A, denotes the corre-
sponding (positive) eigenvalue,

K,=A,r+0(r?, (7.53)

and D,, is the matrix element of the diffusion in this
direction. Combining Egs. (7.49), (7.50), and (7.52), we
obtain for the denominator of fyppr in Eq. (7.46)
(Talkner, 1987)

I5For the sake of simplicity we have assumed that both the at-
tractor and the saddle consist of isolated points. More general
limit sets, for example, limit cycles, may be handled in an analo-
gous way (Talkner, 1987).

16For the case of a quartic barrier where the matrix g has a
neutral direction, see Sec. VILE.1.
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3f(x) .
3 [, dS,D,(xhwlx) LX) 3L (re) 1P

. F (7.54)
ij J

where Pg denotes the probability of finding the system at
the saddle if the unstable saddle direction is inverted into
a stable one,

—1/2

) Zs lexp(— g /€) .

det——

7.55
2me ( )

PS =

The final result for the MFPT follows from Egs. (7.46),
(7.47), and (7.54) as (Talkner, 1987)

T

This yields, with Egs. (7.41), (7.47), (7.53), the rate

Ay
k=E;(Ps/PA) ’

or explicitly

172

Ay
k=— exp[ —(ds—¢ 4)/e] .

21

Z,

Zs

detep 4
|detpg|

(7.57)

Hence the rate is given by the positive eigenvalue of the
deterministic dynamics at the relevant saddle point,
stretched by the relative frequency of finding the system
at the saddle, rather than at the attractor. Equation
(7.57) represents the correct, asymptotic result for the
rate in the limit of large barrier heights (¢5—¢ ,)/e>>1.
From Egs. (7.47), (7.55), and (7.57) one immediately re-
covers Langer’s rate expression in Eq. (4.81) by identify-
ing (¢s—¢ 4)/€ with E, /kyT and @4 /¢ and ¢ 4 /e with
E®/kp T and E“/ky T, respectively. We recall that Kra-
mers’ rate expression is simply a special case of Langer’s
result in Eq. (4.81), and therefore is implicitly a part of
Eq. (7.57).

tMFPT=M7/Bexp(/3E,,)f_0°°dy exp( —%aﬂy‘*)f_wwdz exp( —1MPBokz?) ,

where we have approximated U (x) by

4

—+ax®, near the saddle point x =0,

Ulx)~

and where we have extended the reflecting boundary to-
ward — o, where no contributions are expected. The ab-
sorbing boundary is located at the transition state x =0.
The quadratures can be readily evaluated [see Eq. (3.326)
in Gradshteyn and Ryzhik (1980)], to give for the rate of
escape

wolaky T/

— 7.60
(M) 2y T(1) (760

k=(2tMFPT)—1= er{ '—ﬁEb) ’
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1Mod(x —xy)*—E,, at the bottom of the well ,

U(x)

FIG. 25. Escape over a quartic barrier with U(x)
=—1x*+Ix%0(—x)+ > with 6(x) denoting the step func-
tion. The barrier height equals E, = ...

E. Sundry topics from contemporary
mean-first-passage-time theory

In most of the previous sections we considered escape
processes in multistable potentials that are characterized
by parabolic, unstable barrier regions. Moreover, in view
of the central limit theorem for many degrees of freedom,
we considered mainly random forces with Gaussian
statistics. Here we shall relax some of these assumptions.

1. Escape over a quartic (—x“) barrier

Let us focus on a Brownian motion dynamics [see Eq.
(4.1)] in a metastable potential U(x) of the form sketched
in Fig. 25, exhibiting a parabolic well and a quartic bar-
rier. First we consider the case of strong friction, i.e., we
deal with the SmoJuchowski equation (4.9). From Eq.
(7.8) we thus obtain in leading order for the escape time
tyrppr 2t weak noise, BE, <<1,

(7.58)

(7.59)

[
with I'(x) the gamma function.

Next we turn to the regime of moderate damping values.
In this case we must consider the Brownian motion dy-
namics of the Klein-Kramers equation [Eq. (4.4)] in its
full phase space (x,x ) rather than in configuration space
only. By use of the general equation (7.46) for the
MFPT, we must take account of the fact that the form
function f(x,v) changes its behavior in the presence of a
quartic barrier. In this case, the MFPT, as well as the
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form function, will fall off more steeply than in the para-
bolic barrier case (Talkner and Ryter, 1982), i.e., one
finds

———4——fp(”exp —1Bz*)dz

(7.61)
(4kz T)*T(L)

fix,v)=

With Eq. (7.44) one finds in the neighborhood of the sad-
dle point

d
avf(x,v)

L )
M Y

d
vaxf(x,vH-

2
+Mp) v f=0, (.62

dv

or, for p(x,v), in leading order 87",

2
O @ 3_ §B—M—1 % 3=0, 7.63
Vax T T "ow |? 00
The solution of Eq. (7.63), with f(x,v) obeying the

boundary conditions in Eqs. (7.44b) and (7.44c), reads
p=(y"laHr+or?, (7.64)

where » denotes a coordinate measuring the distance
from the separatrix, chosen so that the deterministic
motion in the neighborhood of the saddle has the form

=(y3M) " ar?
+fourth- and higher-order
corrections in v and r (7.65a)
and
p = —vyv +third- and higher-order
terms in v and r . (7.65b)

In leading order in the configuration coordinate x and
the velocity v the distance r is given by

r=yx+v . (7.66)

Thus, in order to obtain the leading weak-noise contribu-
tion for the denominator in Eq. (7.46), one must integrate
along the line r =0. With w the canonical equilibrium
probability the integration in Eq. (7.46) can be performed
exactly, see Egs. (3.323,3) in Gradshteyn and Ryzhik
{1980), to give for the rate in Eq. (7.41) the main result

k=234 T(L)] "¢ exp(EDK | /[ £ kst (7.67)
where £ is a dimensionless damping parameter
M8 174
= .68
£= |75, i (7.68)

K ,4[x] denotes a modified Bessel function of the second
kind, and kygy ={(wy/2m)exp(—BE,) is the simple TST
rate in Eq. (3.5). Note that k /kygp approaches unity as
y—0, while Eq. (7.67) crosses over into the previous re-
sult in Eq. (7.60) for (y /wgy) >>1. Note also that this lim-
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iting large damping regime described by Eq. (7.67) is as-
sumed both for ¥ — o and by virtue of Eq. (7.68), for
B— o, i.e., for low temperatures. o

Finally, we address the regime of extremely weak
damping (see Sec. IV.D), where the rate is limited by en-
ergy diffusion. Using for U(x) the symmetric prototype
potential

U(x)=—1tax*+1bx% a>0, b>0, (7.69)
we find that Egs. (4.11), (4.49), and (4.51) yield for the
energy-diffusion-limited rate kg, with p =~

ke=I[3 26 1 /3E,,y/a)0)] it exp —BE,) (1.70)

where E, =a3(12b%)7! and 03 =2a*(Mb)™!

2. Escape over a cusp-shaped barrier

In a potential with a cusp at the barrier (see Fig. 26)
every particle that approaches the barrier from the left-
hand side with positive velocity will almost surely leave
the potential well. Hence the rate is simply determined
by the reciprocal MFPT to cross the line x =0 with v >0,
which is given by (Matkowsky and Schuss, 1977)

|/

——v2+U

[laxf]

fowdv v exp

dv exp

Tcusp —
My?
2

+ U(0)

(7.71)

In leading order in E,/kgT one obtains precisely the
TST answer in Eq. (3.5) (Marcus, 1963; Dogonadze and
Kuznetzov, 1970; Ulstrup, 1979; Hynes, 1986b),
—1_ o
keusp =[P~ = —exp(—BE,) (7.72)
27

The same result still holds for non-Markovian processes
with memory friction obeying a fluctuation-dissipation
theorem (Talkner and Braun, 1988). Note that this TST
result follows readily from the Kramers rate in Eq. (4.33),
if we formally let the barrier frequency w;,— o, with ¢
held fixed. Moreover, it should be remarked that with
a cusp, w,—, the fluctuation length scale
I, =(2ky T /M®3)"/? vanishes; hence the statistical fac-
tor of 2, due to diffusion over the length scale [, no
longer enters the relation between the MFPT and the

rate [Egs. (7.11) and Eq. (7.72)].
By contrast, if one considers the Smoluchowski dy-
namics, i.e., (y/wy>>1), for a cusp-shaped barrier (see
Fig. 26), one finds from Eq. (4.56b) a rate k¢, different

170f course, the temperature must not fall below a crossover
value beyond which tunneling effects prevail over classical ac-
tivation; see Sec. IX.
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U(x)

N

FIG. 26. Escape in a cusp-shaped metastable potential.

from the TST rate (Kramers, 1940),'®

2
N “o

= 7.73
cusp 2,”_?/ ( )

(mBE, ) *exp(—BE, ) .

A treatment of the crossover between Eqs. (7.72) and
(7.73) has recently been given by Pollak (1990).
The problem of escape in a cusp-shaped metastable po-

P(N=0,t)=W (1)P(1,t)—W*(0)P(0,t), N=0,

B(N,t)=WHN—1P(N—1,t)+W (N+1)P(N+1,t)—[W(N)+ W (N)]JP(N,t), N=1,....

These birth-and-death processes occur in a multitude
of physical and chemical systems (see, for example, Hak-
en, 1975; Van Kampen, 1976; Nicolis, 1979; Hanggi and
Thomas, 1982). For the problem of the rate of escape,
the exact analysis of such processes was pioneered by
scientists treating homogeneous nucleation (Farkas,
1927; Kaischew and Stranski, 1934; Becker and Doring,
1935; Zeldovich, 1943), including many rediscoveries,
which in most cases, however, added additional insight.
For example, Farkas (1927), Kaischew and Stranski
(1934), Christiansen (1936), Zeldovich (1943), Frenkel
(1957), Landauer (1962), and Zinsmeister (1970) all noted
the close analogy between a birth-and-death description
and the differential equation for a one-dimensional
Fokker-Planck process (see Sec. VII. C). For the problem
of the MFPT the exact analog of Eq. (7.8), with N=N,
absorbing, reads (Weiss, 1967; Gillespie, 1979, 1981,
Seshardi, West, and Lindenberg, 1980)

18This Smoluchowski case for a cusp-shaped barrier was stud-
ied by Kramers (1940) in his original paper, note the text and
the formula below his Eq. (17).
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tential is of great practical importance in nonadiabatic
rate theory for applications such as electron transfer re-
actions (Nikitin, 1974; Tully, 1976; Zusman, 1980; Calef
and Wolynes, 1983; Frauenfelder and Wolynes, 1985;
Hynes, 1985; Chandler, 1986; Nadler and Marcus, 1987,
Rips and Jortner, 1987; Straub and Berne, 1987), where
two corresponding diabatic energy curves cross each oth-
er, yielding a cusplike potential form.

3. Mean first-passage time for shot noise

If the escape takes place on a discrete ladder, rather
than a continuum of states, a master-equation description
(see Sec. V) is more appropriate. As mentioned earlier,
this case is generally trickier, and exact results can be ob-
tained only in a few special cases (Weiss, 1967; Troe,
1977; Weiss and Szabo, 1983; Hanggi and Talkner, 1985).
Of particular importance is the case of a birth-and-death
process with transitions only between nearest neighbors.
If one considers a discrete state space with states
N=0,1,2... possessing jump transition probabilities
WHN-N+1)=W*(N)  and W (N->N—1)
=W (N), respectively, the probability P(N,?) obeys the
Markovian master equation

(7.74a)
(7.74b)
|
Ny—1 M
tHN)=3 [WT(MPg(M)]™! 3 Po(K),
M=N K=0
0SN<N,. (1.75)
In Egq. (7.75)
N-—1
Pg(N)=P5(0) [T WHM)/W—(M+1) (7.76)
M=0

is the stationary probability of the master equation in Eq.
{7.74). The result in Eq. (7.75) can also be generalized to
birth-and-death processes including both one- and two-
step jumps (Hidnggi and Talkner, 1981). Moreover, re-
cent studies have revealed that the long-time dynamics of
a master equation can be modeled by a novel, effective
Fokker-Planck approximation yielding on an intensive
scale x =N /V, with ¥V measuring the system size, identi-
cal stationary probabilities, and identical weak-noise es-
cape rates (Hanggi, Grabert, Talkner, and Thormnas,
1984). It has further been demonstrated that when the
Kramers-Moyal expansion is truncated (at second order),
yielding the usual Fokker-Planck approximation to a
shot-noise master equation, it always exponentially
overestimates the rate (Hanggi, Grabert, Talkner, and
Thomas, 1984; Hinggi and Jung, 1988). This feature is
due to the systematic overestimation of the correspond-
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ing Kramers-Moyal diffusion. Finally, we mention that
the same methodology underlying the MFPT-Fokker-
Planck approach can be extended not only to discrete
state spaces, but also to systems with a discrete dynamics,
i.e., systems with a discrete time, as they occur in the
description of noisy chaos (Talkner et al., 1987). In con-
trast to Eq. (7.8) for the Fokker-Planck process and Eq.
(7.75) for the birth-and-death process, however, closed-
form expressions for the MFPT in a system with discrete
dynamics are not possible; this problem requires the solu-
tion of a corresponding integral equation for the form
function (Talkner et al., 1987). Numerical studies of es-
cape dynamics in chaotic maps have been undertaken re-
cently by Grassberger (1989) and Beale (1989).

4. First-passage-time problems
for non-Markovian processes

Due to the explicit quadrature and summation formu-
las given in Egs. (7,7), (7.8), and (7.75) for one-
dimensional processes, the MFPT concept enjoys great
popularity among physicists, chemists, and engineers. In
higher dimensions, however (see Sec. VIL.D), the prob-
lems caused by boundary conditions in the presence of
auxiliary degrees of freedom, e.g., velocity degrees of
freedom, can be quite substantial (Kac, 1962; Doering et
al., 1987, 1988; Hanggi, Jung, and Talkner, 1988). For
processes with memory, implying a non-Markovian be-
havior, the. MFPT problem is rather delicate, and its gen-
eral theory has been developed only recently (Hanggi and
Talkner, ‘1981, 1983). The difficulty arises with the con-
tracted description inherent in any non-Markovian be-
havior; the boundary problem cannot be treated in a
straightforward way, but must be handled with extreme
care so as to prevent any backflow of probability into the
domain of attraction via hidden channels, which result
when a non-Markovian process is formally embedded
into a state space of larger dimension exhibiting dynam-
ics without memory (Markov embedding of a non-
Markovian process). A particular illustrative case is that
of nonlinear flows x(¢) driven by dichotomic, or two-
state, noise &, (1),

x()=f(x)+gx)plt),

where (£ (2))=0, and where £, (¢) jumps between two
states +1 with exponentially distributed (with rate p)
jump times, yielding for the noise correlation an ex-
ponential decay,

(&p(1)6p(s)) =exp(—2ult—s|) .

With the simplicity of only two possible noise states, the
MFPT for Eq. (7.77) can be evaluated explicitly, both for
two absorbing boundaries (Hénggi and Talkner, 1985;
Masoliver et al., 1986; Rodriguez and Pesquera, 1986;
Doering, 1987; Hernandez-Garcia et al., 1987), and for
one absorbing and one reflecting boundary (Balakrishnan
et al., 1988; Behn and Schiele, 1989). Nevertheless, for
the problem of escape between neighboring domains of

(7.77)

(7.78)
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attraction at a weak noise level, the flux-over-population
method in Sec. II.C.1 can be used to advantage (Hinggi
and Riseborough, 1983; Van den Broeck and Hinggi,
1984). This is due to the simplicity of imposing an ab-
sorbing boundary condition for the nonequilibrium prob-
ability in the neighboring domain of attraction [see Eq.
(2.9)].

VIIl. TRANSITION RATES IN
NONEQUILIBRIUM SYSTEMS

Whereas equilibrium states of thermodynamic systems
with homogeneous boundary conditions are always time
independent and spatially homogeneous, driven systems
may settle down in more complicated states which may
exhibit both temporal and spatial structures (see, for ex-
ample, Haken, 1975). Within a phenomenological, deter-
ministic description of driven systems it frequently hap-
pens that two or more of these states (“‘attractors”) coex-
ist. The presence of thermal or external noise will in gen-
eral induce transitions between the attractors and thus
render them metastable. In principle the same methods
as for equilibrium systems are available for the deter-
mination of rates at which transitions between nonequili-
brium metastable states occur. Both the flux-over-
population method and the mean first-passage time, how-
ever, rely on a knowledge of the stationary probability
density, which is readily found only for equilibrium sys-
tems. Because most nonequilibrium systems lack de-
tailed balance symmetry (Green, 1952; van Kampen,
1957; Uhlhorn, 1960; Graham and Haken, 1971; Risken,
1972; Hanggi and Thomas, 1982), it is a formidable task
to determine the probability density of a multidimension-
al stationary nonequilibrium system.'’

In the most relevant case of low noise, a WKB-type
method has been employed to construct stationary proba-
bility densities (Cohen and Lewis, 1967; Ventsel’ and
Freidlin, 1970; Kubo et al., 1973; Ludwig, 1975; Matsuo,
1977; Graham, 1981; Talkner and Ryter, 1983). This
method represents a singular perturbation theory in the
noise strength. In leading exponential order it yields a
generalized potential which, though always continuous,
often happens to be nondifferentiable (Graham and Tel,
1984a, 1984b; Jauslin, 1987). Of course, these potentials
are smooth for systems with detailed balance. Perturba-
tive expansions about cases with smooth generalized po-
tentials have been performed by Graham and Tel (1987;
Tel, 1988) and have been used to determine the lifetime
of an attractor in the vicinity of a bifurcation character-
ized by a simultaneous vanishing of two eigenvalues, i.e.,

19The two-dimensional model of dispersive optical bistability,
with equal atomic and cavity detuning, put forward by Graham
and Schenzle (1981) represents a rare exception to this rule.
The transition rates between the absorbing and transparent
states have been determined by Talkner and Hinggi (1984).
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a  ‘“‘codimension-two  bifurcation”™ (Graham, 1986).
Schimansky-Geier, Tolstopjatenko, and Ebeling (1985)
proposed a polynomial approximation of the generalized
potential about a fixed point for systems in the vicinity of
a bifurcation at which this fixed point loses its stability.
However, there are examples (Hu, 1989; Tel, Graham,
and Hu, 1989) of codimension-two bifurcations at which
the gencralized potential is still a smooth although
nonanalytical function. Within this WKB-type approxi-
mation a systematic improvement to the leading ex-
ponential term can only be achieved if the generalized
potential is piccewise twice differentiable (Ludwig,
1975)." Thercfore, transition rates including their pre-
factors can be obtained in most cascs only for (a) Marko-
vian one-dimensional nonequilibrium systems and (b)
higher-dimensional systems in which the essential non-
linear dynamics reduces approximately to an effective
one-dimensional Markovian treatment, or which—by
chance—obey a detailed balance condition. Some such
cases are discussed next.

