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DISSIPATIVE QUANTUM TUNNELING
AT FINITE TEMPERATURES

PETER HANGGI

1. INTRODUCTION

Processes in which a particle must overcome an intervening potential barrier are ubiquitous
in science, occurring in such fields as chemical kinetics, diffusion in condensed matter
systems, biological transport, nuclear reactions, and possibly even describe the birth of the
Universe. At high temperatures, the rate of such processes obeys the law by Vant Hoff
(1884) and Arrhenius (1889), according to which the rate of escape is proportional to the
‘Boltzmann factor for thermal activation up to the barrier top (see Fig. 1). As one

therm. hopping

——

heat bath

Figure 1: Escape of a particle from a metastable state. The particle can leave the potential
well either via thermal activation over the barrier or via tunneling through the classically
forbidden regime. The interaction between the particle and the surroundmg heat bath is
modelled by frictional forces giving rise to dissipation.
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continuously lowers the temperature, this law predicts an exponential decrease of the rate,
with no action taking place at absolute zero. However, at low temperatures the role of
quantum mechanics provides a new mechanism by which a classically stable state can
become unstable via quantum mechanical tunneling (see Fig. 2).
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Figure 2: Arrhenius plots of reaction data for two different physical systems in which
tunneling events occur: (a) rate of CO-migration to a separated B-chain of haemoglobin
(Hb) (data from Alberding et al., 1976; Frauenfelder, 1979); (b) the diffusion coefficient

of hydrogen moving on the (110)-plane of tungsten at a relative H-coverage of 0.1 (data
from Di Foggio and Gomer, 1982).

The tunnel effect was recognized long ago, during the heydays of quantum mechanics. In
1927, Friedrich Hund (1927) demonstrated that quantum tunneling is of importance for
intramolecular rearrangements in pyramidal molecules such as ammonia, as manifested by
tunnel-splittings of vibrational spectra. The tunneling phenomena became a well known
cffect shortly afterwards when Oppenheimer (1928a,b) employed it for the description of
the ionization of atoms in intense electric fields, or when Fowler and Nordheim (1928)
used tnneling for the clectric ficld emission of electrons from cold metals, and by Gamow
(1928) as well as by Gumey and Condon (1928, 1929) which explained the radioactive
decay of nuclei. Quantum mechanical tunneling entered the field of reaction rates with the
pioneering study by Bourgin (1929), which then was continued by Wigner (1932) who
evaluated up to order (h?) the quantum corrections to the tunneling-modified Boltzmann
averaged flux through a parabolic-shaped potential barrier. Since then, the tunneling
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mechanism has been invoked and developed further in a multitude of fields, encompassing
biology, electronic devices, crystalline and amorphous solids, and tunneling microscopy
(Jortner and Pullman, 1986).

Our focus here is on tunneling in presence of dissipation. This area of research has been
nurtured considerably by Leggett’s (1980, 1984, 1986) initial discussion of quantum
mechanics and realism at the macroscopic level. The publication of the Einstein-Podolsky-
Rosen Paradox (1935) triggered Schrdinger’s (1935) "Generalbeichte” (general confes-
sion) on the status of quantum mechanics. Best known from this article is the paradox of
Schridinger’s cat (see Fig. 3) in which he illustrates the indecisiveness of observations
which is possible in quantum mechanics. To this end he links the life of a cat, to which so
many of us are compassionate, with the state of a radioactive nucleus. In this way he
"infects" the cat with the quite common uncertainty of the subatomic world. Specifically,
the linear structure of quantum mechanics seems to contradict our common sense for a cat
to be in a combination of "decad and alive" for an appreciable time ( ~ half-time of a