A. Two examples of one-dimensional
nonequilibrium rate problems

1. Bistable tunnel diode

Following Landauer (1962) (see also Sec. 6.3 in Hinggi
and Thomas, 1982; Hinggi and Jung, 1988), one may de-
scribe the state of a tunnel diode fed through a series
resistor R by the number N of clectrons charging or
discharging the diode capacitance C (see Fig. 27). The
time evolution of the diode is then fairly well described
by a Markovian master equation of the birth-and-death
type [Eq. (7.74)],

= P(N,t)=W'(N—1DP(N—1,t)

+W (N-+1)P(N+1,1)
—[WHN)+W (N)]JP(N 1),
N=0,£1,+2,..., (8.1)

where the birth rates W '(N) and the death rates
W (N} are given by the probabilities per unit time of
charging and discharging the capacitance by the elemen-
tary charge e.

In the deterministic limit in which the charge may be
considered as a continuous quantity at a given voltage
across the diode, V=V, — V', where V' is the voltage
across the resistor with the fixed vollage ¥V, supplied by a
battery, two locally stable states may occur (see Fig. 28).
These states are rendered metastable by fluctuations in a

20A corresponding problem has only recently been solved in
the simpler case of one-dimensional maps (i.e., discrete time dy-
namics) perturbed by Gaussian white noise (Reimann and
Talkner, 1989).
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R

FIG. 27. Nonlinear tunnel diode fed through a series resistance
R and a diode capacitance C. The diode is driven by an cxter-
nal constant-voltage source V). V denotes the voltage across
the nonlinear diode. After Landauer (1962).

diode of finite size. The transition rates follow directly
from the master equation in Eq. (8.1), by use of Eq.
(7.75). In the limit of a large system it is convenient to
introduce the intensive quantity

X = (8.2)
Q
as a quasicontinuous variable. For the tunnel diode the
size of the system (Q is given by the area of the junction.
Using as a scaling property for the transition rates

wlivy=0y'(x), (8.3)

one obtains from Eq. (7.75) for the forward rate from the
state 4 to C in leading order in Q' (Hinggi and Tho-
mas, 1982; Hanggi, Grabert, Talkner, and Thomas, 1984)

T(x,)
ka o= [T 10187y A 007
Xexpl —Qdlx,)—¢(x, )]} (8.4)

where x, and x, refer to the surface charge densities at
the capacitance in the locally stable state 4 and the un-
stable state B, respectively, and where the generalized po-

A B C v, ¥

FIG. 28. Static current-voltage characteristic I(V) (solid line)
and the load line (dashed line) of a tunnel diode corresponding
to the circuit in Fig. 27. The states 4 and C are locally stable
voltage states, while state B located within the negative resis-
tance region is locally unstable.
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tential ¢(x) is given by (Landauer, 1962; Hinggi and
Thomas, 1982)

$(x)=— fx"dy In (8.5)
0

The corresponding result for the backward rate k._, 4 is
obtained from Eq. (8.5) if we replace the state x, in Eq.
(8.5) by the corresponding state x,. We remark that the
rate expression which follows from the standard truncat-
ed Kramers-Moyal expansion deviates from the asymp-
totically correct result [see Eq. (8.4)] by an exponentially
large factor (Hanggi, Grabert, Talkner, and Thomas,
1984). An improved Fokker-Planck description, which
in turn yields a rate identical to that in Eq. (8.4) has been
put forward by Hanggi, Grabert, Talkner, and Thomas
(1984). Recently, this scheme has been applied to a real-
istic model for Landauer’s tunnel diode (Hanggi and
Jung, 1988).

2. Nonequilibrium chemical reaction

An example of a nonequilibrium chemical reaction
with two locally stable steady states is provided by the
second Schlogl model (Schlogl, 1972):

(8.6a)
(8.6b)

A +2Xs3X,
B+XsC,

where the concentrations of the species A, B, and C are
held fixed, while the concentration of X is allowed to
vary. This autocatalytic reaction can be described by a
birth-and-death process [Eq. (8.1)] for the number N =0
of molecules of species X with birth and death rates
determined by the reaction scheme of Eq. (8.6) (McQuar-
rie, 1967). In this case the system size () is given by the
reaction volume, and within the asymptotic regime
1 — oo the transition (forward) rate between the different
locally stable states is again of the form in Eqgs. (8.4) and
(8.5) (see also Janssen, 1974; Matheson, Walls, and Gar-
diner, 1975; Kottalam and Hunt, 1984).

B. Brownian motion in biased
periodic potentials

A well-known case of stationary nonequilibrium is that
of Brownian motion subject to an external force in a
nonconfining potential U(x). In particular, the driven
Brownian motion in a periodic potential has a broad
variety of applications in physics and engineering sci-
ences (see, for example, Risken, 1984). For the sake of
definiteness we shall consider a Brownian particle moving
in a tilted periodic potential (see Fig. 29).

In dimensionless variables (see p. 286 in Risken, 1984)
the Langevin equations for a particle of unit mass read
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Ux)

2n X

FIG. 29. Form of the biased periodic potential used in text.
Note that the states x and x +2m are considered distinguish-
able.

x=v, (8.7a)
——‘3};—(;1+F—yv+(276)1/2§(t) : (8.7b)
(E(t)E(s))=b(t—s), (8.7¢)

where the dimensionless constants F, y, and 0 measure
the constant bias yielding the tilt, the damping constant,
and the temperature, respectively. The periodic part of
the potential f(x) has a period of 27 and exactly one
minimum in each period. Let us first look qualitatively
at the possible types of deterministic attractors as a func-
tion of the bias F and the damping constant y. For a
more detailed account see Andronov, Vitt, and Khaikin
(1966) and Falco (1976). After that we shall consider the
influence and the consequences of low-intensity noise
&(t).

Obviously for a bias larger than some critical value,
F > F_, the only stable motion is that in which the parti-
cle runs down the monotonically declining potential with
periodically varying velocity (see Fig. 30). Clearly this
attractor has the whole phase space as a basin of attrac-
tion.

If F is lowered beyond the critical value F,, the poten-
tial shows a minimum within each period corresponding
to a locally stable attractor, referred to hereafter as a
locked state. Each of these attractors has a domain of at-
traction. If the bias F is sufficiently small, or the damp-
ing v sufficiently large, there are no other attractors, and
the basins of attraction of the locked solutions form
parallel strips covering the whole phase space (see Fig.
3.

Note that there are no triple points at which more
than two basins meet. For larger forces but with F <F,,
and sufficiently small damping rates y, the upper parts of
these strips merge to form the basins of attraction of a
running state, whereas the remaining lower parts disin-
tegrate into tadpolelike basins of attraction of locked
states, separated by parts of the phase space that are at-
tracted by the running state (see Fig. 32). Note that
again there are no triple points. Figure 33 is a phase dia-
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FIG. 30. Sketch of an attracting running state (solid line) above
the critical bias F > F,. The whole phase space forms the basin
of attraction for the running state. Some typical deterministic
trajectories approaching the running state are depicted by the

dashed lines.

gram showing qualitatively the regions of the monostable
running solution (1), the coexisting running and locked
solutions (2), and the coexisting locked solutions (3).

In both regions exhibiting multistability, fluctuating
forces lead to finite-transition rates between the coexist-
ing states—generally, two different rates in each region.
In region (3) both rates characterize transitions between
neighboring locked states, one to a state with lower ener-
gy, the other to a state with higher energy. In region {2)
one rate belongs to the transition from a locked to a run-

4
2
A%
0
-2
-4
-10 -5 0 5 10
X

FIG. 31. Regions of deterministically attracting domains of
coexisting locked states at F < F,.

Rev. Mod. Phys., Vol. 62, No. 2, April 1990

303

2

Vv

0

-2

-4
-10 -5 0 5 10

X
FIG. 32. Regions of deterministically attracting domains

among coexisting locked states (tadpolelike regions) separated
from the domain of attraction of the coexisting running state,
which is present at sufficiently weak damping.

ning state and the other to the transition in the opposite
direction. In a layer at the boundary of regions (2) and
(3) more complicated correlated transitions to farther
than nearest-neighbor states may occur (Ryter and
Meyer, 1978). We shall not consider these events any
further.

Let us now consider the corresponding rates in more
detail as far as they are known in the literature. As we
have already emphasized at the beginning of this section,
for both the flux-over-population method and the mean
first-passage time a stationary solution of the Fokker-
Planck equation must be known. This solution need not

F=F 1
1.0

0.0
0.0 1.0
Y

FIG. 33. Phase diagram showing the various regions with
stable solutions as a function of the external bias F vs damping
v: region 1, monostable running state; region 2, coexisting run-
ning and locked states; region 3, coexisting locked states.
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define a proper probability density on the whole state
space, but need only be normalizable on the domain of
attraction of the initial state. For transitions out of a
locked state such a stationary solution is obviously given
by

w(x,v)=Z lexp{ —[Iv*+U(x)]1/6} , (8.8)

where U (x) is the nonperiodic potential that includes the
external bias,

Ulx)=f(x)—Fx . (8.9)

The transition rate out of a locked state is then given by
Eq. (4.33), where the frequencies w, and w, are deter-
mined by the square roots of the potential U (x) at one of
its local minima and maxima, respectively, and the bar-
rier height is given by the potential difference between a
minimum and the lower neighboring maximum. For the
particular choice of a sinusoidal potential

U(x)=—cosx —Fx , (8.10)
Biittiker, Harris, and Landauer (1983) obtained

=l =(1—F})"%, (8.11)

E,=2(1—F%)!2—2F arccos F (8.12)

This rate expression from an initially locked state
holds true independently of whether the final state is
locked or running, i.e., in both regions (2) and (3). In re-
gion (3) there is, in addition, a rate to the neighboring
state with higher potential U(x ), which is exponentially
smaller by a factor exp( —2F arccos F /). Just as for the
original Kramers model with a large damping constant
y, the rate out of a locked state in the overdamped limit
may also be obtained from a Smoluchowski equation for
the coordinate x [Eq. (4.54)] (Stratonovich, 1967; Am-
begaokar and Halperin, 1969). Clearly, this limiting case
can only be observed in region (3). The other limit of ex-
tremely weak damping with finite temperature is mainly
relevant in region (2). The rate out of the locked state is
then limited by the diffusion of the action of the un-
damped deterministic motion. As in the original Kra-
mers case this rate is given by Eq. (4.49). In the limit of
weak confining wells of the sinusoidal potential U(x)
[Eq. (8.9)], i.e., for forces approaching the critical value
F—F,=1, with F <1, the relevant action at the barrier
energy I, reads (Biittiker, Harris, and Landauer, 1983)

I,=2[2(1—-F)]"*. (8.13)

For transitions from a running to a locked state, i.e., in
region (2), two different regimes must be distinguished,
one an action-diffusion-limited regime at extremely weak
damping and finite temperatures, and the other a phase-
space-diffusion-limited regime at finite damping rates and
sufficiently low temperatures (see Sec. IV.C). For the
action-diffusion-limited rate from a running to a locked
state, Ben-Jacob, Bergman, Matkowsky, and Schuss
(1982) obtained the result
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kZ%(E,f/G)mexp(—E,f{/G) ,
i

where the barrier height relative to the running state is
given by

(8.14)

2
F_ 4

Y T

E;‘:% (8.15)

From the lowest nonvanishing eigenvalue of an approxi-
mate Fokker-Planck equation describing the energy
diffusion, Jung and Risken (1984) obtained a different re-
sult [Eq. (5.25b) in Jung and Risken (1984)], for the same
rate; their result agrees with that of Ben-Jacob et al.
(1982) only in the limit of a small bias F. In accordance
with this observation Graham and Tel (1986) pointed out
that the approximate WKB-type expansion of the sta-
tionary probability density on which the rate expression,
Eq. (8.14), is based can only hold true if both the damp-
ing constant ¥ and the bias F are sufficiently small with a
finite ratio for F/y. In the other limiting cases
F—1, y—0, Cristiano and Silvestrini (1986) obtained a
rather involved expression for the rate. Some quantum
corrections in these limiting regimes have been discussed
recently by Melnikov and Siitd (1986), Zwerger (1987),
and Chen, Fisher, and Leggett (1988).

Finally, we note that closed-form rate expressions from
a running to a locked state in the regime of intermediate
bias, and outside the action-diffusion-limited regime, are
still unknown. For some numerical studies within these
various regimes, see Vollmer and Risken (1983), Jung and
Risken (1984), and Kautz (1988).

C. Escape driven by colored noise

As we have noted in Secs. III.C and VI.C, correlated
thermal noise, which via the fluctuation-dissipation
theorem induces memory friction y(t) [see Eq. (3.33)],
can substantially modify the transmission coefficient [see
Eqgs. (3.31) and (3.46)]. In contrast to Secs. III.C and
VI.C our focus here is on correlated noise in nonthermal
systems. In this latter case, there no longer exists a rela-
tionship between friction and noise correlation, and
moreover, the stationary probability is no longer of
canonical form. The study of realistic noise sources with
a finite noise correlation time 7, i.e., “colored noise,” in
nonlinear stationary nonequilibrium systems has recently
attracted rapidly growing interest (see, for example, the
contributions in Moss and McClintock, 1989). Com-
pared to the thermal case, the role of colored noise in sta-
tionary nonequilibrium systems is more complex; it not
only crucially affects the dynamic properties, but even
strongly affects the form of the stationary probability.
Due to the lack of a detailed balance symmetry this sta-
tionary nonequilibrium probability cannot in most cases
be expressed in analytical form. The archetypal situation
is a nonequilibrium Ginzburg-Landau-type bistable sto-
chastic dynamics first worked out by Hénggi, Mar-
chesoni, and Grigolini (1984). In terms of dimensionless
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variables (Jung and Hinggi, 1988), we consider a sym-
metric, bistable potential U(x)=—1x2+1x* driven by
Gaussian, exponentially correlated noise of zero mean,

% =x—x3+te(t), (8.16a)

with correlation

(t—:(t)e(s))=€exp( —lt—s|/7) . (8.16b)
Throughout this section we denote the noise correlation
time 7, simply by 7,=7. Alternatively, this one-
dimensional non-Markovian flow can be embedded into a
two-dimensional Markovian flow of the form (Hanggi,
Marchesoni, and Grigolini, 1984)

x=x—x+e, t¢=—e/7+DYr (1), (8.17)

where £(t) is Gaussian white noise of zero mean and
correlation (£(z)&(s))=2D8(t—s), and where e(t) is
prepared with a stationary Gaussian probability of van-
ishing mean. For 7—0, €(¢) itself becomes white noise
and the escape is governed by the (Markovian) Smolu-
chowski equation (4.9), with the corresponding rate given
by Egs. (4.56c) and (4.57). The early work of Hanggi,
Marchesoni, and Grigolini (1984) stimulated further
research into the effects of finite noise color of various
correlation times 7 upon the stationary and dynamic
properties of nonthermal nonlinear systems. These re-
cent efforts not only make use of approximate theory (see
the many references cited in Jung and Hanggi, 1988), but
also include precise numerical methods (Jung and
Hanggi, 1988), precise simulation techniques (Fox, 1989),
and analog simulation techniques (Hanggi, Mroczkowski,
Moss, and McClintock, 1985; Moss et al., 1986).

We confine ourselves here to a discussion of the
colored noise modified escape rate. In this case, the ap-
proximate theories work best for the regime of low
(r—0) and extremely high (7— o) noise color. The
theory at low noise color is nontrivial due to the presence
of two small parameters, the weak noise strength D and
the noise color 7, and the asymptotic result for the rate
depends on how the limits 7—0 and D —0 are taken. If
we denote the Smoluchowski rate [Eq. (4.54)] at 7=0 by

k,=(mv2)" lexp [1+0(D)],

__1
4D

we find at low noise color 7—0 (Hanggi, Marchesoni,
and Grigolini, 1984; Luciani and Verga, 1987, 1988; Dy-
gas, Matkowsky, and Schuss, 1988; Bray and McKane,
1989; see Fig. 34)

T 374
8D 10D

k(r)=k,{1—1[$+0(D)]}exp

+0(7%/D)

b

r<<1, (8.18)

which for (r/D)<<1 reduces to (Hanggi, Marchesoni,

D =0.05

Inh
/7

-6.00 \
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T

FIG. 34. Behavior of the smallest positive-valued eigenvalue
A(1T)=2k(7) of the equivalent exact, two-dimensional Fokker-
Planck system, Eq. (8.17), at low noise correlation times 7: solid
line, numerical result obtained via an improved matrix-
continued fraction method (Jung and Hinggi, 1988); dashed
line, numerical evaluation of AEF¥(r) of the one-dimensional
effective Fokker-Planck (EFP) approximation of Fox (1988);
dotted line, numerical evaluation of AF*F(r) of the one-
dimensional, standard small-r EFP approximation (Hinggi,
Marchesoni, and Grigolini, 1984); dot-dashed line, steepest-
descent result in Eq. (8.19).

and Grigolini, 1984),

k(r)=k,(1—3r), 7/D <<1 (8.19)

This latter result has been recovered in a multitude of
later studies; see, for example, the various references
given in Jung and Hanggi (1988).

With increasing noise color a crossover occurs with a
characteristic exponential (7/D) dependence [see Fig.
35] (Hanggi, Mroczkowski, Moss, and McClintock, 1985;
Leiber, Marchesoni, and Risken, 1988; Jung and Hinggi,
1988),

k(r)<exp(—ar/D), 0.2<7<1.5, (8.20)

with a=0,10. Upon further increasing the noise color
T— o0, we find that this exponential characteristic behav-
ior undergoes yet another, slowly varying crossover to an
asymptotic (7— o« ) regime given by (Luciani and Verga,
1987, 1988; Jung and Hanggi, 1988; Tsironis and Grigol-
ini, 1988; Hinggi, Jung, and Marchesoni, 1989)

k(1) <exp as T—oo, D—0. (8.21)

— T
27D |’
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FIG. 35. Plot of the lowest eigenvalue A,(7)=2k(r) at small-
to-moderate noise color 7<1,2 for various noise strengths D.
The arrow indicates the steepest-descent approximation of the
Smoluchowski rate kg at zero noise color. After Jung and
Hinggi (1988).

A more detailed study of high noise color exhibits
quite a few interesting and unexpected features. For ex-
ample, the separatrix of Eq. (8.17) shows a cusplike be-
havior as 7— o, and the most probable point of escape is
shifted away from the deterministic saddle point located
at x =0 (Hanggi, Jung, and Marchesoni, 1989). More-
over, with increasing noise correlation times the two-
dimensional stationary probability p (x,e) undergoes a
topological change near the origin (Marchesoni and
Moss, 1988; Debnath et al, 1989; Hinggi, Jung, and
Marchesoni, 1989) where the deterministic saddle point,
located at x =0, e=0, is replaced by a pair of off-axis
saddles, implying a “hole” for the two-dimensional sta-
tionary probability around the origin x =¢=0. For the
rate itself one finds in the asymptotic regime more accu-
rately (Jung and Hinggi, 1988; Hanggi, Jung, and Mar-
chesoni, 1989)

1
4D

(++%7)

27 ’

k(T)=[541TD(7'+%)]_1/2exp

as 7T—> o0 .,

(8.22)

The escape time to the separatrix, i.e., T(1)=1k Y1) in
the physically relevant regime of small-to-moderate noise
color 7, is depicted for the noise strength D =0.1 in Fig.
36.

In order to overcome some of the difficulties that
plague the analytical evaluation of statistical properties
of realistic nonequilibrium flows driven by colored noise,

T
D=0.1
1000

100

0 1 2 3 4
T

FIG. 36. The escape time T'(7) to the separatrix vs the noise
correlation time 7 at weak-to-moderately-strong noise color:
solid line, numerical result (Jung and Hanggi, 1988; Jung,
Hinggi, and Marchesoni, 1989); dotted line, bridging expression
based on the theory of Luciani and Verga (1987, 1988); dashed
line, bridging formula due to Tsironis and Grigolini (1988).

an idealized correlated-noise source, namely, two-state
noise (Klyatskin, 1977; Lefever et al., 1980) has been in-
troduced. For flows driven by such strongly simplified
noise, which, nevertheless, may model electronic, optical,
or chemical bistable nonequilibrium reactions, the corre-
sponding rates of escape can be calculated up to simple
quadratures (Hanggi and Riseborough, 1983; Van den
Broeck and Hinggi, 1984; Balakrishnan et al, 1988;
L’Heureux and Kapral, 1988).

D. Nucleation of driven sine-Gordon solitons

In Sec. IV.F we presented the field-theoretical ap-
proach (Langer, 1969) to thermal escape problems in the
presence of many particles or dimensions. This field-
theoretic approach is particularly suitable for describing
nucleation phenomena in metastable systems, such as
condensation in supersaturated vapors (Langer and
Turski, 1973; Langer, 1980) or the decay of the persistent
current in a filamentary superconductor (McCumber and
Halperin, 1970). In contrast to the classical approach to
nucleation, i.e., the kinetics of cluster formation (Farkas,
1927; Becker and Déring, 1935; Zeldovich, 1943; Frenk-
el, 1955; Feder et al., 1969; Zinsmeister, 1970), a field-
theoretic approach does not make any ad hoc assump-
tions regarding the overall fluctuation rate that drives the
nucleation process. In this context we also point out that
a direct experimental check of the nucleation rate predic-
tions of the two theoretical approaches is difficult be-
cause of the simultaneous presence of droplet growth and
droplet formation (Binder and Stauffer, 1976; Langer,
1980). In particular, the growth process is diffusion con-
trolled and thus becomes very slow near critical points.
Here we consider a simpler situation, namely, nucleation
phenomena in one space dimension only, thereby avoid-
ing the problem of critical phenomena. In contrast to
our discussion of thermal nucleation in Sec. IV.F, howev-
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er, we consider here an infinite number of particles in a
biased periodic potential, implying stationary nonequili-
brium, typified by a driven, damped sine-Gordon field
O(x,t). Such systems are of physical interest in disloca-
tion theory (Seeger and Schiller, 1966), charge-density
waves in dielectrics, pulses in optical fibers, or Josephson
transmission lines, to name but a few (Scott et al., 1973;
Dodd et al., 1982). Because the classical sine-Gordon
equation does not exhibit an intrinsic scale, we use the
damped sine-Gordon dynamics in a form with a unit
speed for the sound velocity of the free string,

a6

— ——tolsinf=—a——F+£&(x,t),
X

a1 (8.23)

where £(x,t) is a Gaussian fluctuating field of vanishing
mean and correlation,

(E(x,t)E(x", ")) =2akp T8(t —1t")8(x —x') , (8.24)

and F, o, and o, denote the external bias, the friction
coefficient, and an amplitude scale.

1. Nucleation of a single string

We first consider the case of the nucleation of a single
kink-antikink pair, which proceeds without perturbation
due to other nucleating pairs. Throughout the following
we shall restrict the discussion to the overdamped limit,

a>>w . (8.25)

Under this restriction a kink-antikink collision within the
region of multistability, F/w3< 1, always becomes des-
tructive (Pederson et al, 1984). Let n, denote the
steady-state kink density and 75 be the mean lifetime of a
kink, which Hénggi, Marchesoni, and Sodano (1988)
evalauated as

21372 172

kyT

F

®}

0}
ko=(2m)7323(15)!2— |1—
a

where 2E denotes the activation energy for nucleation
Ey, approximately given by (Hanggi, Marchesoni, and
Sodano, 1988)

[ 7 F TF
Ey=2E;=2E;;1+——|In —1 ,
N F ol 8 w, 162
o9 63D
@y

Here E,=8w, denotes the rest energy of an undriven
kink. At weaker fields, Hinggi, Marchesoni, and Sodano
evaluated the nucleation rate analytically as

D u 2 172
-1+ .
uF Dno

TF (8.26)
Here D =k, T(8aw,)” " and u is the propagation veloci-
ty of a driven kink. For bias forces exceeding the
thermal threshold value Fy, i.e., with

F.>F>Fr=kgTn,/(2m), (8.27)

the nucleating kink and antikink gain an energy larger
than kT moving away from each other prior to annihi-
lation, and thus they do not strongly interact with other
nucleating pairs. F,=w} denotes the critical bias below
which one observes multistability. With the nondiffusive,
ballistic limit for the mean lifetime given by

TF—)T():(ano)_l, F>>FT , (8.28)
the nucleation per unit length becomes
ko=2ny/79=2upn% (8.29a)

Under these assumptions Eq. (8.29a) becomes equivalent
with Langer’s expression [Eq. (4.83), (Hanggi, Mar-
chesoni, and Sodano, 1988),

Ay

Ty T (8.29b)

k0=

Im7 ,

where Im & is the imaginary part (per unit length) of the
energy of the metastable critical nucleus configuration
and A, denotes the (positive-valued) growth rate which
corresponds to the saddle-point configuration of the nu-
cleus. This noninteracting, single-string nucleation rate
was originally studied by Petukhov and Pokrovskii (1972)
and independently by Biittiker and Landauer (1981).
Equation (8.29b) can be evaluated analytically in various
limits. At strong fields one obtains (Petukhov and
Pokrovskii, 1972; Biittiker and Landauer, 1981)

exp(—2BEg), 1 < iz <1, (8.30)
2 o
2 172
@o Ep
=—0QF)'\* | — —2BE),
k 17-a( ) Ky T exp(—2BER)
(8.32)
i> £ > kT
2 a)(z) EO v
At even weaker fields obeying
F kg T
—Z << iz <2 (8.33)
o @9 E,

the nucleus attains a rather broad extension, thereby
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yielding an additional “‘breathing mode” contribution
(Weiss, Grabert, Hanggi, and Riseborough, 1987). This
breathing mode is characterized (apart from the ever-
present exact Goldstone mode with eigenvalue zero) by a
second, near-zero eigenvalue corresponding to a quasi-
zero mode. Accounting explicitly for the Goldstone
mode and this breathing mode contribution in Eq.
(8.29b), one finds (Hénggi, Marchesoni, and Sodano,
1988)

ko =w0; kBFT exp( —2BEg) ,

F kpT
—I<<£2<‘§— s
g g EO

(8.34)

i.e., the nucleation rate per unit length is now proportion-
al to the external bias F, and in addition becomes propor-
tional to the inverse temperature T.

2. Nugcleation of interacting pairs

The nucleation rate in Eq. (8.29b) can be pictured as
the escape of a ‘‘single” particle, characterizing the
profile of the forming nucleus, over a potential barrier
Ey=2E into the vacuum, i.e., the effect of a finite life-
time plays a subordinate role when F >>Fr. At exponen-
tially weak fields, however, the propagation velocity
up=~4mF /(wya) falls below the diffusive limit

up <<Dny , (8.35)

so that the production rate of kink-antikink pairs be-
comes controlled by the diffusive lifetime 7, i.e., using
Eq. (8.26) one finds with Eq. (8.35)

rr—7p=02Dn3)"!, F<<Fy . (8.36)
The production rate of thermal kink-antikink pairs per
unit length is then given by the ratio of twice the steady-
state kink density ng over the kink mean lifetime 7
(Hanggi, Marchesoni, and Sodano, 1988),

3/2
/ EF

2a

kp=4Dn}= = | @3 (BEg)"%exp(—3BEy) ,

F<«<Fy, (837

where we have used the steady-state density given by
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E F kT

exp( —BEg), — < 5
W

no_

- @
T 0

(8.38)

With F << Fr, n, essentially equals the thermal equilibri-
um density, n.,=nq(F=0). Upon a comparison of Eq.
(8.37) with Eqgs. (8.30), (8.32), and (8.34), we note that the
diffusive limit now involves three times the rest energy of
a driven kink.

The various results given in this subsection should be
of relevance both for experiments in extended
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Josephson-junction systems, and for the interpretation of
finite-temperature simulations of general kink-antikink
pair-production processes (Bochkarev and Forcrand.
1989; Marchesoni, 1990).

IX. QUANTUM RATE THEORY

In this section we report on the present status of quan-
tum rate theory, which has seen important and intriguing
developments in recent years.

A. Historic background and perspectives;
traditional quantum approaches

In the previous sections our focus was on noise-
activated escape from a metastable state in the classical
regime, and no efforts were made to account for the effect
of quantum-mechanical tunneling (see Fig. 37). As one
lowers the temperature, however, the metastable state is
rendered progressively less stable by such quantum-
mechanical tunneling processes (see Fig. 2).

The tunnel effect was recognized long ago, during the
heyday of quantum mechanics. The first to introduce
tunneling was Friedrich Hund (1927), who demonstrated
that quantum tunneling describes the intramolecular
rearrangements in pyramidal molecules such as am-
monia, as manifested by tunnel splittings of vibrational
spectra. It is interesting to note that the problem of py-
ramidal molecules, ie., the question of delocalized
ground states (e.g., for ammonia NH;) versus localized
ground states (e.g., in AsH;) continues to be an area of
active research (Primas, 1978; Wooley, 1978; Pfeifer,
1982, 1983; Claverie and Jona-Lasinio, 1986). The tun-
neling mechanism became a well-known effect shortly
afterward when Oppenheimer (1928a, 1928b) employed it
for the description of the ionization of atoms in intense
electric fields, Fowler and Nordheim (1928) used it for
the electric field emission of electrons from cold metals,
and Gamow (1928) as well as Gurney and Condon (1928,

U therm. hopping
Eb
heat bath

tunneling

FIG. 37. Escape of a particle from a metastable state. The par-
ticle can leave the well minimum either via thermal activation
over the barrier or via tunneling through the classically forbid-
den regime. The interaction between the particle and the
thermal environment is modeled by frictional forces.
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1929) invoked it to explain the radioactive decay of nu-
clei. Quantum-mechanical tunneling entered the field of
reaction rates with the pioneering study by Bourgin
(1929), which was continued by Wigner (1932), who eval-
uated up to order (#°) the quantum corrections to the
Boltzmann-averaged flux through a parabolic potential
barrier. Since then, the tunneling mechanism has been
invoked and developed further in a multitude of fields,
encompassing biology, electronic devices, crystalline and
amorphous solids, and tunneling microscopy, to name
but a few (for a survey see Jortner and Pullman, 1986).

Our focus here is on tunneling in the presence of dissi-
pation (Feynman and Vernon, 1963; Brink, Neto, and
Weidenmiiller, 1979; Mohring and Smilansky, 1980; Cal-
deira and Leggett, 1981, 1983). This area of research has
been stimulated considerably by Leggett’s (1980, 1984a,
1986) initial discussion of quantum mechanics and real-
ism at the macroscopic level, and also by developments in
describing the fusion and deep-inelastic collisions of
heavy ions (e.g., Brink et al., 1979; Mohring and Smilan-
sky, 1980; Balantekin and Takigawa, 1985).

The publication of the Einstein-Podolsky-Rosen para-
dox (1935) triggered Schrodinger’s (1935) “General-
beichte” (general confession) on the status of quantum
mechanics. Best known from this article is the paradox
of Schrodinger’s cat, in which he illustrates the inde-
cisiveness of observations that is possible in quantum
mechanics. To this end he links the life of a cat, to which
so many of us are compassionate, with the state of a ra-
dioactive nucleus. In this way he “infects” the cat with
the quite common uncertainty of the subatomic world.
Specifically, the linear structure of quantum mechanics
seems to contradict our common sense, which is not
ready to accept that a cat can be in a combination of
“dead and alive” for an appreciable time (the half-life of
a nucleus whose decay triggers a device which then kills
the cat), while at the same time we are ready to accept
the analogous situation for the atomic nucleus.

In recent years it has become feasible to construct lab-
oratory cousins of Schrodinger’s cat by observing the
quantum mechanics of macroscopic quantum variables
such as the decay of a zero-voltage state in a biased
Josephson junction, or fluxoid quantum transitions in a
superconducting quantum interference device. This area
of research is now known as macroscopic quantum
mechanics (Leggett, 1980, 1984a, 1986; Caldeira and
Leggett, 1981, 1983a; Grabert, Olschowski, and Weiss,
1987, Hanggi 1986a, 1986b, 1987; Leggett et al., 1987,
Weiss, Grabert, Hanggi, and Riseborough, 1987).

As with many developments, the problem of tunneling
in the presence of a coupling to many degrees of freedom
such as phonons, magnons, and the like, thereby giving
rise to quantum friction for the metastable configuration
coordinate, has several precursors. Tunneling in the
presence of phonon modes is naturally a well-studied
problem in solid-state physics. Early studies of phonon
effects on tunneling include, among others, those by Pirc
and Gosar (1969), Sander and Shore (1969), and
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Sussmann (1971). Actually some of these authors may
have overlooked the full relevance of Holstein’s (1959a,
1959b; Emin and Holstein, 1969) early multiphonon
treatment (of the polaron problem) for this topic. Fur-
ther work on the tunneling mechanism in the presence of
phonon couplings includes, among others, that of Flynn
and Stoneham (1970), Hopfield (1974), Phillips (1976),
Sethna (1981, 1982), Riseborough (1983, 1984), Kassner
and Reineker (1986a, 1986a), and Skinner and Hsu
(1986). In many of these approaches it was necessary to
make the so-called “Condon approximation,” i.e., that
the tunneling matrix element is independent of the pho-
non positions. The merits and shortcomings of the early
approaches have been beautifully discussed in Sethna’s
articles (1981, 1982).

As can be noted from the classical rate formula of
Van’t Hoff (1884) and Arrhenius (1889) [Eq. (1.1)], one
finds a vanishing rate as the temperature is lowered to ab-
solute zero. A crude but frequently employed rate for-
mula for the full rate k is obtained by adding to the clas-
sical rate k,; a Gamow-type tunneling rate at zero tem-
perature; the total rate is written as

ke=kg+kqn 9.1)

(see, for example, Bell, 1980). The basic reasoning behind
this formula is that quantum effects open a new channel
for barrier crossings, thus enhancing the rate above the
corresponding classical value. Moreover, following
Wigner (1932), we incorporate temperature effects into
the quantum rate in the absence of dissipation by averag-
ing the undamped quantum transmission ¢(E) with the
canonical equilibrium probability (Bell, 1959, 1980;
Affleck, 1981; Skodje and Truhlar, 1981). This procedure
is analogous to the simple transition-state theory dis-
cussed in Sec. IILLA and will therefore be termed “simple
quantum TST.” With Z, denoting the quantum parti-
tion function of the metastable state one obtains

kggTzzg‘(zmr'fowdEr(E)exp<—BE) .92

Here we have measured energy from the well bottom.

The inclusion of dissipation in the quantum escape rate
is certainly more subtle. Common approaches for obtain-
ing the zero-temperature, undamped quantum rate are
not readily extended to finite temperatures and cases with
dissipation. These approaches include (a) the axiomatic
S-matrix theory (Bohr and Mottelson, 1969; Fonda et al.,
1978), in which one associates quantum decay rates in a
one-to-one correspondence with the poles of the .§ matrix
close to the real axis on the unphysical sheet of the
Riemann energy surface (provided that the S matrix can
there be analytically continued) and (b) a time-dependent
wave-function approach, whereby one considers the out-
going wave near a resonance energy (see, for example,
Fuda, 1984), which in turn implies a typical time delay
(as compared to the resonance-free situation) tp, =2/k 4,
in the arrival of the scattered wave. This delay is of the
order of the inverse quantum rate.
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A promising approach to quantum dissipation and
finite temperatures is based on a dynamical semigroup
approach for the evolution of the density operator (see,
for example, Sinha, 1972; Gorini et al.,, 1976; Alicki,
1977; and particularly Haake, 1973; Alicki and Lendi,
1987). This type of approach proved to be quite useful in
describing damping phenomena in nonlinear optics
(Haake, 1973; Agarwal, 1974; Sargent, Scully, and Lamb,
1974; Haken, 1975), as well as in spin-relaxation theory
(Hynes and Deutch, 1975; Grabert, 1982). However,
these semigroup methods treat the coupling to the envi-
ronment perturbatively (weak-coupling regime). This
severely restricts the method to the weak-damping re-
gime, with the strongest damping y typically obeying the
inequalities

y <<ag fiy <<kpT . (9.3)

Here o, is the lowest frequency typical of reversible
motions. Note that in a double-well system w, may differ
from zero just by the tunnel splitting; i.e., the first in-
equality of Eq. (9.3) is already violated for weak friction.
Moreover, macroscopic quantum phenomena in super-
conducting Josephson tunnel junctions occur at extreme-
ly low temperatures (Eckern, Schon, and Ambegaokar,
1984; Leggett, 1986), so the second inequality is often
violated for moderate amounts of dissipation. Further
shortcomings of the semigroup approach have been dis-
cussed by Talkner (1986). This state of affairs calls for a
more flexible and more accurate description of dissipa-
tion in quantum mechanics.

B. The functional-integral approach

As is widely appreciated, general tunneling problems
can be investigated to advantage in terms of complex-
time path integrals (Pechukas, 1969a, 1969b; McLaugh-
lin, 1972; Miller, 1975; Coleman, 1977; Caldeira and Leg-
gett, 1983a, 1983b; Weiss et al, 1984, 1987; Hanggi,
1986b, 1987; Hinggi, Weiss, and Riseborough, 1986;
Grabert, Olschowski, and Weiss, 1987; Grabert,
Schramm, and Ingold, 1988). To achieve this objective it
is convenient to employ the functional-integral represen-
tation of quantum mechanics (Feynman and Hibbs, 1965;
Feynman, 1972; Schulman, 1981). We shall present here
only a brief outline of the technique, from which we shall
use some results later on, but refer the interested reader
to the literature cited above.

Let us consider the partition function

Z=Tr{exp(—BF#)} , (9.4)

where 7 denotes the full Hamiltonian operator corre-
sponding to the system plus environment, and Tr indi-
cates the trace. Following Feynman (1972), this quantity
can be expressed (without recourse to any obscure analyt-
ic continuation procedures) in the form of a (Euclidean)
functional path integral over the tunneling coordinate
x(1),

Rev. Mod. Phys., Vol. 62, No. 2, April 1990

Z=f:Dx(T)exp{——SE[x(T)]/ﬁ] , (9.5)

where 7= it is a real variable (Wick rotation). The in-
tegral in Eq. (9.5) runs over all paths that are periodic
with period 6=7#f3. Each trajectory x(7) is thus weighted
by the Euclidean action Sp.