Figure 3: Schridinger’s cat. Is the cat alive, or dead (or if you prefer in a state of
permanent sleep, 1) only when one looks?
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nucleus whose decay triggers a device which then kills the cat), while at the same time we
are ready to accept the analogous situation for the atomic nucleus. In the recent past years
it has become feasible to construct Laboratory Cousins of Schrodinger’s cat by observing
the quantum mechanics of macroscopic quantum variables such as the decay of the zero-
voltage state in a biased Josephson junction, or fluxoid quantum transitions in a
superconducting quantum interference device. This area of research is nowadays known
as Macroscopic Quantum Mechanics (Leggett, 1986; Hiinggi 1986a, b; Weiss et al., 1987,
Grabert, Olschowski and Weiss, 1987). In the following we shall restrict our discussion
of dissipative tunneling to the case of incoherent quantum tunneling processes, i.c. we do
not consider dissipative quantum coherence effects as they occur typically in weakly
damped double-well systems (Leggett et al., 1987; Weiss and Wollensak, 1989). Such
incoherent tunneling processes of damped observables occur in biased Josephson
junctions (Washburn et al., 1985, 1986; Schwartz et al., 1985; Devoret et al., 1985;
Martinis et al., 1987; Cleland et al., 1988; Clarke et al., 1988; Sharifi et al., 1988; Iansiti
et al., 1989), nucleation of vortices in He I (Hendry et al., 1988) or quantum diffusion in
solids (see ¢.g. Richter, 1987), in biological transport (Frauenfelder, 1979; Careri and
Consolini, 1989) and in low temperature vibrational spectroscopy of small molecules in
inert solvents.

2. FORMULATION OF THE PROBLEM

For the description of the dissipation for the quantum particle dynamics in a metastable
potential V(q) (see Fig. 1) we rely on the standard methods known from statistical
mechanics. As a rather general model we consider a particle of mass M that interacts via a
linear dissipative mechanism with a thermal environment at temperature T, i.c. we .
consider a bath composed of an infinite set of harmonic oscillators being coupled bilinearly
to the particle coordinate q. The total Hamiltonian, #{, of the system plus the bath is then
of the form (Zwanzig, 1973; Caldeira and Leggett, 1983; Levine, Shapiro and Pollak,
1988)

N C.
5‘[=%d- 2+V(@©Q +i-2 m, [qiz + o} (qi + ;;;-q)z] . 1)

i=1
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In Eq. (1) the coupling to the bath of harmonic oscillators with masses {m,;} and (angular)
frequencies {,} is of a form such that no coupling-induced renormalization of the
metastable potential V(q) occurs. Upon integrating over all bath variables {q;, ... , qy},
one obtains in a canonical ensemble the generalized Langevin equation

t
Mii+§-\§l92+MJy(t—T)€1(T)dT=§(t) @
with the memory-friction (t) obeying the fluctuation-dissipation theorem
<) E@s) > =kTMplt-s)) . 3

Here k denotes the Boltzmann constant. The Gaussian stochastic force &(t) and the
memory-friction (t) are determined by the parameters of the Hamiltonian (Zwanzig, 1973;
Levine et al., 1988). Thus, a phenomelogical decaying memory-friction Y(t), i.c. ¥(t) — O,
as t — oo, can be modelled by a suitable choice of the parameters in Eq. (1) by performing
a continuum limit (i.e. N — <) for the distribution of frequencies which densely extends
down to zero frequencies (climination of Poincare recurrences). In Kramers® (1940)
seminal study on classical reaction rates it was assumed that the frictional influence of the
environment can be modelled by a frequency-independent damping y(t) — 2y &(t). In
recent years, however, several experiments on the behavior of thermally activated
(classical) reaction rates have shown a failure of the memory-free fricion mechanism
(Hinggi, 1986b; Hynes, 1986; Berne, Borkovec and Straub, 1988). This is due to the fact
that barrier frequencies are often of the order of 10!! — 10'4 Hz, and environmental
influences are likely to be correlated on this time scale, thereby giving rise to frequency-
dependent damping effects for the classical rate (Grote and Hynes, 1980; Hinggi and
Mojtabai, 1982; Hinggi, 1986b).