For our rate theory we also account for dissipation in-
duced by the coupling of the tunneling coordinate x(7) to
other degrees of freedom. In doing so we start out from
the functional-integral equation (9.5) in the full space of
the system plus environment(s). Here we shall use a bi-
linear coupling mechanism between system and environ-
ment. Such a scheme results in a linear damping mecha-
nism with an equation of motion of the form in Eq.
(3.31). The effective Euclidean action corresponding to
the Hamiltonian in Eqgs. (3.29) and (3.30) after integration
over the bath modes {q;] thus takes the form

Splx]1=Sg'+S5
= [ dr{4Ms )+ ULx(n)])

n 0/2 6/2 , . ,
+zf_0/2d7f_9/2d7k(f x(T)x(r') . (9.6)

The first term describes the reversible motion in the
metastable nonlinear potential U(x), while the second,
nonlocal part describes the influence of dissipation. The
influence kernel k(7) is periodic with period 6. It can
therefore be represented in terms of a Fourier series as
(Grabert and Weiss, 1984a; Grabert, Weiss, and Héanggi,
1984; Grabert, Olschowski, and Weiss, 1987; Grabert,
Schramm, and Ingold, 1988)

k(T)=% S v, 19Uy, Dexpliv,T) , 9.7)
obeying
[ k(riar=0 9.8)
~0/2

Here v, =n2m/0, and 9(z) is the Laplace transform of
the memory friction in Eq. (3.34), that is (z)
= f o 7(t)exp(—zt)dr. Note that the dissipative part of
Sk is nonlocal even for strict, memory-free friction
#(z)=y. Moreover, the nonlocal action in Eq. (9.6) can
by virtue of Eq. (9.8) also be recast as
sgim=—1 " ar [ ark(r—1)x(r)—x(+)]
“Wooen Y-on ’
9.9)

which reveals explicitly the translational invariance of
the dissipative action. Other, formally equivalent, forms
for the dissipative part S have been used by Caldeira
and Leggett (1981, 1983a), Weiss et al. (1984), and Rise-
borough, Hanggi, and Freidkin (1985). The form of the
nonlocal kernel in Eq. (9.7) can also be directly related to
the real-time memory friction y(t), i.e., from Eq. (9.7)
one has with v=v, (Grabert, Olschowski, and Weiss,
1987)
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sinh(vs)
cos(vr)—cosh(vs)

_M e 3
kr)y=="g [ “dsy(s)

+My(0) 3 8(r—nb) . 9.10)

h=—o

Instead of the Euclidean (imaginary-time) formulation, a
real-time functional-integral formulation (Feynman and
Vernon, 1963; Mohring and Smilansky, 1980; Schmid,
1982; Caldeira and Leggett, 1983b; Balantekin and Taki-
gawa, 1985; Grabert, Schramm, and Ingold, 1988) can be
invoked which is of relevance for dissipative quantum
coherence effects as they typically occur in weakly
damped double-well systems (Bray and Moore, 1982;
Chakravarty, 1982; Chakravarty and Leggett, 1984, Leg-
gett et al., 1987, Weiss, Grabert, and Linkwitz, 1987,
Weiss and Wollensak, 1989). Because our focus will be
mostly on nonoscillatory, incoherent quantum tunneling
processes, we shall not discuss the real-time functional-
integral formalism further, but refer the interested reader
to reviews given in the recent literature (Leggett er al.,
1987; Grabert, Schramm, and Ingold, 1988).

C. The crossover temperature

Upon a closer inspection of Fig. 2 one notices that the
rate becomes controlled solely by quantum effects below
a characteristic temperature. This crossover from the
classical regime, where thermal activation events dom-
inate over tunneling-induced transitions, is characterized
within the semiclassical limit,

Ux)

thermal activation

———e
tunneling
Xa Xp
X (T=0)
v>0

E, /(fiwg) > 1, 9.11)

by a temperature T,,. This temperature will be found in
terms of the complex-time path-integral methodology in-
troduced in the previous section. The dominant contri-
butions to the functional integral come from the vicinity
of tunneling paths for which the action in Eq. (9.6) is sta-
tionary. The extremal action paths x,(7) obey the equa-
tion of motion

Mz, (r —%— J72 drkr—r)x,(r)=0,
9.12)
with the periodic boundary condition
X (7=—0/2)=x,(r=6/2) . (9.13)

Thus we note that in the absence of dissipation, =0,
that is, k(7)=0, the evolution of x,(r) in imaginary time
t=—ir corresponds to a real-time (7) motion in the
metastable, inverted potential —U(x). Because of the
property in Eq. (9.8), Eq. (9.12) has two trivial solutions;
a first one x'(7)=x,, where the particle simply sits on
top of the inverted potential, at the minimum of U(x),
and a second, saddle-point solution x/*(7)=x,, where
the particle is located at the minimum of —U(x), i.e., at
the barrier top of U(x) (see Fig. 38). A nontrivial
periodic solution x,(7), the so-called bounce solution
(Miller, 1975; Callan and Coleman, 1977; Coleman, 1977,
1979) exists only below a critical dissipative crossover tem-
perature (Hanggi, Grabert, Ingold, and Weiss, 1985),

G
><0
T
02 =0 0/2
©
><0)
X -0/2 /2

FIG. 38. Potential U(x) used in the description of the quantum-Kramers rate. The periodic bounce trajectory x,(7), with period
#3=0, describes low-temperature tunneling under the barrier and is a stationary point of the Euclidean action in Eq. (9.6), obeying
the classical equation of motion in the inverted potential — U(x) [see Eq. (9.12)]. The Goldstone mode <« %,(7) processes one node;
Le., there is a fluctuation mode with a negative eigenvalue. The point marked x,(7=0) gives the zero-temperature bounce point in
the presence of finite damping ¥, which characterizes the loss of energy during tunneling under frictional influence (Weiss et al.,

1984).
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To=#u(2mky) '=(1.216 X102 sec K)u , (9.14)

where p denotes the positive root of Eq. (3.44). For tem-
peratures T > T, the period of the 6-periodic orbit is not
of sufficient length to admit an oscillation of the particle
in the classically forbidden regime (see Fig. 38).

The characteristic tunneling temperature in the ab-
sence of any dissipation (¥=0),

To=#w,(27ky)”", as §—0, (9.15)
was originally derived in the late fifties by Goldanskii
(1959a, 1959b, 1976) essentially by equating the Ar-
rhenius factor BE, for a parabolic barrier with the zero-
temperature Gamow factor 27E, (fiw,)”'. It should be
noted that this crossover temperature T, can be quite
large. For example, one finds with a characteristic chem-
ical activation energy of E, ~0.4 eV and a tunneling dis-
tance of 2X 107 '° m, which yields for hydrogen a barrier
frequency o,~10" Hz, a crossover temperature
T,~ 150K [see also Fig. 2(b)].

The nontrivial bounce solution x,(7) [Eq. (9.12)],
which is influenced both by temperature and by dissipa-
tion (see Fig. 38), is not a minimum of the action Sg, but
corresponds to a saddle-point solution with an unstable
dircction. For temperatures T > T, the role of x,(7) is

Owo

(— =2.6

ML)

n|®

nj®
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taken over by the constant solution x*'(7)=x,. Thus at
all temperatures a fluctuation mode ex1sts in function
space with respect to which the bounce is a maximum of
the action. Associated with this fluctuation mode,
x,(r)=x, for T>T,, and x,(7) for T < T} is therefore a
negative eigenvalue. Below T, the extremal action
Sglx,(r)=x,] exceeds the value obtained by the
nontrivial ~ solution x,(7), hence Sg[x,(7)]=S,
<Sglx(r)=x,]=#BE,. Here we have set for the action
Sglx,(1)=x,] a value of zero. In other words, the trivi-
al solution x, can be disregarded for T < Ty, except
within the crossover region T ~T, where both
x!?(r)=x, and the nontrivial solution x,(r) with period
#3 are of equal importance (see Fig. 39). Analytical re-
sults for the bounce solution are generally not available.
For a cubic potential U(x)=M(Jojx2—1ux?), exact re-
sults have been obtained for zero friction and T=0, by
Caldeira and Leggett (1983a), and at finite temperatures
by Freidkin et al. (see Appendix 2 in Freidkin, Risebor-
ough, and Hénggi, 1986a). For strictly Ohmic friction ¥,
explicit solutions have been found for very strong damp-
ing by Caldeira and Leggett (1983a) and by Larkin and
Ovchinnikov (1983, 1984). For one particular, intermedi-
ate damping value, Riseborough er al. (1985) were able

to find analytic solutions (see Fig. 39). In thc over-
2
2(=0)
Bwo, _
)74
0o
_8 0 8
2 T 2
2(=2)
2}
(52240
Wo
-
0o
8 0 8
2 2
T

FIG. 39. Bounce trajectories x,(7) in a cubic metastable potential at moderate Ohmic damping y. Note the approach of the bounce

trajectory toward the constant saddle-point solution x,(7)=x, =wj/u with increasing temperature 6~ L
=6, the periodic bounce solution coalesces with the constant solution x,(7)=x,. After Riseborough et al (1985).

Bpwo/(27)
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At crossover,
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damped limit again, a further analytic solution in a tilted
sinusoidal potential was found recently by Korshunov
(1987).

This feature of a negative eigenvalue obviously plagues
the evaluation of the free energy and equivalently, the
partition function of a metastable state. What one needs
is an analytical continuation, in which the integral of the
unstable (negative-valued eigenvalue) mode is distorted in
the complex plane yielding a finite, but complex, part for
the partition function of the metastable state (Langer,
1967; Coleman, 1977, 1979). This omnipresent negative-
eigenvalue mode is therefore the origin of the exponen-
tially small imaginary part of the free energy of a meta-
stable state [see Eq. (4.83)].

With the collapse of x,(7) toward x,(7)=x, as T1T,,
it becomes clear that T, is the temperature at which the
crossover from thermal-dominated escape to tunneling-
dominated escape occurs. This temperature T, [see Eq.
(9.14)] is reduced with increasing dissipation strength.
On the other hand, T, increases monotonically toward
the dissipation-free value given by p— w, with increasing
memory-friction relaxation time, while ¥(w0=0) is held
fixed (Hanggi, Grabert, Ingold, and Weiss, 1985). In Fig.
40 we depict schematically the various temperature re-
gimes of the escape rate as a function of temperature.

Within the crossover regime T ~T,, any linear com-
bination of the two extremal solutions x,(7) and x, =x,
is an almost stationary solution of the Euclidean action
Sg. Each of these two solutions separately induces an ex-
act zero mode and a quasizero mode (Grabert and Weiss,
1984b; Riseborough et al., 1985), which dominate the re-
sult of the prefactor for the rate of escape around T~ T,
(Grabert and Weiss, 1984b; Larkin and Ovchinnikov,
1984; Riseborough et al., 1985). At temperatures T > T,
the Gaussian fluctuation modes x,(7) around the solu-
tion x 2)(7)=x, possess the eigenvalues

M=n"—o}+nlvPnlv), n=0,%1, T>T,,
(9.16)

where v=2m(#8) "' denotes the fundamental Matsubara
frequency. We note that Aj= —w? is the negative eigen-
value associated with x,(7)=x,, and that the eigenvalues
AP=A% | become mutually zero (zero modes) at precisely
the crossover temperature T,

2 o) — .2
Vot vol (vg)=wyj 9.17)
2

o Ao
Ee 2 E 5 5 2
< © & = 9 £ =
c c 0 c @ a
=] o E 5 &
p=2 = o = [=3 @ Q

=1 —
g2 & S O E =

T

FIG. 40. Dominant escape mechanism depicted schematically
as a function of temperature.
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where v,=27k, T, /#. Interestingly enough, this critical
frequency v, defining T, [see Eq. (9.14)] just coincides
(Hanggi, Grabert, Ingold, and Weiss, 1985) with the
memory-friction renormalized barrier frequency in Eq.
(3.45), vo=p. While at T=T, the modes x, and x_, are
exactly degenerate, this degeneracy is lifted by the mutu-
al coupling around T~T,. Near T ~ T, one finds (Rise-
borough et al, 1985; Grabert, 1986; Grabert, Ol-
schowski, and Weiss, 1987) that k"_1=0 is an exact zero
mode, while in leading order (T —T)

M=a(T—T,) /Ty, T>T,, (9.18)

and

M=2a|T—T,|/Ty, T<T,, (9.19)

with @ =} +p*(1+39/3z|,-,). Thus AAT~T,) al-
ways stays slightly positive.

D. The dissipative tunneling rate

The theory of dissipative tunneling was developed only
recently. The field has undergone rapid development
since Caldeira and Leggett (1981, 1983a) discussed the
problem of macroscopic dissipative quantum tunneling at
zero temperature. Following the reasoning of Langer
(1967), which he invented for the classical nucleation
problem, the original approaches to dissipative tunneling
were based on an imaginary-time functional-integral ap-
proach [known as the imaginary free-energy (Im F)
method; see Eq. (4.83)]. The essence of the method con-
sists in a semiclassical steepest-descent evaluation of the
free energy, which leads to the dissipative bounce solu-
tion [see Eq. (9.12)], as the primary object in the theory
(Miller, 1975; Callan and Coleman, 1977; Coleman, 1979;
Affleck, 1981). The important qualitative result of the
zero-temperature studies (Caldeira and Leggett, 1981,
1983a) was the observation that dissipation will exponen-
tially decrease the tunneling rate relative to the gas phase
rate, defined as the tunneling rate without dissipation.

The functional-integral approach was extended by the
Augsburg-Essen-Polytechnic-Stuttgart school and the
Moscow school to finite temperatures, covering all tem-
peratures in the range from T ~0 up to the classical re-
gime (Grabert and Weiss, 1984a, 1984b; Grabert, Weiss,
and Hinggi, 1984; Larkin and Ovchinnikov, 1984, 1985;
Grabert, 1985; Riseborough et al., 1985; Hanggi, 1986a,
1986b, 1987; Grabert, Olschowski, and Weiss, 1987;
Weiss, Grabert, Hinggi, and Riseborough, 1987; Hanggi
and Hontscha, 1988). Below we shall present the main
results of the finite-temperature theory of dissipative tun-
neling by use of a unified multidimensional WKB ap-
proach for the reactive system plus bath, which covers
both low temperatures and high temperatures on the
same basis (Miller, 1975; Héanggi and Hontscha, 1988).
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The correlation-function result is analogous to the
Green-Kubo formulas for transport coefficients. Except
in simple situations, however, e.g., for a one-dimensional

1. Flux-flux autocorrelation function
expression for the quantum rate

We begin our more detailed discussion of tunneling
rates by a formally exact rate expression. Let Z, denote
the quantum partition function of the system plus bath of
a metastable state inside the well minimum (see Fig. 37).
Further, let x denote the reaction coordinate in full
configuration space, with the activation barrier located at
x =0, and let p be its conjugate momentum, i.e., x is the
coordinate perpendicular to the surface which divides
“reactants” from “products.” The flux-through-a-
surface operator F has the form

F=8(x)(p/M) . (9.20)
The thermally averaged tunneling rate k is formally given
by (McLafferty and Pechukas, 1974; Miller, 1974; Pechu-
kas, 1976; Miller, Schwartz, and Tromp, 1983)

k=Re{Tr[exp(—BH)FP}/Z, , 9.21)

where Re denotes the ‘“‘real part,” Tr indicates the trace,
and B=(kpT)™! again is the inverse temperature. The
operator P reads

P= lim exp(i#t /R)h(plexp(—iFft/#),

—w

(9.22)

with A(p)=1if p>0and h(p)=0if p <0. The operator
P projects onto all states that have positive momentum in
the infinite future (z — oo ), with the reaction coordinate
ranging from x =— o to x =+ . By use of a few for-
mal manipulations we can recast the exact rate in Eq.
(9.21) in terms of a time integral over a flux-flux auto-
correlation function. With F=1[8(x)p/M)+(p/
M)8(x)], and t,=t—i#fB/2, Eq. (9.21) can be written in
the form (Yamamoto, 1960; Miller et al., 1983)

k=1z5' [ car 9.23)
where (Miller, Schwartz, and Tromp, 1983)
C(1)=Tr[F expliFtX /H)F exp(—iFt, /)] (9.24)

Miller et al. (1983) have further demonstrated that the
rate in Eq. (9.23) is fully equivalent with the quantum
correlation-function formalism due to Yamamoto (1960).
Nevertheless, the correlation function in Eq. (9.24) dis-
tinctly differs from Yamamoto’s, and in fact it is only the
integrals over the correlation function that do agree.
Moreover, note that the correlation-function formalism
in Eq. (9.23) presents a dynamical approach in the same
spirit as the reactive flux reasoning in Sec. IL.B; the for-
mally exact expression thus covers both the quantum
energy-diffusion-limited and the quantum spatial-
diffusion-limited rate regime.
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parabolic barrier with curvature

0l=IM"'U"(g=4q,)|>0,

yielding
Zok = f‘f(%hﬂwb )[sin(3#Bw, )] 7",

it is generally impossible to calculate Eq. (9.23) analyti-
cally for nonseparable systems. Therefore it is more
practical to evaluate for Eq. (9.21) the semiclassical ap-
proximation (Miller, 1975; Schmid, 1986).

2. Unified approach to the quantum-Kramers rate

In order to make progress on analytical grounds we
first approximate the projector 7 in Eq. (9.22) by the sim-
ple step function h(p), thereby neglecting dynamical
nonequilibrium kinetics. This procedure is known in the
chemical physics literature as the quantum transition-
state theory approximation (QTST). By use of the semi-
classical approximation for the propagator exp(—p%#),
one finds after a first stationary phase approximation a
periodic trajectory in configuration space which
represents a continuum of stationary phase points. This
periodic trajectory which is unstable with respect to
small perturbations, is simply the bounce solution (often
denoted as the “instanton solution”) in full configuration
space of (N+1) degrees of freedom of the system plus
bath [see Eq. (3.29)]; it describes the tunneling at fixed to-
tal energy E. The dividing surface will next be chosen so
that the periodic trajectory crosses it perpendicularly,
i.e., go=x is the coordinate that measures distance along
the unstable periodic trajectory, with the other N coordi-
nates being orthogonal displacements away from it. In
contrast to the remaining N orthogonal coordinates,
which can be evaluated by the stationary phase approxi-
mation, the integral over the x coordinate cannot be per-
formed in such a way. It is, however, trivially accom-
plished by use of the 8 function in Eq. (9.20). Making use
of similar calculations (periodic orbit theory) originally
put forward by Gutzwiller (1971, 1982), one ends up with
the result (Miller, 1975)

k=Zg‘2—7lrhfowdE k(E )exp( —BE) , 9.25)
where we have measured the energy from the well bot-
tom, U(x,)=E,. The quantity k(E) is the microcanoni-
cal, cumulative semiclassical reaction probability at the
total energy E (Miller, 1975),

k(E)= i (—1)" lexp[ —nd(E) /#]

n=1

N
X I {2sinh[inT(E)w,(E)]} ",

=1

(9.26)
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with

TE)

HE)= fo d1p(T)g(r) (9.27)

being the “small action” integral along the periodic orbit
in complex time t = —i7 (Wick rotation) of period T(E)
that passes through the saddle-point region on the

i=1

With the solution of

N
Ey=E— 3 (n;+ 1w /(Ep), (9.29)
i=1
which is the energy E; left in the tunneling mode while
the system is crossing the saddle point, we approximate
the answer in Eq. (9.28) by the more appealing expression
(Hanggi and Hontscha, 1988)

o0

KE)= 3

(nl,...,nN)—O

(1+expl¢(Ep)/A]) 7", (9.30)

where we have ‘“‘unexpanded” the first two terms in the
Taylor series in Eq. (9.28). The form in Eq. (9.30) be-
comes exact for tunneling in a multidimensional, separ-
able inverted parabolic potential landscape.