3. THE DISSIPATIVE TUNNELING RATE

The theory for dissipative tunneling was developed only recently. The field has seen a
rapid development after Caldeira and Leggett (1981, 1983) discussed the problem of
macroscopic quanthm tunneling at zero temperature. Following the reasoning of Langer
(1967) used for the classical nucleation problem, the original approaches for dissipative
tunneling are based on an imaginary-time functional integral approach (imaginary free
energy method, Im¥). The essence of the method consists in a semiclassical steepest
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descent evaluation of the free energy which leads to the so-called "bounce™ (Miller, 1975;
Callan and Coleman, 1977; Affleck, 1981) as the primary object in the theory. The
important qualitative result of the zero temperature studies (Caldeira and Leggett, 1983)
was the observation that at zero temperature the presence of dissipation will exponentially
decrease the tunneling rate relative to the gas phase rate, defined as the tunneling rate
without dissipation (y =0).

The functional integral approach was extended by the Augsburg- Essen - Polytechnic -
Stuttgart and the Moscow school to finite temperatures, covering all temperatures in the
range from T = 0 up to the classical regime (Grabert, Weiss and Hanggi, 1984; Grabert
and Weiss, 1984; Larkin and Ovchinnikov, 1984; Grabert, 1985; Riseborough et al.,
1985; Hiinggi, 1986a,b, 1987; Weiss, Grabert, Hiinggi and Riscborough, 1987; Grabert,
Olschowski and Weiss, 1987; Hiinggi and Hontscha, ‘ 1988). In the sequel we shall
present the main results of the finite temperature theory to dissipative tunneling by use of a
unified approach which covers both, low temperatures and high temperatures on the same
basis (Hinggi and Hontscha, 1988).

3.1 Flux-Flux Autocorrelation Function Expression for the
Quantum Mechanical Rate

We start our more detailed tunneling rate discussion by a formally exact rate expression,

originally put forward by Miller (1974). Let Z, denote the quantum partition function of

system plus bath for the metastable state located inside the well minimum (see Fig. 4).

Yty o
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q

Figure 4: Metastable cubic potential used in the text.
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Further let s denote the reaction coordinate in full configuration space with the activation
barrier being located at s = 0, and let p be its conjugate momentum, i.e. s is the coordinate
perpendicular to the surface which divides “reactants” from "products”. The flux-through-
a-surface operator F has the form

F=8s) M) , @

and the thermally averaged tunneling rate I is formally given by ( Miller, 1974)

r=Re{Tr[exp-Br)FP1} [ 2, , (5)

where Re denotes the "real part”, Tr indicates the trace, f = (kT)"! is the inverse
temperature and

P=lim exp(i #t/h)h(p) exp(-ist/h) 6)

t—roo

with h(p) = 1, if p > 0 and h(p) = 0, if p < 0. The operator P projects onto all states that
have positive momentum in the infinite future (t — oo ), with the reaction coordinate
ranging from s = — oo t0 s = + o, By use of a few formally exact manipulations the rate in
Eq. (5) can be recast in terms of a time integral over a flux-flux autocorrelation function,
ie. with F= i- [8(s) (/M) + (pM) 8(s)), and t, =t—ih B/2, Eq. (6) can be written in the
form (Yamamoto, 1960; Miller et al., 1983).

r=5z;! I cudt , (Ta)
where (Miller ct al,, 1983)
C® = Tr [F exp(i #¢Mh ) Fexp( —i 21 h)] . (7b)

Note that this result is analogous to the Green-Kubo formulas for transport coefficients.
Except in simple situations (e.g. for the one-dimensional parabolic barrier with curvature
o= M V(g =q)) 1> 0, yielding Z, I = - (3 hBe,) [sinGgh Bay] ™, it is with
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non-separable systems generally impossible to simplify analytically the expression in Eq.
(7). Therefore, it is more practical to evaluate for Eq. (5) the semiclassical approximation.