It should be noted that the quantity in Eq. (9.30) in-
volves a summation over all the orthogonal states {n,]
within the barrier region; i.e., the cumulative reaction
probability k(E) can exceed unity. Thus, despite its ap-
pealing form, the result in Eq. (9.30) is quite distinct from
the familiar uniform WKB expression tP*(E) for the
transmission probability of a parabolic barrier (Kemble,
1935; Miller and Good, 1953; Ford, Hill, Wakano, and
Wheeler, 1959):

tPYE)={1+exp[(E)/#]} " .

In the absence of dissipation Eq. (9.30) reduces, of course,
with E;=E to the single-term equation (9.31).

With Eq. (9.30), the evaluation of the thermally aver-
aged, dissipative tunneling rate follows after the integra-
tion in Eq. (9.25). The remaining problem in obtaining
an analytical result consists in determining the small ac-
tion ¢(E;), the Hill-Floquet coefficients {w;(Er)}, and
the period T(E;). In particular, it should be stressed
that Eq. (9.25) combined with Eq. (9.30) presents an ex-
pression for the dissipative quantum-Kramers rate, or the
equivalent multidimensional quantum TST, that holds
true for all temperatures.

(9.31)

3. Results for the quantum-Kramers rate

In this subsection we follow the reasoning of Hinggi
and Hontscha (1988) who use for the system-plus-bath a
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N
$(E)—¢"(E) S (n;+ 1w, (E)

upside-down potential energy surface in (N+1) dimen-
sions. Note that Eq. (9.26) includes a sum over multiple
traversals of the periodic orbit. The parameters {w,(E)}
are the stability frequencies (Hill-Floquet coefficients)
characterizing an unstable periodic orbit with period
T(E) =—¢'(E). Upon expanding the sinh functions in
Eq. (9.26) into geometric series, one obtains a well-
behaved result for k(E),?' reading

(9.28)

multidimensional, finite-temperature WKB approach to
derive explicit results for the dissipative tunneling rate in
various temperature regimes, [see Fig. 40], in a metasta-
ble potential field of the form sketched in Figs. 37 and 38
with a single metastable well.

a. Dissipative tunneling above crossover

In this high-temperature regime we can use a harmon-
ic, local adiabatic approximation, in which the period
I'(Ey) equals a constant T(E;)=2m/u, and the Hill-
Floquet coefficients can be approximated by the normal-
mode (angular) frequencies of the orthogonal coordinates
at the saddle point. Moreover, with imaginary-valued
coordinates q(r) and momenta p(7), when E; > E, the
small action in Eq. (9.27) becomes ¢(E;)=(E,
—Er)2m/pu<0. Then, interchanging the integration in
Eq. (9.25) with the summations in Eq. (9.30) yields, by
virtue of an identity due to Pollak (1986) which relates
the product of the (unknown) normal-mode frequencies
at the saddle point and at the well bottom, respectively,
to the (known) Laplace transform of the memory friction
7, the central result

k=
Wy

exp(—BE,)

21In other words, we use in Eq. (9.26) an analytic continuation
of the series over n which formally might be divergent when
E > E,, where E, denotes the threshold energy for activation.
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The first term inside the square brackets denotes the
classical generalized Kramers rate for memory friction
[Eq. (3.46)]. We recall the definition of v, v=2m/(#p),
while w3=U"(¢=g,)/M is the (angular) frequency in
the well bottom (see Fig. 37). For temperatures T >>T
the quantum correction Q, given by the large curly
brackets in Eq. (9.32), approaches unity. Moreover, this
quantum correction always exceeds unity, i.e., the
quantum-Kramers rate theory always enhances the classi-
cal rate. In particular, for weak-to-moderate damping
strengths #(u), there exists an accurate and quite simple
approximation to the quantum correction Q in Eq. (9.32),

which in leading order is independent of the dissipation ¥

(HAnggi, Grabert, Ingold, and Weiss, 1985),

Q ~exp ——/3’2 (w3 +0?k) (9.33)

Thus, for temperatures T > T, the Arrhenius factor for-
mally undergoes a temperature-dependent renormaliza-
tion toward smaller values,
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2

7 gt ol) .

4 (9.34)

E,—>E,—
Moreover, upon a comparison with Eq. (7.26), we note in
passing that the temperature correction for the rate due
to tunneling, which is also proportional to T2 [Eq.
(9.33)], is opposite in sign to the classical correction due
to a random metastable potential function.

b. Dissipative tunneling near crossover

At temperatures T~ T, the integral in Eq. (9.25) be-
comes dominated by energies Ep < E,, where ¢(E;)>0.
When we set, more accurately (Hanggi and Hontscha,
1988),

— 27 1 2| e

¢(ET)_(EIJ_ET)7+E(E —Ep?|T'| (9.35)

for the small action, with |T'| =[¢"(E =E, )|, we recov-

er the result (Grabert and Weiss, 1984b; Larkin and
Ovchinnikov, 1984; Riseborough et al., 1985)

o 27 12 wy R HVHvP(v) = oitn P +nvPiny)
v wp a n=2 —0i+n? Vi nvP(ny)
. 4 172
— f - — .
Xexp | —BE, + 2|T,| (Bo—B)* | yerfe 2T (Bo—B) (9.36)
where for Eq. (9.26), and the remaining integral can be evalu-
— 22 “ ated by the method of steepest descent. The steepest-
a=wy +u'(1+[87(2)/82]], -, descent condition yields the period T(E)=#8=6. With
Bo=(kTo)—1 , E, determined so that T(E=E,)=#f, and the full ex-
tremal action S, defined as
and
w S, =0E,+¢(E (9.37a)
erfc(x)=277'_1/2f dy exp(—y?) . e
* = V(gr)+Lg(r)p(n)], (9.37b)

For strict Ohmic friction y(¢)=2y8(¢t) we obtain
a=vy(2vy+v), with vy=2m/(#3;). Note also that the
result in Eq. (9.36) approaches for T > T the previous
answer in Eq. (9.32). Moreover, Grabert and Weiss
(1984b) have shown that near T~ T there evist both a
frequency scale A and a temperature scale X that depend
on the particular system under consideration, so that
within the crossover region the rate exhibits a universal
scaling behavior.

c. Dissipative tunneling below crossover

At lower temperatures the small action ¢(E;) in Eq.
(9.35) must be evaluated by taking the full nonlinearity of
the potential U(x) into account. In that regime, howev-
er, the contribution from multiple crossings of the classi-
cally forbidden regime with period nT(E), n > 1, do not
significantly contribute to the sum in Eq. (9.26). Hence
we can evaluate Eq. (9.25) by keeping only the n =1 term
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where V(q) denotes the potentlal function of all degrees
of freedom (system plus bath), the low-temperature dissi-
pative quantum rate reads (Hanggi, 1987; Hinggi and
Hontscha, 1988)

k=Zy'12niT(E=E,)| ™" %exp(—S, /#)

N
X [T {2sinh[1#iBo (Eg)]} 7' .

i=1

Note that S, equals the dissipative, Euclidean action in
Eq. (9.6) when it is evaluated at the bounce solution
x,(1). By use of the identities discussed in Secs. IIL.B
and III.C of the paper by Dashen, Hasslacher, and
Neveu (1974), we can relate the prefactor in Eq. (9.38) to
the eigenvalue spectrum around the dissipative bounce
trajectory x,(7) of period 3=, to give the known result
(Grabert and Weiss, 1984a; Larkin and Ovchinnikov,
1984; Riseborough et al., 1985; Hanggi, 1986a, 1986b,
1987; Grabert, Olschowski, and Weiss, 1987)

(9.38)
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Ay

Here S; denotes the Euclidean, dissipative action with
Selx.(r=g,]1=0and S [x =x,(1]=S§, [see Eq. (9.37)],
and Det’ means that the eigenvalue zero has to be omit-
ted. It should be noted that in the presence of dissipation
the part of the prefactor inside the large curly brackets in
Eq. (9.39), stemming from the zero-mode normalization,
differs from the cg;jgaéive bounce action S,; only for an
undamped syste’n}‘ oes This part equal the bounce action
S,

Dissipation was first introduced into the bounce for-
malism for the zero-temperature quantum decay rate by
Caldeira and Leggett (1981, 1983a). The result in the
form of Eq. (9.39), which is valid for finite temperatures
and dissipation, was originally obtained within the dissi-
pative functional bounce methodology by Grabert and
Weiss (1984a), Larkin and Ovchinnikov (1984), and Rise-
borough et al. (1985). For an undamped system, the
answer in Eq. (9.39) reduces to the low-temperature,
steepest-descent evaluation of simple quantum TST
(Affleck, 1981). An alternative multidimensional WK B
derivation of the central result in Eq. (9.39), which uses
the concept of the multidimensional quasistationary wave
function rather than the unstable, multiple periodic or-
bits that characterize the approach of Hanggi and
Hontscha (1988), has been given for zero temperature by
Schmid (1986), and recently has been extended to finite
temperatures by Ludviksson (1989),

Arrhenius plots of some numerical results for the dissi-
pative tunneling rate with strict Ohmic friction 7(z)=y

0
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=,
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FIG. 41. Van’t Hoff-Arrhenius plot of the quantum-Kramers
rate in a cubic potential U(x)=%Mw¢2,x2(l—x/x0), with ac-
tivation energy E,=2Mwix}/27=5%w, at various damping
strengths ¥ =2aw,. After Grabert, Olschowski, and Weiss
(1987).
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L2 Det(8°S, /8x %),
IDet’(8°Sy: /85 %), -\ (]

1,2

RY

expl —S§, /i) (9.39

are depicted in Fig, 41. Because of quantum tunneling,
the rate k does not decrease continuously as the tempera-
ture T is lowered, but flattens ofl at low temperatures (see
also Fig. 2). In the high-temperature (or classical) re-
gime, the rate is reduced compared to the gas phase rate
(=0, that is, g =w, ) by the dissipative transmission fac-
tor p/w, <1 [Eq. (9.32)]. 1In contrast, the zero-
temperature rate is exponentially reduced by the dissipa-
tive action factor S,(T=0) (Caldeira and Leggett,
1983a). For very weak damping, #(u) ~0, thermal fluc-
tuations have little effect on the low-temperature behav-
ior of the rate, i.e., the temperature dependence is essen-
tially negligible below T),. For a damped system, howev-
er, there is a large regime in which quantal and thermal
fluctuations interact. In this low-temperature regime one
finds a universal exponential temperature enhancement in
the form of a power law (Grabert, Weiss, and Hinggi,
1984)

Infk(T)/k(T=0)]=cT", Ty>T=0, (9.40)

where n =2 for all systems with finite low-frequency
damping, Pl0=0)=y,>0. The universal low-
temperature rate enhancement arises from thermally ex-
cited low-frequency states of the environment and not
from thermal excitations among the stales in the metasta-
ble well. An appealing rederivation of Eq. (9.40) in terms
of quantum noise theory has recently been given by Mar-
tinis and Grabert (1988). For Ohmic damping, this
characteristic low-temperature 7' law (see Fig. 42), as

30
+ a=0.8

T 2
—
< © a=04
=
=4 10 © a=02
= a=0.1

0

0 0.50

(T/T,)?

FIG. 42. The natural logarithm of the ratio between the low-
temperature quantum-Kramers rate and the zero-temperature
rate in a cubic potential (see Fig. 41), at various values of Ohmic
damping ¥ =2aw, The plot vs squared temperature clearly ex-
hibits the universal T2 law in Eq. (9.40). After Grabert, Ol-
schowski, and Weiss (1987).
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well as the quantum corrections in Egs. (9.32), (9.33), and
(9.36), have been observed in several experiments
(Schwartz et al., 1985; Washburn et al., 1985; Washburn
and Webb, 1986; Clarke et al., 1988; Cleland et al., 1988,
Sharifi et al., 1988; lansiti et al., 1989). With n =6 it
has recently been observed by Careri and Consolini
(1989). The power n is directly related to the behavior of
the spectral density

J(w)=%2 CHm,w;) '8(o—w;)
of the environment at low frequencies, J (w) <"1, as
©—0. The slope ¢ in Eq. (9.40) increases with the
strength of dissipation, but depends further on the details
of the model for the dissipative mechanism and the meta-
stable potential function U(x) (Grabert, Weiss, and
Hanggi, 1984).

In contrast to the classical Kramers rate in Eq. (4.33),
the exponential part of the low-temperature quantum
rate, Eq. (9.39), and particularly its prefactor are much
more difficult to evaluate. An analytical treatment of the
prefactor is possible, but rather difficult (Riseborough
et al., 1985; Freidkin et al., 1986a, 1988). In practice
one must therefore resort to numerical methods (Chang
and Chakravarty, 1984; Grabert, Olschowski, and Weiss,
1985, 1987), variational approximations (Freidkin et al.,
1986b, 1987; Chang and Riseborough, 1989), or approxi-
mate WKB approaches (Pollak, 1986c; Hontscha and
Hinggi, 1987). For the cubic metastable potential
U(x)=1Molx*(1—x/x,) and strict Ohmic friction
9=4v, one finds with E, =2Mwjx3 /27 for the action S,
and with the quantum prefactor 4 =k exp(S, /#), the
following low-temperature results. With weak friction
and dimensionless damping a=y(2w,)” ", the dissipative
action S, in terms of the zeta function {(3)=1.202 is
(Freidkin et al., 1986a)

36E,

Swq

S,(T>0)=

a—0 (9.41)

which agrees at 7'=0 with the action calculated by Cal-
deira and Leggett (1983a). For the quantum prefactor we
have (Freidkin et al., 1986a, 1988)

A(T =0)=12w,[3E,(2m#iwy) '] *exp(2.860a) ,

a—0, (9.42)

which at zero friction a=0 agrees with Caldeira and
Leggett (1983a). On the other hand, for very strong
damping one obtains (Larkin and Ovchinnikov, 1984;
Grabert, Olschowski, and Weiss, 1987)
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E 2
SHT20)=a [67—2 | [1+1a 2= 2a? |22 ] ,
Cl)o a)oﬁB
T < Ty=twydrkga)”™!, a—ow , (9.43)

and for the prefactor (Larkin and Ovchinnikov, 1984;
Grabert, Olschowski, and Weiss, 1987)
172

Ey -2 -2
(1+2a" “Ina+1.107a¢"7) ,

6
A(T=0)=8w,a’"? Ty

(9.44)

a— oo

The same characteristic dependence on friction y, that
is, A=a’? is found for strong friction in a tilted
sinusoidal potential (Korshunov, 1987). In contrast to
the exponential part of the rate [Eq. (9.40)], the quantum
prefactor at low temperatures exhibits only a very weak
dependence on temperature (Grabert, Weiss, and Hanggi,
1984; Grabert, Olschowski, and Weiss, 1987).

4. Regime of validity of the quantum-Kramers rate

In Sec. IV.G we discussed the conditions under which
the Kramers rate in Eq. (4.33) yields the correct rate. In
the high-temperature regime essentially the same classi-
cal conditions, namely,

[Puw) /0w, 1E, > kT, TZ2T,, (9.45)

hold true for the validity of the quantum-Kramers rate,
or multidimensional (QTST) rate, in Egs. (9.32) and
(9.36). Again, with a high barrier, BE,>>1, there
remains sufficient time for thermalization inside the
metastable well, even for weak damping obeying Eq.
(9.45). Upon a further lowering of the temperature,
T <T,, quantum tunneling dominates over termally ac-
tivated escape. In the quantum regime the three dimen-
sionless parameters [x,=kgT/E,, x,=7(pu)/w,, x3
=fw, /(2mkzT)] determine the behavior of the rate.
Then, the plane intersecting the positive (x,,x;) plane at

fiw,, fiw, o, Plwr>a, Plw)

= —

27TkB T B 27TkB TO H @y (9.46)

(see Fig. 43) describes the crossover between thermal-
activation-controlled and quantum-tunneling-controlled
escape. At temperatures T < T, the quantum rate is al-
ready so small (or, equivalently, the time for escape is so
large) that for most practical purposes weak friction has
no impact on deviations from a thermalized Boltzmann
weighting. A simple Fermi’s “golden rule” argument for
a well containing two quantum levels shows that the rate
of thermalization is proportional to the damping, i.e., the
rate of decay of excited levels into lower ones, thereby
emitting energy into phonon modes, is directly propor-
tional to #(x). Using as an upper limit the simple quan-
tum TST rate [see Eq. (9.2)], which essentially equals the
zero-temperature undamped quantum rate k(7=0,
y=0)=k,, we can expect that the validity of the low-
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kT
Ep
Time-dependent regime

7

Classical regime [—Eb/kT]

2wkT
Quantum regime [—Sb/h]

FIG. 43. The “Thomas diagram” (Héanggi, 1987). The cylinder
with k,T/E, <1 (hatched vertically) separates the classical
thermal activation regime from the tunneling-dominated regime
in which the Van’t Hoff-Arrhenius factor is taken over by the
dissipative bounce action §,=S;[x,(7)] [see Eq. (9.37)]. The
three-dimensional volume (dotted region) at the left indicates
the regime in which nonequilibrium effects (due to weak-
friction-induced deviations from a Boltzmann weighting) must
be accounted for (see Sec. IX.E) as a function of friction, barrier
height, and temperature. Moreover, note that the “classical re-
gime” is affected by quantum corrections to the classical prefac-
tor. In the figure the Boltzmann constant is denoted by ky =k.

temperature quantum-Kramers rate in Eq. (9.39) will
start to break down only at exponentially small friction,
obeying (Hanggi, 1987)

172

»,“’ f(“) < ﬂ:lz 3Eb exp | — 36Eb .
wy @y 27rfie, 5fiw,

(9.47)

Typically one has E, > 2fiw, in order for the semiclassical
approximation to be valid [see Eq. (9.11)]. Therefore we
find from Eq. (9.47)

f—(‘“—)sm“’,

o)

(9.48)

which with ©,~10'"'-10"* Hz indeed implies extremely
weak dissipation.