3.2 Unified Approach to the Quantum - Kramers Rate

In order to make progress on an analytical basis we first approximate the projector Pin
Eq. (6) by the simple step function h(p). This procedure is known in the chemical physics
literature as the quantum-transition-state approximation (QTST). By use of the
semiclassical approximation for the propagator, exp(~B # ), one finds after a first
stationary phase approximation a periodic trajectory in configuration space which
represents a continuum of stationary phase points. This periodic trajectory, being unstable
with respect to small perturbations, just constitutes the "bounce-solution” (often also
denoted as "instanton-solution”) in full configuration space of system and bath, see Eq.
(1), which describes the tunneling at fixed total energy E. The dividing surface will next
be chosen so that the periodic trajectory crosses it perpendicularly, i.e. q = s is the
coordinate which measures distance along the unstable periodic trajectory with the other
‘N-coordinates being orthogonal displacements away from it. In contrast to the remaining
N-orthogonal coordinates, which can be evaluated by the stationary phase approximation,
the integral over the s-coordinate cannot be performed in such a way. The latter, however,
is trivially accomplished by virtue of the 8-function in Eq. (4). Making use of similar
calculations (periodic orbit theory) originally put forward by Gutzwiller (1971; 1982) one
ends up with the result (Miller, 1975)

r=7 = | &I® cx(pm) ®)
x

where I'(E) is the microcanonical semiclassical tunneling rate given by

T'(E) = 3, (-1 expl-nd(E)]

n=1

N
. H [2 sish(GnT®0,EN]” ©)
i=1

with
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TE)
o(E) = oj dt p() 4D (10)

being the "small action” integral along the periodic orbit in complex time T = it of period
T(E) that rocks forth and back through the saddle point region on the upside-down
potential energy surface in (N + 1) dirnensions. The parameters (o, (E)} are the stability
frequencies (Hill-Floquet cocfficients) characterizing the unstable periodic orbit with
period T(E) = - ¢"(E). Upon expanding the sinh-functions in Eq. (9) in geometric series
one obtains a well-behaved result for I'(E) (i.c. we use an analytic continuation of the
series over n in Eq. (9) which might formally be divergent when E > E,, where E, is the
threshold energy for activation) reading

N
@ = (1+expl0®) - 0°®) Y 0+ 1) B 0 @) 1]}
i=1 an
(n‘. seny nN)=0
With the solution of N
Ep =E- z (n; + %)hay (Ep) (12)

i=]

being the energy left in the tunneling mode while crossing the saddle point we approximate
the answer in (11) by the more appealing expression (Hinggi and Hontscha, 1988)

r@ = X {1+ exploEpmi}” (13)
(ng, ..., ny)=0

wherein we have "unexpanded” the first two terms in the Taylor series in Eq. (11). Note
that the form in Eq. (13) becomes exact for tunneling in the case of a multi-dimensional
separable parabolic-like potential function.

With Eq. (13), the evaluation of the thermally averaged, dissipative tunneling rate follows
after the integration in Eq. (8). The remaining problem in obtaining an analytical result
consists in the determination of the small action ¢(Eq), the Hill-Floquet coefficients
{(ol(Er)] » and the period T(Ey). In particular, it should be stressed that the result in Eq.
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(8) combined with Eq. (13) presents an expression for the dissipative tunneling rate that is
valid for all temperatures.

33 Results for the Quantum-Kramers Rate

In this subsection we follow the reasoning of Hiinggi and Hontscha (1988) to derive
explicit results for the dissipative tunneling rate in various temperature regimes. Let p
denote the (positive-valued) relaxation (angular) frequency along the reaction coordinate,
s, at the saddle point. Then the temperature (Hanggi et al., 1985)

Ty =hu/Ce, with = [ 77 0 + 02 1 - 3 (14)

denotes the dissipative crossover temperature above which thermally activated events
dominate over tunneling transitions. In Eq. (14) ¥ denotes the Laplace transform of the
memory friction (), while (03 =1V (q=q,) / M | is the barrier (angular) frequency.

A) Dissipative Tunneling Above T, :

In this regime we can usc a harmonic, local adiabatic approximation, i.e. the period T(E,)
equals a constant T(Ey) = 2x/u, and the Hill-Floquet coefficients can be approximated by
the normal mode (angular) frequencies of the orthogonal coordinates at the saddle point,
and ¢(Ey) = (E, ~ E;) 2 x/u. Then, interchanging the integration in Eq. (8) with the
summations in Eq. (13) yields, by virtue of an identity due to Pollak (1986) which relates
the product of the (unknown) normal mode frequencies at the saddle point and at the well
bottom to the (known) memory-friction ¥, the result (Wolynes, 1981; Melnikov and
Meshkov, 1983; Dakhnovskii and Ovchinnikov, 1985; Pollak, 1986; Hanggi et al., 1985;
Grabert et al., 1987)

RETCA T ol+n2vZnvi(nv)
I‘-[ ;(M]“p( ﬂE")] —o2+nv24nvinv) | {13)
1

n=
The first term inside the square brackets denotes the classical generalized Kramers rate
(Hinggi, 1986b). The definition of v is v = 2x/(hp) and mg =V7(q = qp)/M is the
(angular) frequency in the well bottom, see Fig. 4. For temperatures T >> T, the quantum




~ Srps oty

Dissipative quantum tunneling at finite temperatures 197

correction Q, given by the curly brackets in Eq. (15), approaches unity. Moreover, this
quantum correction always exceeds unity, i.c. this quantum-Kramers rate theory always
enhances the classical rate. In particular, for weak-to-moderate damping strength ¥(j1)
there exists an accurate and quite simple approximation to the quantum correction Q in Eq.
(15) which in leading order is independent of the dissipation ¥, i.c. (Hanggi et al, 1985)

Q~exp{¥z pAwl + mj)} . (16)

Thus, above T > T, the Arrhenius factor undergoes a temperature-dependent
renormalization towards smaller values, i.c.

By By B (0 + 0 | an

B) Dissipative Tunneling Near T,

At temperatures T ~ T, the integral in Eq. (8) becomes dominated by energies E; <E,,
where ¢(Eqp) > 0. Setting for the small action more accurately with I T I= 16" (E=E)) |,
(Hinggi and Hontscha, 1988)

¢<Er)=(E,,—Er)-2£-+%(ErEr)2'T" (18)

we find the result (Grabert and Weiss, 1984b; Larkin and Ovchinnikov, 1984;
Riseborough et al., 1985)

=

( 2 )1/2 (%]m% +vI+vyVw) wZ+n2vi+nvi(av)

hiT -ﬁ): a ~oZ+n2v2nvimy)
2

12
(cxpl-B By + oy By - B2 5 et {(ﬁ’ﬁ]‘ BB}

(19)
where -

= +p?[1+@¥2) /321,18y = kT, and erfe(x) = 2172 [dy exp(-y?).
. X
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For constant friction ¥(t) = 2y5(t) we obtain for a = vy (2v, + ), with v, = 21/ BiB).
Note also that the result in Eq. (19) approaches for T > T, the previous answer in Eq.
(15).

() Dissipative Tunneling Below T,

At lower temperatares the action ¢(E) in Eq. (18) must be evaluated by taking the full
nonlinearity of the potential V(q) into account. In that regime, however, the contribution
from multiple traversals of the classically forbidden regime with period nT(E), n > 1, do
not significantly contribute to the sum in Eq. (9). Hence, we can evaluate Eq. (8) by
keeping only the n = 1 term in Eq. (9), and the remaining integral can be performed by the
method of steepest descent. The steepest descent condition yields for the period T(E) = hf
= 0. With E, determined so that T(E = Eg) =hf , we find in terms of the full extremal
action S,

S, = 6Eq + () (208)
e
= faUQEn + 5 4(0p ) (20b)
)

wherein U(q) denotes the potential function of all degrees of freedom (system plus bath)
for the low temperature dissipative quantum rate the result (Hiinggi, 1987)

T=75" 122 hT" (E = Ep) 2 exp(-S, /h)

N .
H [ 2 sinh (IIh B, EN]™ . @1

i=l
By use of some identities discussed in the paper by Dashen, Hasslacher and Neveu
(1974), the prefactor in Eq. (21) can be related to the eigenvalue spectrum around the
dissipative bounce trajectory g, () of period hp = 0 to give the known result (Grabert and
Weiss, 1984a; Larkin and Ovchinnikov, 1984; Riseborough et al., 1985; Hiinggi,