E. Dissipative tunneling at weak dissipation

The quantum-Kramers theory presented in Sec.
IX.D.2 did not account for effects of possible deviations
from a thermal Boltzmann weighting. Such deviations
can occur at extremely weak friction, when the internal
mechanism for replenishing the upper energy states may
start to fail (this can happen if those states are not con-
tinuously prepared in thermal equilibrium by an outside
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mechanism). In other words, for extremely weak friction
one finds a tiny population below the Boltzmann weight-
ing at the upper energy levels. This possible nonequilibri-
um effect generally plays a very subordinate role in the
low-temperature regime T < T, (Sec. IX.D.4), where the
time available for equilibration grows exponentially. It
may become observable, however, at temperatures above
the crossover T);, where quantum corrections to the clas-
sical Kramers weak-damping result (see Hanggi, 1986a;
Biittiker, 1989) are of considerable interest (Melnikov,
1984, 1985; Larkin and Ovchinnikov, 1985; Rips and
Jortner, 1986; Chow and Ambegaokar, 1988; Dekker,
1988; Griff et al., 1989). This problem of nonequilibrium
quantum tunneling above T > T, out of a metastable state
at weak dissipation is most conveniently discussed in
terms of the probability per unit time f(E) of finding the
system in the barrier region near a classical turning point
with energy E. Moreover, let P(E|E') again denote the
classical conditional probability that the particle leaves
the barrier region with energy E' and returns after a
round trip with energy E. The steady-state function
S{E) therefore obeys the integral equation

S(E)= [ "dE'P(E|E)F(ENf(E") (9.49)

where r(E)=1—1t(E) denotes the quantum reflection,
while ¢(E) is the quantum transmission. Here we again
measure energy from the well bottom, U(x =x,)=E,.
The boundary conditions on f(E) are given as follows.
For E— o, f(E) approaches zero, whereas deep inside
the well f(E) approaches the quantum-mechanical equi-
librium value. The quantum rate of escape k is given by
the outgoing flux,

k= ["dE (E)f(E) . (9.50)
0

Together, Egs. (9.49) and (9.50) yield a solution of the
quantum rate problem for any given quantum transmis-
sion ¢ (E); but in contrast to the multidimensional quan-
tum transition-state theory in Sec. IX.D.2, the solution of
the integral equation (9.49) also allows for deviations
from the corresponding equilibrium solution.

1. Quantum escape at very weak friction

At extremely weak damping the conditional probabili-
ty P(E|E’) is peaked sharply around E ~E', due to the
small loss of energy along the undamped, deterministic
trajectory. Upon expanding Eq. (9.49) up to second or-
der in (E —E’), one finds the differential approximation
to the integral equation (Griff et al., 1989)

9

t(E)f(E)=EA(E)

1 9

3E 9.51)

1+8~ r(E)f(E),

where A(E) denotes the energy-loss coefficient

AME)= [ 2y(s)J(E,s)ds |
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with J(E,s) the delayed action along the undamped tra-
jectory,

HEs)=M [ "ar g(E0(E L —s),

and with P(E) the period of oscillation in the metastable
well region at energy E. In contrast to previous ap-
proaches (Melnikov, 1984, 1985; Rips and Jortner, 1986;
Chow and Ambegaokar, 1988; Dekker, 1988), the right-

(p)f
T(1+p)

wo sinh($#Bawg) 0
T 3HBw,

sin(mp)

where p=7#iBw,(27)”"' and where §=BA(E,) is the di-
mensionless energy loss at the barrier energy. For Ohmic
friction y(¢#)=2y5(t), one finds §=ByI(E,). The result
in Eq. (9.52) holds at extremely weak friction, § <<1, and
at temperatures T above crossover T, that is, p<1.
Moreover, Eq. (9.52) holds uniformly both for p?<<1,
and 8§<<1. At high temperatures [p,#Boo(27)” ! <<1],
Eq. (9.52) approaches the weak-damping result of Kra-
mers (1940), k—ky=wy(27) " '8exp(—BE,) [see Eq.
(4.49)). The leading weak-damping (8 <<1) quantum
corrections Q follow from Eq. (9.52) with k =Qk_; as

#ifw, ﬁzwf,Bz
27 4728

Q=exp 2C+In

1 2

(9.53)

where C=0.5772. .. is Euler’s constant.

Clearly, for p?> <8 <<1 the logarithmic term in the ex-
ponent of Eq. (9.53) gives a negative contribution that
may compensate for the other positive terms. Hence,
within the range of validity of our formula, there exists a
region in parameter space where the correction factor Q
is actually less than one. In this region quantum
reflection above the barrier dominates over quantum
transmission, thus leading to a net reduction of the full
rate below its corresponding classical value (Griff et al.,
1989). This feature runs counter to common knowledge
and intuition—the full rate is often approximated by

wo p Sin({fiBu) =

2
8! Pexp(—BE,) ,

w2 +nWrnvP(nv)

feal E)=B

B Ewb (3ABu) =y —a)é+n2v2+nv?(nv)

hand side of Eq. (9.51) explicitly contains the quantum
reflection #(E). Here we want to determine the quantum
corrections to the classical Kramers rate. In this case
Sf(E) will deviate from the equilibrium value f . (E)
=(1rh)“1sinh(%h'Bwo)exp(—/3E), only for energies near
the barrier energy E,. Hence we may approximate the
transmission coefficient ¢ (E) by the parabolic barrier re-
sult, t(E)={1+exp[ —27(E —E,)/(#w})]} ~'. The solu-
tions of Egs. (9.50) and (9.51) then yield the central result
(Griff et al., 1989)

{9.52)

simply adding the classical rate and the zero-temperature
rate [see Eq. (9.1)]. Such an approach not only entirely
disregards the complex interplay between thermal and
quantal fluctuations (see Sec. IX.D), but also neglects the
role of quantum reflection and nonequilibrium. We also
remark that the leading correction in (9.53) is proportion-
al to %, pointing to nontrivial quantum corrections, since
the underlying Hamiltonian or the Schrodinger equation
contains only #*. This possible novel quantum reduction
below the classical rate is most pronounced for systems
with very flat barriers (e.g., potentials of the Morse type)
as they occur in absorption-desorption problems on sur-
faces.

2. Quantum turnover

In view of the different behavior above crossover
T>T, inherent in the quantum-Kramers rate in Eq.
(9.32) and the weak-damping quantum rate in Eq. (9.52),
a turnover occurs as a function of the damping strength,
analogous to the classical turnover discussed in Sec. VI
Following the same reasoning put forward by Pollak,
Grabert, and Hanggi (1989), the turnover theory in Sec.
VLB can readily be generalized to the quantum case. We
again use a multidimensional normal-mode description of
the escape dynamics. Making use of Pollak’s equations
(1986b), which relate the products of quantum partition
functions to the memory friction, we find that the quan-
tum equilibrium probability f,(E) now reads

exp(—BE) , (9.54)

where p is given in Eq. (3.45) and v=27(#f )~!. For an undamped system this result reduces to the one given below Eq.

(9.51).

The quantum rate itself can be obtained from Egs. (9.49) and (9.50). With the solution of the integral equation in Eq.
(9.49), using for P(E|E') the Gaussian form of Pollak et al. (1989) and for r (E) the corresponding parabolic approxima-
tion, r(E)={1+exp[2m(E —E,)/(#u)]} ~', one obtains for the quantum transmission factor ko, [Eq. (6.9)] the result

(Hinggi, Pollak, and Grabert, 1989)
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=1

K k

gm

©o
—z;exp( —BE,)

T wi+n 2+ nvp(nv)

®y —wé-l—nzvz-%—nv?(nv)

exp

Asin(md) [ dx

In{1—exp[—8(x2+1)]}

cosh(27Ax ) —cos(7A) (9.55)

where A=#Bu(27)~! and 8 is defined in Eq. (6.9b). By use of the Euler-Maclaurin formula, the result in Eq. (9.55) can

be recast as

_u s wj+n Vi +nvP(ny) =

@y 4=y —ei+nAtnvPlny) =

Kqm

with
zo=MAcot(mA/2),
z, =2Asin(mA)/[cosh(2mn ) —cos(mA)]

(9.57)

With a dimensionless energy loss 6 > 1, the quantum rate
converges rapidly to the dissipative quantum-Kramers
result in Eq. (9.32). In the classical limit, A—0, v— o,
the result in Eq. (9.55) approaches the previous classical
turnover expression in Eq. (6.9). Quantum effects on the
conditional probability P(E|E’) have been further stud-
ied by Rips and Pollak (1990), who find an improved
turnover theory in which the argument of the logarithm
in Eq. (9.55) attains a correction of order #?, reflecting a
quantum-induced skewedness for the probability
P(E|E").

F. Sundry topics on dissipative tunneling

The material in the preceding subsections make it clear
that the problem of the quantum escape rate exhibits a
much richer variety than that of the classical case. In
particular, even in the regime of moderate-to-strong fric-
tion the detailed form of the metastable potential is of
primary importance for the result of the action S, and
the prefactor of the quantum rate [see Eq. (9.39]. All the
material on the quantum rate presented in the foregoing
sections assumed a nonlinear potential U(x) containing
only a single metastable well (see Fig. 38). Below we shall
discuss prominent results concerning the quantum rate
behavior in double-well-like metastable situations. A de-
tailed survey of the present state of the art of quantum
effects for the important area of nonadiabatic rate theory
is beyond the scope of the present review. For a brief dis-
cussion of this latter topic and the appropriate references
we refer the reader to Sec. XII.

1. Incoherent tunneling in weakly biased metastable wells

An important case of anomalous tunneling behavior is
that of potentials exhibiting a weak bias (see Fig. 44). In
this case the standard WKB analysis or the instanton
analysis must be modified due to the impact of back-
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IT {1—exp[—8(n+ 1)},

(9.56)

scattering effects at weak dissipation (Hanggi, Weiss, and
Riseborough, 1986). If we consider sufficiently strong
Ohmic dissipation, however, the tunneling is incoherent,
and the quantum rate at low temperature is the same
both for a weakly biased single well and for a weakly
biased double well (Weiss et al., 1984). The forward rate
k" has been calculated at zero temperature and Ohmic
friction ¥ by Weiss et al. (1984) as

A? T
+ = = —
kH(T=0) 20y T'(2a,)

2a, 1

(9.58)

Wy

It exhibits a nonanalytic dependence on the bias o, while
k~(T=0)=0. At finite but low temperatures T << T,
one finds (Fisher and Dorsey, 1985; Grabert and Weiss,
1985; Weiss, Grabert, Hinggi, and Riseborough, 1987)

P "7 \Na, +ifiBo /2m)]?
= 200 | 27 r'2a,)
Xcosh(#fo /2) (9.59)

which with #io|>>kyT, too, exhibits the universal T2
dependence at low temperatures. For 0 —0, k T(T) be-
comes proportional to T2a°_1 (Bray and Moore, 1982;
Chakravarty and Leggett, 1984). The backward rate

U(x)

FIG. 44. An asymmetric double-well potential U(x). The po-
tential minima located at +.x, are separated by a weak bias en-

ergy —fio.
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k ~(T) is related to k 7(T) by the detailed balance rela-
tion

kK~ (T)=k*(T)exp( —pBtio) .

In Eqs. (9.58) and (9.59) o denotes the asymmetry param-
eter (see Fig. 44), and ac_=M7/xé(27rﬁ)7', where x is
the tunneling length, is a dimensionless dissipation con-
stant. The quantity A is the dissipation-modified tunnel
splitting element, whose exponential part, and in particu-
lar whose prefactor part, have been evaluated explicitly
by Weiss, Grabert, Hinggi, and Riseborough (1987).

(9.60)

2. Coherent dissipative tunneling

In a double-well structure, a particle placed in either
well will at zero temperature and zero dissipation clearly
undergo undamped oscillations. For example, let P, (1),
[Pr(t)] denote the probability that a particle initially
placed in the left-hand well, at time ¢ =0, will be found in
the left-hand (right-hand) well at a later time ¢ (see Fig.
44). The dynamics of such a system is conveniently de-
scribed by the relative occupation probability
P(t)=P (t)—Pg(t). In the presence of zero dissipation
we find for P(¢) the oscillatory behavior

2 2

A
P(t)= + =2

9.61
A, A, (9.61)

cos(Ayt),

where A, =(0?+A2)!/? and #A, is the bare tunnel split-
ting at zero bias o. Now it is quite plausible that
sufficiently strong dissipation will not only modify, but
eventually even destroy, the phase coherence exhibited
by Eq. (9.61) (Simonius, 1978; Harris and Stodolsky,
1978, 1981). It is precisely this effect of dissipation on
the phase coherence in Eq. (9.61) that commonly is stud-
ied as dissipative quantum coherence (Bray and Moore,
1982; Chakravarty, 1982; Schmid, 1983; Chakravarty
and Leggett, 1984; De Raedt and De Raedt, 1984; Silbey
and Harris, 1984; Aslangul, Pottier, and Saint-James,
1985, 1986; Carmeli and Chandler, 1985; Garg, 1985;
Grabert and Weiss, 1985; Guinea, Hakim, and Mu-
ramatsu, 1985a; Stratt, 1985; Gillan, 1987; Weiss, Gra-
bert, and Linkwitz, 1987; Weiss and Wollensak, 1989; for
an authoritative review see Leggett et al., 1987). In par-
ticular one finds at T=0 and ¢ =0 that in the presence
of sufficiently strong Ohmic dissipation (@, > 1) a locali-
zation transition takes place (Bray and Moore, 1982;
Chakravarty, 1982), P(t)=1 for all times ¢t. Depending
on the interaction mechanism, the question of just when
the coupling is of sufficient strength is rather subtle, and
in this context we refer the reader to the above-
mentioned authoritative review (Leggett et al., 1987).
Generally speaking one finds for Ohmic dissipation
P(w=0)=y>0 that the phase-coherence oscillations
survive only at short times and weak dissipation, i.e., for
a, =Myx§(2m#)~! <L, low temperatures a kT <<#A,,
and a weak bias o <A,
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3. Tunneling with fermionic dissipation

In the preceding sections we essentially restricted our-
selves to a quantum treatment of the escape rate for par-
ticles coupled to an environment made up of harmonic
oscillators. In other words, we mainly treated the case of
a heat bath consisting of bosons. However, from a sta-
tistical physics point of view, there are profound
differences between Fermi statistics and Bose statistics.
It has been conjectured that in the weak coupling limit,
i.e., with the coupling so weak that second-order pertur-
bation theory is adequate, any environment can be ap-
proximated by a harmonic oscillator bath of bosonic na-
ture (Feynman and Vernon, 1963; Caldeira and Leggett,
1983a). In recent years, the effect of a fermionic environ-
ment has been studied by Hamann (1970), Eckern ¢r al.
(1984), Guinea (1984), Kondo (1984), Yu and Anderson
(1984), Chang and Chakravarty (1985), Guinea, Hakim,
and Muramatsu (1985b), Vladar, Zimanyi, and
Zawadowski (1986, 1988a, 1988b), Chen (1987), Hede-
gard and Caldeira (1987), and Sols and Guinea (1987).
For a specific type of coupling to fermions a fermionic
bath is equivalent to the coupling to a boson bath if one
makes a suitable correspondence for the coupling con-
stants (Chang and Chakravarty, 1985; Chen, 1987; Hede-
gard and Caldeira, 1987). This procedure has been uti-
lized to study the effect of conduction electrons on the
quantum mechanics of defects in metals (Kondo, 1984,
1988; Grabert, Linkwitz, Dattagupta, and Weiss, 1986;
Richter, 1987; Dattagupta et al., 1989; Weiss and Wol-
lensak, 1989). For more general situations, however, like
the description of two-level systems strongly interacting
with a degenerate Fermi gas (Vladar, Zimanyi, and
Zawadowski, 1986, 1988a, 1988b; Kondo, 1988), such a
formal mapping no longer holds exact.

X. NUMERICAL METHODS IN RATE THEORY

Basically, two different approaches have been em-
ployed for the numerical evaluation of escape rates. The
first method attempts to solve numerically the time evo-
lution of the probability [Eq. (2.29)]

9%‘[’—)=rp(z),

where p, =p(x,t) is the probability density and I" denotes
the master operator characterizing the temporal evolu-
tion of the system. The second method investigates sto-
chastic trajectories generated by a convenient numerical
procedure from corresponding stochastic equations of
motion

x= A(x)+E,

where A(x) denotes the drift vector and the vector £
denotes the appropriate random noise sources. In the
case of the Kramers problem, the time evolution equa-
tion for the probability density is the Klein-Kramers
equation [Eq. (4.4)],

(10.1)

(10.2)
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dp(x,v,t) _ _ 9dplx,v,t)
ot ox
d 1 dU
5 | | 37 2 +yv p(x,v,t)]
kpTy 32
T—U—Zp(x,v,t) (10.3)

The corresponding stochastic equations of motion thus
read

X=v, (10.4)

p=—L AU,

M dx {10.5)

with the Gaussian random force obeying

(E(0)E(t))=2MykpT8(t) . (10.6)

The first type of approach is based on a general numer-
ical procedure for investigating the time-dependent solu-
tions of Eq. (10.1). This methodology is well known (see,
for example, Stratonovich, 1963) and has been described
in detail by Risken and co-workers (Risken, 1984). In us-
ing it, one considers the eigenvalue expansion, which for
a one-dimensional state vector is of the form

p(x,)=3 ¢;(x)exp(—A;t) , (10.7)

where {$;(x)} and {A,} are the eigenfunctions and the
eigenvalues of the master operator I'. The eigenfunctions
are represented as linear combinations in a convenient
infinite basis set x;(x),

¢:(x)=3 a;x;(x) . (10.8)
J

For numerical purposes this basis set is truncated, and
after calculating the matrix elements (x;Ty;) one finds
that the problem reduces to the evaluation of the eigen-
value spectrum of a generally non-Hermitian matrix.
When one makes a convenient choice of the basis set
functions and explores the symmetries of the master
operator, the matrix often turns out to be a band matrix,
i.e., most of the matrix elements vanish. Effective
matrix-continued fraction methods (Risken and Vollmer,
1979, 1980) can then be employed to evaluate the eigen-
value spectrum of such a matrix. The rate is obtained
from the smallest nonzero eigenvalue A, by means of Egs.
(2.31) and (2.32). Risken and co-workers (Risken, 1984)
have successfully used this powerful method to evaluate
rates for the Kramers problem out of a single metastable
state, and in a double well, periodic potentials, or with
the BGK collision operator for a double-well potential
(Voigtlaender and Risken, 1984).

Stationary nonequilibrium situations may also be tack-
led using this same method (Jung and Risken, 1985; Jung
and Hanggi, 1988; Jung, 1989). Such eigenfunction ex-
pansion methods allow for the accurate calculation of the
rate with a relatively minor computational effort in sys-
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tems consisting of a small number of variables n, typical-
ly n =2, and for not too high Van’t Hoff-Arrhenius fac-
tors, say BE, <10. Another advantage of the method is
that, besides the rate, several other dynamical quantities,
such as correlation functions, can be evaluated as well in
a straightforward way.