1986a,b, 1987; Grabert et al., 1987), i.c.
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r=2mgF
h
a2
uy ¥ . 2/ Det (828 /89%)4q,
M o exp(-Sipyh)
2x h '£ W I Det” (82§ / aqz)‘F%(')J e
-2

(22)

Here S denotes the Euclidean, dissipative action with S(q(T) = qy) =0, and S(q =q,(1)) =
S, see in Eq. (20), and Det” means that the eigenvalue zero has to be omitted. Arrhenius
plots of some numerical results for the dissipative tunneling rate with Ohmic friction ¥(z) =
v are depicted in Fig. 5. Because of quantum tunncling the rate I does not decrease
continuously as the temperature T is lowered, but flattens off at low temperatures, see also
Fig. 2. In the high temperature (or classical) regime the rate is reduced compared to the gas
phase rate (¥=0, i.c. p=0,) by the dissipative transmission factor ji/@, < 1, see Eq. (15).
In contrast, the zero temperature rate is exponentially reduced by the dissipative action
factor Sy, (T = 0) (Caldeira and Leggett, 1983). For very weak damping Y(it) = O, the
thermal fluctuations have little effect on the low temperature behavior of the rate, i.e. the
temperature dependence is almost neglible below T, for ¥=0. For a damped system,
however, there exists a large regime where quantal and thermal fluctuations interplay. In
this low temperature regime one finds a universal exponential temperature enhancement in
the form of a power law (Grabert, Weiss and Hanggi, 1984)

n{T(T)/T(T =0)} =cT" | (23)

where n = 2 for all systems with finite low frequency damping, i.c. {w=0) = Yo> 0. For
Ohmic-like damping, this characteristic low temperature T2 - law, as well as the quantum
corrections in Egs. (15,16,19), have been observed in several experiments (Washburn et
al., 1985; Washburn and Webb, 1986; Schwartz et al., 1985; Cleland et al., 1988; Clarke
et al., 1988; Sharifi et al., 1988; Iansiti et al., 1989). Moreover, the power n is directly
related to the behavior of the spectral density J(@) =5 Y CX(m; )" 8(c - @) of the
environment at low frequencies, i.e. J(@)= @™, as ® — 0. The slope ¢ in Eq. (23)
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increases with the strength of dissipation, but depends further on the details of the model
for the dissipative mechanism and the metastable potential function V(q).

0
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5 0
o 20,
=
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-40
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Figure S: Arrhenius plots of the dissipative tunneling rate I" for the system in Fig. 4 with
w, = 0, E, =V, = 5hay, and frequency - independent Ohmic dissipation ¥(z) = y =
2w, for various values of a (data are from Grabert et al., 1987).

4. QUANTUM TUNNELING AT WEAK DISSIPATION

The quantum Kramers theory presented in the previous section did not account for effects
caused by possible deviations from a thermal Boltzmann weighting. Such latter deviations
can occur at extreme weak friction where the internal mechanism to replenish the upper
energy states may start to fail (i.e. such nonequilibrium effects can occur if those states are
not continuously prepared in thermal equilibrium by an outside mechanism). In other
words, for extreme weak friction one faces a diminutive population below the Boltzmann
weighting at the upper energy levels. This possible nonequilibrium effect plays genérally a
very subordinate role in the low temperature regime T < T, where the time available for
equilibrization grows exponentially (Hinggi, 1987). It may become observable, however,
at temperatures above crossover T, where quantum corrections to the classical Kramers”
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weak damping result (see Hinggi, 1986b) are of considerable interest (Melnikov, 1985;
Larkin and Ovchinnikov, 1985; Rips and Jortner, 1986; Dekker, 1988; Griff et al., 1989).
This problem of nonequilibrium quantum tunneling above T > T, out of a metastable state
at weak dissipation is most conveniently discussed in terms of the probability per unit
time, f(E), to find the system in the barrier region near a classical turning point with
energy E. Moreover, let P(E/E”) denote the classical conditional probability that the particle
leaves the barrier region with energy E“and returns after a round trip with energy E. The |
steady state function f(E) therefore obeys the integral equation

f(E) =J dE’ P(E/E") 1(E") f(E") ' (24)

therein r(E) = 1 — ¢(E) denotes the quantum reflection, while t(E) is the quantum

transmission. Hereby we have measured energy from the well bottom, i.e. V(q = q) =
E,. The boundary conditions on f(E) are given as follows: For E — o, f(E) approaches
zero whereas deep inside the well f(E) approaches the quantum mechanical equilibrium
value. The quantum rate of escape I' is given by the outgoing flux, i.c.

[=[dEWE) E) . (25)

Together, Eqs. (24 - 25) yield a solution of the quantum rate problem for any given
transmission t(E). In contrast to the (multidimensional) quantum transition state theory in
section 3, the solution of the integral equation in (24) allows for deviations from the
corresponding equilibrium solution. At extreme weak damping the conditional probability
P(E/E’) is peaked sharply around E ~ E’, due to the small loss of energy along the
undamped, deterministic trajectory. Upon an expansion of (24) up to second order in (E -
E") one finds the differential approximation to the integral equation (Griff et al., 1989)

® (B =3p A®[1 + 8! 3] B ® 6)

where A(E) denotes the energy loss coefficient A(E) = j ¥(s) J(E, s)ds, with J(E,s)

0 E)
being the delayed action along the undamped trajectory, i.c. J(E, s) =M | dt q E, 1) q (E.
t-5), with P(E) being the period of oscillation in the metastable region with.energy E. In
the following we want to determine the quantum corrections to the classical Kramers rate.
In this case f(E) will deviate from the equilibrium value, f(E) = sinh (%-hﬁcoo) (mh)!
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exp(-fE), only for energies near the barrier energy E,. Hence we may approximate the
transmission coefficient ((E) by the parabolic barrier result .. t(E) = {1+exp[ -20E-
E,) / (hay)] }_ . The solution of Egs. (25) and (26) then yields the central result (Griff et
al., 1989)

|

Fr=—
r'a+p)

10 exp(— . @7
- % Hpay  sn) ]2(65) exp(-BEy , 27)

where p = hBa, (2x)”! and § = A(E,) is the energy loss at the barrier energy. For Ohmic
friction ¥(t) = 2y0(t), we obtain § =y J(E,). The result in Eq. (27) holds at extreme weak
friction B8 << 1, and temperatures T above crossover T, i.e. p < 1. Moreover, the
expression in Eq. (27) holds uniformly both for p2 << 1, and B8 << 1. At high
temperatures (p,l‘lﬁcu)o(Zﬂ:)‘l << 1), Eq. (27) approaches the weak damping result of
Kramers (1940), i.c. T — I, = 0y(2x)"! B8 exp(-BE,). The leading weak damping (B5
<< 1) quantum corrections Q follow from Eq. (27) with I'=QT as

h2w2p
4x2%

hBo 1
Q=exp[ - b (2 C +In ( )) + ﬂ;(hﬂmo)z] (28)

where C =0.5772 ... is Euler’s constant.

Clearly, for p? < §5 << 1 the logarithmic term in the exponent of Eq. (28) gives a negative
contribution that may compensate the other positive terms. Hence, within the range of
validity of our formula there exists a region in parameter space where the correction factor
Q is smaller than one. In this region quantum reflection above the barrier dominates over
quantum transmission, thus leading to a net reduction of the full rate below its correspon-
ding classical value (Griff et al., 1989). This feature is contrary to common knowledge-
and intuition, i.e. the full rate is often approximated by simply adding the classical rate and
the zero temperature rate, i.e. ' - I'=T; + I'(T = 0) (see e.g. Bell, 1980). Such an
approach not only entirely disregards the complex ihtcrplay between thermal and quantal
fluctuations, see section 3, but also neglects the role of quantum reflection and
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nonequilibrium. We also remark that the leading correction in (28) is proportional to h
pointing to nontrivial quantum corrections since the underlying Hamiltonian, or the
Schrisdinger equation contains only 1. This possible novel quantum reduction below the
classical rate is most pronounced for systems with very flat barriers (e.g. potentials of the
Morse-type) as they occur in absorption-desorption problems on surfaces.
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