In the second type of approach one generates realiza-
tions of stochastic trajectories using the equations of
motion (10.2). Effective procedures exist for solving sto-
chastic differential equations (Fox, 1988; Greiner,
Strittmatter, and Honerkamp, 1988) or problems in
many-dimensional systems by molecular dynamics
methods (Rahman, 1964; Hoover et al., 1982; Evans,
1983; Nose, 1984). A conceptually simple approach con-
sists of starting the trajectories at the bottom of the meta-
stable well and integrating the equations of motion. This
approach has, for example, been used by Zhu et al.
(1988a) to evaluate (cis-trans) isomerization rates. The
particle will spend most of its time near the well but, very
rarely, large excursions will allow the particle to sur-
mount the barrier and relax to the other side of the well.
A typical such trajectory is shown in Fig. 1. The average
lifetime 7, of the trajectory in either well is directly relat-
ed to the rate k ~7, L.

This latter procedure is equivalent to the calculation of
the correlation time of the correlation function (Sec. II),

_ (6Ix(0) 6[x(1)])
(6[x(0)])

where x(¢) is the reaction coordinate, which is positive
for a particle in the domain of attraction of the metasta-
ble state, and negative otherwise, and 0(x) denotes the
characteristic function [see Eq. (2.15)]. Here we need to
define a dividing surface (x =0), which divides the phase
space between reactants and products. Note, however,
that since the probability density has its major contri-
butions near the wells, the rate will be essentially insensi-
tive (actually up to correction terms of order
Olexp(—BE,)]) to the precise position of the dividing
surface. The correlation function C(z) will for long times
decay according to

C(1) (10.9)

+
g k*+k~
[(Eq. (2.26)], which can be used to evaluate the rate.

The obvious drawback of this method is the inherent
vast separation of time scales. Let us consider a simple
estimate based on a characteristic microscopic time scale
of our system 7, (e.g., the period in the well). To inter-
grate the equations of motion over one period 7, to some
given accuracy, we need N (maybe N ~10% time steps.
The largest possible rate is given by the transition-state
theory estimate 7, 1~exp( —pE,), i.e., the average time
for one escape is 7,exp(SE, ). Therefore, to determine an
average for just a single reactive event we must integrate
the equations of motion over N exp(BE,) time steps. In
spite of present state-of-the-art computers, such an un-
dertaking is feasible only for very low barriers, say ap-

exp[— (kT +k )] (10.10)
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proximately SE, ~5. In other words, the problem of cal-
culating a rate is enormously unwieldy. A practical
method for calculating the escape rate ought to be able to
overcome this problem.?? This is possible with the reac-
tive flux method (Sec. II.2) (Keck, 1960, 1967; Yamamo-
to, 1960; Fischer, 1970; Kapral, 1972; Bennett, 1975;
Chandler, 1978, 1988; Montgomery et al., 1979; Berne,
1985). One has only to consider the negative of the time
derivative of Eq. (10.9),

(S[x(MX(@O[x () _, 4+ «  p -
(80x)) kTexp[— (kT +k )]
(10.11)

Therefore the value of this function will approach the
rate after an initial transient period. This now happens
on a characteristic time scale of the system which is,
most importantly, no longer exponentially large.

As shown in Sec. IT we write with k ¥ =k

k=kygrk , (10.12)
where the transition-state value
sy = (B[x(O)])Z(OO))O[x(O)]) (10.13)

can be evaluated from an equilibrium average. The

transmission coefficient « is then related to the plateau

value of

_ (8[x(0)]1x(0)6[x()1)
(8[x(0)]x(0)6[%(0)])

=(0[x(1)]) ; —(O[x()]) _~xe * .

K(t)

(10.14)

The initial conditions for the trajectory calculations cor-
respond to the nonequilibrium averages (Berne, 1985)

(o), = SBX0(ER) )
T Bk 0(£%))

and can be sampled by a convenient Monte Carlo pro-
cedure (Montgomergy et al., 1979; Voter, 1985; Binder,
1986; Heermann, 1986; Doll and Voter, 1987).

The normalized reactive flux decays from unity to a
constant (plateau value) after an initial transieut period.
Therefore, in a calculation of an escape rate, one would
proceed in two steps. First, an appropriate dividing sur-
face is chosen. This can be done by a variational pro-
cedure; the best choice for the dividing surface would
minimize krgy. However, almost any surface through
the saddle point will do; the precise choice only slightly
affects the efficiency of the calculation. Then one evalu-
ates the transition-state value [Eq. (10.13)], which is an

(10.15)

22A related problem also arises in the expansion method using
a basis set {¥;(x)}. In the case of high barriers, the large gap in
the eigenvalues will give rise to ill-conditioning of matrices and
lead to severe roundoff errors.
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equilibrium average, and carries out a dynamical simula-
tion for the reactive flux [Eq. (10.14)]. Usually the reac-
tive flux rapidly approaches a constant plateau value
from which the transmission coefficient « can be deter-
mined. Having obtained kgt and «, one can then find
the overall rate directly from Eq. (10.12).

At present, the reactive flux method is the only numer-
ical approach that allows the calculation of equilibrium
rates for arbitrarily high barrier energies. It can, more-
over, handle systems with many degrees of freedom with
a tractable computational effort. The reactive flux
method can also become computationally very expensive
if one attempts to obtain very accurate rates, say better
than 5%, or if one applies it for the case of small
transmission coefficients, say x <0.1. In particular, at
low damping the convergence to the plateau value might
sometimes require a substantial computational effort.
The Columbia group has devised an approximate, but
surprisingly accurate, modification of the reactive flux
method, the absorbing barrier method (Straub and Berne,
1985; Straub, Hsu, and Berne, 1985), which allows one to
evaluate very small transmission coefficients. This
method and related approaches have been used to follow
chemical reactions in liquids studying the full-time evolu-
tion of a many-particle system using molecular dynamics
methods (Rosenberg, Berne, and Chandler, 1980; Karim
and McCammon, 1986; Bergsma et al., 1987; Gertner
et al., 1989). In the present formulation the reactive flux
method is applicable only to cases in which the time
derivative x is well behaved. Borkovec and Talkner
(1990), however, have presented a generalization of the
reactive flux method which accounts for non-
differentiable reactive trajectories as well [see Eq. (2.27)].

Computational methods for the quantum case have re-
cently seen some enlightening developments. For exam-
ple, a formulation of the quantum reactive flux, in which
the thermal averaging process is separate from the quan-
tum dynamics, has been presented by Voth, Chandler,
and Miller (1989a). Moreover, following the reasoning of
Gillan (1987), an intriguing procedure for computing the
quantum rate, and particularly its semiclassical limit, has
been developed by the same three authors (Voth,
Chandler, and Miller, 1989b).

XI. EXPERIMENTS

In this section our focus will be on experiments investi-
gating the rate between metastable states. Given the fact
that the authors of this work must be classified loosely as
“theoretical practitioners,” our selection of examples is
necessarily incomplete and has been determined by our
knowledge and prejudices only.

Rate processes are of course ubiquitous in the fields of
chemistry and transport theory. The earliest experimen-
tal efforts date back to the pioneering chemical reaction
experiments in the laboratories of Jacobus Henricus
Van’t Hoff (1884) and Wilhelm Ostwald (1884). These
early experiments, beautifully discussed by Arrhenius
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(1889), initiated an enormous research effort which per-
sists until the present day and surely will continue into
the future. While in earlier days most of the effort within
the chemical physics community focused on gas phase re-
actions, the diversity of the field has grown considerably,
including, among other reactions, state-selective chemi-
cal reactions in molecular beams, photochemical, radical,
and catalytic processes, reactions in condensed phases,
and surface chemical reactions. For example, within the
context of chemisorption experiments (Stewart and
Ehrlich, 1972; Balooch et al., 1974; Auerbach et al.,
1984), the measurement of the activation energy alone
can provide information about the internal mechanism
(Brass and Ehrlich, 1986).

Other important areas that have provided many prom-
inent contributions to rate theory are electrical transport
(Shockley, 1950) and, more generally, diffusion process-
es? in solids (Vineyard, 1957; Dietrich, Fulde, and
Peschl, 1980; Rezayi and Suhl, 1982; Toller, Jacucci,
DeLorenzi, and Flynn, 1985; Doll and Voter, 1987;
Jacucci et al., 1987; Voter, 1989), on surfaces [Ehrlich
and Stolt, 1960; Di Foggio and Gomer, 1982; see also
Fig. 2(b)], and in amorphous or disordered materials
(Alexander, Bernasconi, Schneider, and Orbach, 1981;
Haus and Kehr, 1987). In this context, the anomalous
temperature dependence of the Van’t Hoff-Arrhenius fac-
tor [see Eq. (7.26)] has been observed recently in amor-
phous metallic alloys (Kronmiiller and Frank, 1989).

In rate measurements, just as with theory, the detailed
prefactor behavior of the rate is naturally more difficult
to extract from measured data sets. In the remainder of
this section we shall restrict our discussion to experi-
ments relating to Kramers theory.

A. Classical activation regime

We start our discussion with physical systems used to
check the classical Kramers theory (see Sec. IV). An
ideal system for the experimental study of the Kramers
model is that of a Josephson junction measuring the de-
cay of the supercurrent. Early experiments dealt mainly
with Kramers’ intermediate-to-strong damping regime
(Fulton and Dunkleberger, 1974; Jackel et al., 1974;
Klein and Mukherjee, 1982) and have been extended to
the Kramers weak-damping regime only recently (Silves-
trini et al., 1988; Turlot et al., 1989). In particular, in
the work by Turlot et al. (1989), escape measurements
have been carried out in which the (memory) damping
alone is modified, while all other parameters are kept
constant, thereby yielding direct evidence for Kramers’
energy-diffusion-controlled rate formula [see Eqs. (4.48a),

23Note that the diffusion coefficient D in a one-dimensional ar-
ray of period L between neighboring metastable states is related
to the rates by D=1(k*+k~)L%
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FIG. 45. Inverse thermal rate of escape (lifetime) k' of the
zero-voltage state in a current-biased Josephson junction shunt-
ed by a transmission delay line, whose length !/ is increased
in situ. In this memory-friction case, the energy-controlled
Kramers rate, Eq. (5.41), exhibits a characteristic oscillatory
pattern. The theoretical prediction (Grabert and Linkwitz,
1988) is shown by the solid line. From Turlot et al. (1989).

(5.41), and (5.43¢)]. The results of this important experi-
ment are depicted in Fig. 45.

Experimental tests of the Kramers theory in higher di-
mensions, modeling the metastable potential field [see
Eqgs. (4.81) and (4.85)], and in the multidimensional low-
friction case (see Sec. V.B) have been limited thus far
(Naor et al., 1982; Han et al., 1989; Lefevre-Seguin
et al., 1990). Under normal circumstances the effect of
higher dimensions on the prefactor is weak, due to a par-
tial cancellation of the ratio of the potential well frequen-
cies with the potential saddle-point frequencies [see Egs.
(4.81) and (4.85)]. A more direct test of the reaction dy-
namics in many dimensions would be given within an in-
termediate temperature regime in which one dimension
behaved classically while the other dimension was quan-
tum controlled.

For rate theory in nonthermal systems (see Sec. VIII)
there is an immense theoretical literature, mostly relating
to nonlinear optics (e.g., Hanggi et al., 1980; Farina
et al., 1981, Lugiato, 1984; Shenoy and Agarwal, 1984;
Talkner and Hanggi, 1984; Drummond, 1986), but thus
far, only a few data are available on the switching rate
between two modes in a dye-ring laser (Mandel, Roy, and
Singh, 1981; Lett and Mandel, 1986). In contrast, some
very beautiful experiments have been carried out for the
mean first-passage time in the decay of an initially unsta-
ble state (Roy, Yu, and Zhu, 1985, Zhu, Yu, and Roy,
1986; James et al., 1988).

Most of the chemical research has been restricted to a
limited range of pressures or densities. More recent stud-
ies, pioneered mainly by the Gottingen group (Troe,
1986; Schroeder and Troe, 1987), attempt to cover a pres-
sure range of several orders of magnitude. These recent
data are shown in Figs. 46 and 47, in which a Kramers-
like turnover (see Sec. VI), is clearly visible. Neverthe-
less, a detailed comparison of these experimental data
sets with the theoretical models presented in earlier sec-
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FIG. 46. Iodine atom recombination rates measured in
different inert solvents (see inset) around 300 K, vs the diffusion
coefficient D; of a single iodine atom. Experimental data are
from Troe and co-workers (Hippler et al., 1973; Luther et al.,
1980; Otto et al., 1984): solid line, prediction from a collisional
BGK model without adjustable parameters (Borkovec and
Berne, 1985b); dashed line, value of the transition-state rate.
From Borkovec and Berne (1985). Reprinted with permission.
© American Chemical Society.

tions of this review is rather difficult. The theoretical
analysis is plagued by a number of complications, such as
solvent-density-dependent modifications of the barrier
height as a function of pressure (Schroeder and Troe,
1987), possible competition between different electronic
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states, curve crossing effects, and different reaction chan-
nels.

The first experiments exhibiting a rate turnover in-
volved halogen recombination reactions, measured at two
temperatures of 298 K and 314 K as a function of pres-
sure in different inert supercritical gases (Hippler and
Troe, 1976; Hippler et al., 1984; Otto, Schroeder and
Troe, 1984). The typical picture for iodine (see Fig. 46)
clearly displays a turnover as a function of density (Luth-
er et al.,, 1980; Otto et al., 1984). A theoretical analysis
based on the BGK collisional model gives very good
agreement (Borkovec and Berne, 1985b). The agreement
is somewhat fortuitous in the low damping regime, since
the BGK model, like the Kramers model (Sceats, Dawes,
and Millar, 1985), does not predict the correct tempera-
ture dependence of the rate, which is dominated by a
complex reaction mechanism not present in the model
(Borkovec and Berne, 1985b; Berne, Borkovec, and
Straub, 1988). A recent bridging expression due to
Zawadzki and Hynes (1989) overcomes this shortcoming
to some extent.

Other experiments that are of relevance to Kramers’
ideas have been carried out on isomerization reactions in
cyclohexane (Hasha, Eguichi, and Jonas, 1982a, 1982b)
and particularly on stilbene isomerization (Brey et al.,
1979; Rothenberger et al., 1983; Lee, Holtom, and
Hochstrasser, 1985; Maneke, Schroeder, Troe, and Voss,
1985; Fleming, Courtney, and Balk, 1986). These are
represented in Fig. 47. Note that the turnover in Fig. 47

o 3

2

FIG. 47. Measured rates for the photoisomerization of trans-stilbene in the S| state extending from the low-pressure gas into the
compressed-liquid range vs the inverse of the self-diffusion coefficient of the corresponding solvent (Maneke et al., 1985): O, ethane
in the gas phase below 370 K; X, same values converted to 295 K; 0, methane (Fleming, Courtney, and Balk, 1988); @, liquid ethane
at 295 K; v, liquid propane at 298 K; @, liquid SF, at 298 K: +, linear n-alkanes at ambient pressure and temperature (Rothen-
berger, Negus, and Hochstrasser, 1983); A, liquid hexane at room temperature (Brey, Schuster, and Drickamer, 1979); curve 1,
modeled unimolecular rate with turnover into spatial-diffusion control (E, =1100 cm™!); curve 2, same as curve 1, but with a solvent
density-dependent lowering of the activation barrier (E, =700 cm™'); curve 3, free overdamped rotational rate proportional to in-

verse friction, k ~w3/y. Figure provided by Professor Troe.
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is broader than in Fig. 46. This broadening is caused by
an increased number of degrees of freedom (see Sec. V).
Due to strong interactions of the excited stilbene with the
solvent, the activation energy shifts substantially with
solvent density (Maneke et al., 1985; Schroeder and
Troe, 1987). Therefore a theory that does not account
for such a barrier modification effect is obsolete—an
essential fact repeatedly emphasized by Troe.

Further notable experimental work on chemical reac-
tions, which can be interpreted along the lines inherent in
Kramers’ ideas, includes that of Zhu et al. (1988b) and
Sivakumar et al. (1989) on isomerization reactions, the
experiments of McManis and Weaver (1989) on electron
transfer, and the electron-spin-resonance experiments of
Fischer and Paul (1987) on radical reactions in the Smo-
luchowski regime.

B. Low-temperature quantum effects

The classical rate expression predicts that at zero tem-
perature the rate will vanish completely, a disappearance
that is formally expressed by the singularity of the Van’t
Hoff-Arrhenius factor. However, at lower temperatures
the quantum effects discussed in Sec. IX take over and
start to dominate. The phenomenon of quantum tunnel-
ing has been observed experimentally in a large number
of metastable systems, e.g., in biophysical transport [Al-
berding et al., 1976; Frauenfelder, 1979; Doster ef al.,
1987; see Fig. 2(b)], quantum diffusion in solids (Alefeld
and Volkl, 1978; Richter, 1987) or on surfaces [see Fig.
2(b)], chemical conversion processes (Goldanskii, 1976;
Goldanskii et al., 1987; Robie et al., 1987), tunneling of
domain walls in ferromagnetic materials (Richemann and
Nembach, 1984), or electron tunneling in amorphous al-
loys (Mansingh et al., 1984; Kronmiiller et al., 1988), to
name but a few. The effect of tunneling in these rate ex-
periments is exhibited by a characteristic convex curva-
ture in the corresponding Van’t Hoff-Arrhenius plots
{e.g., in Fig. 2), reflecting a temperature-dependent lower-
ing of the activation energy [Eq. (9.34)].

Again, in the context of the quantum-Kramers theory
presented in Sec. IX, our focus here will be on dissipative
quantum rate processes as they occur in the nucleation of
vortices in He II (Hendry et al., 1988), in the escape of
electrons from the surface of liquid helium (Goodkind
et al., 1988; Saville et al., 1988), and most notably in
low-temperature Josephson-junction systems (Jackel
et al., 1981; Prance et al., 1981, Voss and Webb, 1981;
Bol er al., 1985; Devoret et al., 1985; Dmitrenko et al.,
1985; Martinis et al., 1985, 1987; Schwartz et al., 1985;
Washburn et al., 1985; Washburn and Webb, 1986; Bol
and de Bruyn Ouboter, 1988; Clarke et al., 1988; Cleland
et al., 1988; Sharifi et al., 1988; Esteve et al., 1989; Han
et al., 1989; Iansiti et al., 1989).

Figure 48 shows the recent results of the Berkeley
group (Cleland, Martinis, and Clarke, 1988) on the decay
of the zero-voltage state in a current-biased Josephson
junction shunted with a normal-metal resistor in a tem-
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FIG. 48. Quantum-Kramers rate with Ohmic friction for the
decay of the zero-voltage state in a current-biased Josephson
junction near crossover T > T,,. The quantity T, is defined as
k(1)=(wy/2m)exp(—E, /kgT,.). Solid line, theoretical pre-
diction based on Eq. (9.36); @, the experimental values.
T,=4212 mK denotes the crossover temperature [see Eq.
(9.14)]. The dashed line gives the prediction of the classical
Kramers theory. The Van’t Hoff-Arrhenius factor BE, ranges
from 12.4 to 14.0. The solid bars represent the uncertainty in
the junction parameters, while the dashed error bars represent
uncertainty in the temperature calibration. After Cleland et al.
(1988).

40 60 100

perature regime above crossover T, =T, [Eq. (9.14)],
where thermal activation still dominates over quantum
tunneling. There is good agreement with theory [Egs.
(9.32), (9.36), and (9.55)].

The quantum dissipative escape time, i.c., the inverse
quantum-Kramers rate at T=18 mK < 7,=47 mK has
been measured very accurately in a Josephson system
with Ohmic-memory friction, by the Saclay group
(Estéve et al., 1989); see Fig. 49. The agreement between
the low-temperature quantum-Kramers theory in Eq.
(9.39) and the experimental data is indeed striking. At
low temperatures the quantum-Kramers rate exhibits a
universal exponential temperature enhancement propor-
tional to exp(constT?) [Eq. (9.40)]. This characteristic
signature of any Ohmic-low-temperature quantum behav-
ior of the escape mechanism is shown in Figs. 50-52 for
three different experiments on Josephson-junction sys-
tems. The tunneling of protons on hydrated protein
powders in a recent experiment by Careri and Consolini
(1989) has given evidence for a non-Ohmic dissipative
mechanism, Their observation is similar, from a physics
point of view, to the tunneling of impurities in solids
which is described by Eq. (9.40) with n =4,

Xll. CONCLUSIONS AND OUTLOOK

Fifty years after Kramers, most of the theoretical and
numerical groundwork has been laid for an understand-
ing of the principles and the content of thermal reaction-



328 Hénggi, Talkner, and Borkovec: Reaction-rate theory

40

3
T {us)
20

100 200
tp(ps)

FIG. 49. Escape time 7=k ~'(T) of the quantum-Kramers rate
vs delay time ¢, at a temperature of 7=18 mK measured for
the decay of the zero-voltage state in a Josephson junction
shunted by a delay line whose length is increased in situ. An
increase in the length yields an increase in the delay with which
the resistor damps the junction. The solid circles are the experi-
ments (Esteve et al., 1989) and the solid line is the theoretical
prediction based on Eq. (9.39) at T=18 mK. The dashed line
corresponds to the theoretical prediction at zero temperature
using as prefactor the undamped value, while the exponential
dissipative action [see Egs. (9.6) and (9.37)] is evaluated up to
first order in the dissipation strength (see Leggett, 1984b). Fig-
ure provided by Esteve et al. (1989).
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FIG. 50. The natural logarithm of the low-temperature
quantum-Kramers rate for the decay of the zero-voltage state in
a current-biased Josephson junction as a function of the squared
temperature. The data are from Washburn, Webb, Voss, and
Faris (1985), measured in three different samples with differing
junction capacitances. The data fall on strength lines in accor-
dance with the T? law of Grabert, Weiss, and Hinggi (1984).
The dashed lines are theoretical predictions in which the value
of the slope ¢ [see Eq. (9.40)] has been taken for an idealized
resistively shunted junction; these are about one-half of the ex-
perimental values for the nonideal junction used in the experi-
ment.
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FIG. 51. The observed mean flux measured in a superconduct-
ing ring that is interrupted by a Josephson junction. The data
are from Schwartz, Sen, Archie, and Lukens (1985). The mean
flux is proportional to the temperature squared, indicating a
corresponding temperature dependence of the rate itself, as pre-
dicted theoretically by Eq. (9.40) with n=2.

rate calculations over the whole friction and temperature
regime. To a somewhat lesser extent, the same holds true
for metastable, stationary nonequilibrium systems. Most
significantly, Kramers’ original reasoning on how to cal-
culate the escape rate for a damped, metastable Brownian
motion dynamics has since been extended in several
directions: If the rate is spatial-diffusion controlled, that
is, if nonequilibrium effects for the population dynamics
can safely be neglected, both the role of Brownian motion
in phase space in the presence of a number of spatial di-
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FIG. 52. Low-temperature quantum-Kramers rate data from
the Berkeley experiment (Cleland, Martinis, and Clarke, 1988).
The solid line is the theoretical crossover prediction of Grabert
and Weiss (1984b). The vertical error bars arise from systemat-
ic errors for the parameters of the junction; the horizontal error
bars indicate the uncertainty in the temperature calibration.
The horizontal arrow denotes the zero-temperature, undamped
quantum rate, and T? denotes the squared crossover tempera-
ture, Eq. (9.14). The dashed line indicates a least-squares linear
fit of the data below 30 mK to Ink(7)= 4 +BT? The asymp-
tote of the data is 4 =9.410.5, while the theory in Eq. (9.39)
predicts 4 =8.8+1.0. The slope of the T2 law [see Eq. (9.40)]
for the data is B=(1.3£0.1) (mK)~?, while theory yields
B =(1.9£0.2) (mK) ™% Figure obtained from Professor Clarke.
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mensions or fields (see Sec. IV.F) and the impact of corre-
lated thermal noise, i.e., memory friction, have been ac-
counted for by the approaches presented in Secs. IV.F
and III.C, respectively. These results have also been
shown (Sec. IIL.C) to emerge as well from a multidimen-
sional, harmonic transition-state theory in full phase
space that incorporates both the degree(s) of freedom for
the nonlinear reactive system and the degrees of freedom
of the thermal bath. This connection makes explicit the
fact that the theory developed by Kramers for moderate-
to-strong friction, together with its generalizations to
many spatial dimensions and to memory friction [such
as, for example, the imaginary free-energy method due to
Langer (1967, 1969)] does not contain kinetics that could
account for possible nonequilibrium effects of the popula-
tion dynamics. Such nonequilibrium effects, which play a
crucial role in the weak-friction regime, are taken into
account in the theory developed by Kramers for this re-
gime, but appreciation and understanding of this work
(Sec. IV.D) has been slow. Until recently, it had escaped
the attention of many physicists engaged in rate calcula-
tions, starting with Chandrasekhar’s (1943) otherwise au-
thoritative survey. This area of weak-friction-controlled
rate processes has since been developed considerably by
chemical physicists, extending Kramers’ continuous
energy-diffusion model to models with discrete energy
transfers. Chemical physicists have also generalized
weak-friction rate theory to many dimensions with Mar-
kovian and/or non-Markovian reaction kinetics (see Sec.
V). The above connection between multidimensional
TST for the total system and Kramers’ theory for the
spatial-diffusion-controlled regime has proven extremely
useful in constructing a classical turnover theory (Sec.
VI.B) or its quantum generalization (Sec. IX.E.2), which
unifies the weak-friction regime and the corresponding
spatial-diffusion-controlled regime. Moreover, various
criteria could be found (see Secs. IV.G and VI.C) for
identifying the regime of validity for the mass of special-
ized rate formulas.

The striking advantages, i.e., the closed-quadrature ex-
pressions, as well as the disadvantages of the MFPT con-
cept in higher dimensions and/or with a non-Markovian
dynamics, have been elucidated in Sec. VII. Although
the MFPT is closely connected with the flux-over-
population technique (see Appendix B), the mean first-
passage time has found widespread application in rate
calculations for stationary nonequilibrium (see Sec. VIII).
It has, however, almost exclusively been invoked in one-
dimensional metastable situations only. Clearly, the ab-
sence of a detailed balance symmetry renders the rate
problem in stationary nonequilibrium with more than
one dimension a formidable task, which has been solved
thus far only in special cases. As shown in Sec. IX, most
of the original Kramers theory has, in recent years, been
successfully generalized to lower temperatures down to
absolute zero, thereby also accounting for the crossover
between quantum-controlled and thermal-activation-
controlled escape. Many of the theoretical rate formulas
could be checked against powerful numerical rate pro-
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cedures, such as the reactive-flux technique (see Secs.
I1.B and X).

Despite the many specific results in one and many spa-
tial dimensions, there remain several open problems. In
particular, there is a need for more detailed work with
realistic models describing the actual experiments.

Within classical rate theory, one such area is the study
of the rate mechanism at weak dissipation in multidimen-
sional metastable systems and in metastable field-
theoretic approaches (see Secs. V.D and VIIL.D). For ex-
ample, there is at present no detailed study of the soliton
nucleation rate in the underdamped regime which con-
sistently accounts for the field character of the metastable
potential. Likewise, the rate at weak damping in a sys-
tem of strongly coupled degrees of freedom can give rise
to a complex memory friction with sharp resonancelike
structures for its Fourier transform, which in turn may
imply a breakdown of the assumptions used for the
weak-friction theory in Sec. V.

Another open problem is the Kramers turnover in the
presence of a multidimensional metastable potential func-
tion. This case is particularly delicate, because different
metastable multidimensional systems might exhibit the
same behavior for the rate at moderate-to-strong friction,
as described by Eq. (4.81), while the weak-friction behav-
ior might be different for each individual system (see Sec.
V.D). Very little is known at present about the rate in
coupled metastable systems in which the transitions be-
tween adjacent metastable states are correlated; the rate
in one subunit may depend on the history of neighboring
transitions.

Recently, some exciting observations in weakly
damped metastable systems driven by external, time-
periodic forces have been reported (Devoret et al., 1984,
1987; Carmeli and Nitzan, 1985; Munakata et al., 1985;
Esteve, Devoret, and Martinis, 1986; Larkin and Ovchin-
nikov, 1986; Munakata, 1986; Chow and Ambegaokar,
1988; Turlot et al., 1989). These observations have been
labeled “‘resonance activation”; surprisingly enough,
similar observations have been made in overdamped
metastable systems, with the effect being termed “sto-
chastic resonance” (Benzi et al., 1981, 1982; Gammai-
toni et al., 1989, McNamara et al., 1988; Debnath,
Zhou, and Moss, 1989; Jung, 1989; Jung and Hinggi,
1989; Vemuri and Roy, 1989). Such systems exhibit after
an averaging over a random phase, or over a period, un-
damped oscillations still present for the time-
homogeneous correlation function, i.e., these systems are
not strongly mixing Jung and Hinggi, 1989). The decay
in these overdamped metastable, periodically forced sys-
tems undergoes a typical modulation-induced rate
enhancement characterized by the Hill-Floquet
coefficient with the smallest, nonvanishing real part
(Jung, 1989). Obviously there is still a rich variety of
phenomena between these two limiting cases which
deserves more detailed theoretical and experimental in-
vestigation.

We mention here, as well, the problem of nonexponen-
tial decay laws in reactions as they occur in spin glasses
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(Binder and Young, 1986; Jickle, 1986) and disordered
media (Alexander et al., 1981; Kelly and Kostin, 1986;
Haus and Kehr, 1987; Rajagopal, Ngai, Rendell, and
Teitler, 1988). In these cases the usual rate equations of
the form in Eq. (2.12) do not exist.

With regard to quantum rate theory, all of the above
open problems have their quantum counterparts. More-
over, the effect of nonlinear bath couplings yielding a
state-dependent friction or a state-dependent diffusion
coefficient [see Eqs. (2.6), (4.12), and (7.43)], and the
influence of many dimensions for a nonlinear metastable
potential function U(x) [see Sec. IV.G], i.e., multidimen-
sional quantum-Kramers theory, quantum nucleation,
and the role of stationary nonequilibrium (Hida and Eck-
ern, 1984; Hida, 1985; Nakaya and Hida, 1986; Ivlev and
Melnikov, 1987), are only beginning to be investigated on
a quantitative level.

Finally we remark that most of the material reviewed
here concerns escape governed by a reaction coordinate
moving on an adiabatic potential surface U(x). An im-
portant category of quantum effects in the presence of
electronic degrees of freedom is that of nonadiabatic
transitions (Dogonadze et al., 1968; Zusman, 1980; Tra-
khtenberg et al., 1982; Calef and Wolynes, 1983; Frauen-
felder and Wolynes, 1985; Garg, Onuchic, and Ambegao-
kar, 1985; Chandler, 1986; Goldanskii et al., 1987; Kay-
anuma, 1987; Rips and Jortner, 1987; Straub and Berne
1987; Wolynes, 1987; Wilkinson, 1988; Ao and Rammer,
1989a, 1989b; Borgis et al., 1989). For example, in
chemical reactions both electrons and nuclei move. Be-
cause of the mass difference between electrons and nuclei,
one frequently assumes that the electrons follow the nu-
clear motion adiabatically (Born-Oppenheimer approxi-
mation). In Fig. 53 we show two such neighboring
Born-Oppenheimer surfaces corresponding to two
different electronic states. The interaction between the

o,

N
A -
A
A

X

FIG. 53. Two neighboring Born-Oppenheimer (i.e., adiabatic)
surfaces. For two electronic states @ and b that do not interact,
the resulting (diabatic) surfaces cross each other. In the pres-
ence of an interaction the two curves repel each other, yielding
an adiabatic ground-state surface with two minima (lower solid
line) and an excited surface. The two surfaces are separated in
the transition region by the energy A.
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two electronic states then results in a splitting A. A reac-
tion from A4-—-B, or vice versa, is moderated by two
characteristic time scales. Let 7;,=#/A denotes the time
within which the electronic charge will fluctuate between
the two neighboring electronic states, and 7, be the typi-
cal time within which the nuclear reaction coordinate
crosses the barrier region. For 7| <<T,, the electronic de-
grees of freedom will successfully adjust to the nuclear
coordinates (adiabatic transition), with the dynamics
evolving on the lower adiabatic ground-state surface,
which for small A often is characterized by a cusp-shaped
potential form (see Sec. VII.LE.2). On the other hand, for
712 7, nonadiabatic dynamic effects become important;
the rate will be modified by an additional multiplicative
factor P, which gives the probability for staying on the
adiabatic ground-state surface. Traditional Landau-
Zener-Stiickelberg theory (Landau, 1983; Stiickelberg,
1932; Zener, 1932) yields for this probability

P=1—exp(—zA?), (12.1)

where z depends on the nuclear dynamics. For zA?>>1,
that is, P~ 1, one recovers the adiabatic theory discussed
throughout this review. By contrast, when zA2<<lI,
yielding P « A? (golden rule-like behavior), we have the
hallmark of a truly nonadiabatic reaction. In a simplec-
minded approximation we can thus obtain for the rate
transmission factor k =k /k g7 the result

Koq—K~Picg=[1—exp(—zA%) ]k, , (12.2)

where «,4 is the adiabatic transmission factor obtained
from standard Kramers theory [see, for example, Eqgs.
(3.46), (4.33), (5.51), (6.9), and (9.55)]. Undoubtedly we
shall see more research work in future years aimed at
describing the influence of temperature and dissipation
on the probability P itself, and on the parameters z and
A.
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APPENDIX A: EVALUATION OF THE GAUSSIAN
SURFACE INTEGRAL IN EQ. (4.77)

In this appendix we shall give some intermediate steps
leading from the integral expression [Eq. (4.77)] for the
probability current over the saddle to its explicit form
[Eq. (4.78)].

First we get rid of the surface integral over the hyper-

kyT 1/2 )

1exp( —BE,
21

)#fdnfdkexp

By an appropriate rotation $=(S;;) of coordinates about
the saddle point, we can diagonalize the matrix
E'®'=(e;) [cf. Eq. (4.65)],

zs,j ¥ (A4)

+13 uixt,  (AS5)

122

zzeu (7, 77_/) %lu'lx%
where —pu, is the negative eigenvalue of the matrix of
second derivatives of the energy at the saddle and where
iy, I =2 are the positive eigenvalues of that matrix. Re-
call that in the derivation of Eq. (4.77) we assumed that
75 is a saddle point without any neutral direction. Con-
sequently no vanishing eigenvalues of the matrix E> can

exist.

172
1

A B
21

273
i3y 2m

j=02aB) "2\, Z " lexp(—BE,)

which with Eq. (A4) and Egs. (4.73) and (4.74) simplifies
to give Eq. (4.79).

APPENDIX B: A FORMAL RELATION
BETWEEN THE MFPT AND
THE FLUX-OVER-POPULATION METHOD

In this appendix we shall elaborate on a formal connec-
tion between the flux-over-population expression for the
rate and the mean first-passage time. For this purpose
we consider a Fokker-Planck process in an n-dimensional
state space Z. According to Eq. (7.3) the mean first-
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j

plane u = U,;(n; —77)=0 by introducing an appropriate &

function,

j=[dnsu)3 UJ((n) (A1)
t
With the explicit expression for the probability current
density J;({n}) [Eq. {4.76)] and the normalization of the
vector U, [Eq. (4.73)], we obtain
172

kyT
b A+Z‘1fdn8(u)exp[—BE({n])] ,

21
(A2)

where Eq. (4.63) for the equilibrium density has been
used.

Next we use the Fourier representation of the delta
function and introduce the quadratic approximation of
E({n}]) about the saddle at {n}={n"} [Eq. 4.65)]. This
is a sufficient approximation in the desired order in k5T,

(A3)

exp _Bz eu 77 7’])

The integration over all coordinates x; with / 22 may
be interchanged with the integration over k and can easi-
ly be performed to yield

mnJ/”

122

dx,exp ikUx;)exp( —1Bu;x}?)

-1/2
,  (A6)

k2
2[3’ E

1>2 M

B,
H 2

1z2

=exp

where U, is the / component of the rotated vector U,

U/=ES,~]U,~ . (A7)
The remaining Gaussian integrals over k and x, are
readily evaluated to yield for the probability flux

~a =112
Uj 2w

=2 M By 55 Ky

2 12 ~a 172
]

(S}

\

(A8)

passage time f(x) out of a domain Q of = is the solution
of the boundary-value problem

(Bla)
(B1b)

LTx)=—1,
t(x)=0, x€0Q,

xeQ,

where LT denotes the backward operator (Feller, 1966;
Hanggi and Thomas, 1982), i.e., the adjoint Fokker-
Planck operator. Further lét us consider the Green’s
function of the Fokker-Planck operator on {2,
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(B2a)
(B2b)

L.g(x,y)=—kd(x —y), x on Q
g(x,y)=0, x on 92,

where the subscript x at L merely denotes the set of vari-
ables on which .L acts, and where 8(x —y) denotes the
n-dimensional 6 function. Clearly, the Green’s function
g(x,y) may be interpreted as a stationary probability
density of the given Fokker-Planck process with an addi-
tional point source of strength k>0 at y €€, and perfect
sinks at the boundary ). Due to the conservation of
probability the source strength k may be expressed in
terms of the probability’s being absorbed per unit time

= — n = I
k fn,[jxg(x,y)d X fanS,J,(x,y), (B3)
where J(x,y) is the probability current density defined by
iJ,-(x,y)=—=.ng(x,y) . (B4)
ox;

If Eq. (B2a) is multiplied by the mean first-passage time
t(x) and then integrated over (), one obtains with Egs.
(B1b), (B2b), and (B3)

fﬂd"x glx,y)
a [ dsiitxy)

Hence, the mean first-passage time is represented in
a population-over-flux expression analogous to the
Kramers rate. We note that Eq. (B5) is a valid expression
for the mean first-passage time irrespective of whether €}
is a domain of attraction and whether the noise is weak.
However, only in these latter cases will the mean first-
passage time be essentially independent of the starting
point y, i.e., will the precise location of the source not
matter. The presence of perfect sinks at the boundary in
Eq. (B5) rather than a smooth distribution of sinks out-
side of Q as in the Kramers expression [see text before
Eq. (4.14)] must be compensated by a factor of 2 [Eq.
(7.41)].

t{y) (BS)
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