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A linear semi-group for both: Markov processes and non-Markov processes as they 
occur in the description of macroscopic systems is introduced. The elegance of the semi- 
group approach is demonstrated by the derivation of the master equation for a Markov 
process which undergoes continuous and discontinuous jumps. By use of nonlinear 
transformations of stochastic processes a class of processes is found for which the whole 
stochastic kinetics reduces mainly to the kinetics of a general Gauss-Markov process. 
Further the convergence of sequences of Markov processes to a limiting Markov process 
is studied. In this context, a semi-group formulation for the validity of various expansion 
methods of master equations developed recently is given and the convergence of 
functionals of the original process to a limiting transformed process is investigated. Some 
results are illustrated for the behaviour of the stochastics in a bistable tunnel diode. A 
model for macroscopic irreversibility is introduced using a sequence of non-Markov 
processes which converges to a Fokker-Planck process. Finally a few accomplishments 
on some recent related works are given. 

I. Introduction 

In recent years the concept of master equations, 
stochastic differential equations and all that has be- 
come very fruitful for describing the behaviour of 
macroscopic systems as they occur in hydrodynamics 
[-1-3], quantum optics [-1,4,5], biology [6] and 
economic systems. In many of these cases the fluc- 
tuating macrovariables, x( t )= {Xl(t), ..., x,(t)}, can be 
represented fairly good by continuous functions. 
Hence, one suggests that a diffusion process, or equiva- 
lently a Fokker-Planck process offers a good approx- 
imation. The equation which governs the time-evolu- 
tion of the probability p(x(t), t), the master equation, 
in most cases cannot be derived from the underlying 
microscopic dynamics. Normally one has to assume a 
kind of typical transition probabilities characterizing 
the macroscopic dynamics. The solutions of the re- 
sulting master equations usually cannot be given in 
an analytical closed form. This fact forces us to settle 
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for tractable approximation procedures [7, 8]. On the 
other hand, it is worthwhile to work out classes of 
stochastic processes for which the whole dynamics is 
given in analytical form. Many master equations 
contain a parameter Q in which the transition 
probabilities scale. Then the sequence of stochastic 
processes xa(t ) may converge in the limit f2--, O0 to a 
typical process x(t) whose dynamics is of a trans- 
parent form. Expansions of master equations in terms 
of such a parameter Q have found wide application 
[9-12]. Because macroscopic processes are only ap- 
proximative Markov processes the concept of con- 
vergence of non-Markov processes to Markov pro- 
cesses plays an important role. The following paper 
treats some of these problems in more detail by use 
of the technique of semigroups. 
In Section II we first introduce a linear semi-group 
for both Markov and non-Markov processes and 
study the derivation of the master equation for a 
Markov process which undergoes continuous and 
discontinuous jumps. Using nonlinear transfor- 
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mations of stochastic processes we establish classes of 
Fokker-Planck processes whose dynamics reduces 
mainly to the dynamics of a general Gauss-Markov 
process. In Section III we investigate on a semi-group 
basis asymptotic representations of Markov pro- 
cesses. In particular we study the kind of convergence 
to a Markov process x(t) as well as the convergence 
of nonlinear transformations of the original process 
to a limiting Markov process f(x(t)). As an example 
we treat the fluctuations in a bistable Esaki diode. In 
Section IV we propose a model for macroscopic 
irreversibility and investigate the convergence of a 
sequence of non-Markov processes to a Fokker- 
Planck process. A discussion of the results obtained 
and a few accomplishements on some recent papers 
are given in Section V. 

II. Semi-Group Approach and Solutions 
of Master Equations 

The derivation of master equations for general sto- 
chastic processes can be performed using the concept 
of semi-groups [13] in connection with stochastic 
differential equations [-14 I. It seems that the semi- 
group technique is superior to any other method due 
to the fact that Markov chains, time-homogeneous 
and time-inhomogeneous processes defined over a 
discrete or continuous state space can be treated with 
one and the same method. 
First we introduce a linear semi-group for Markov 
processes as well as for non-Markov processes, x(t), 
te[O, oo) defined on a probability space with an in- 
creasing family of sub a-algebras, {~},  characterizing 
the whole prehistory of the process for times s < t. If 
we denote the linear space of real valued processes 
f(t), progressively measurable with respect to {~t}, 
the ~ we can define an operator Y-(s) acting on the 
elements of 5e: 

Y(s)f(t)=(f(t÷s)[o~t) s>0.  (2.1) 

Here ( J )  denotes the conditional expectation which 
fulfills for the two events X, Y and condition S the 
properties [14] : 

((X I Z>) = ( X )  (2.2) 

(aX  ÷b Y I S ) = a ( X I S )  +b(Y[Z)  (2.3) 

( f (S )  lX) = f ( g )  (2.4) 

and for Z~cS,2: 

((S IS,> IS2) = ((S IS2)1S~) = ( X I S , ) .  (2.5) 

Hence we obtain from 

Y(r)~-(s)f(t)=<<f(t+s+r)l~G>lg,+s>; s , r>0 
= ( f ( t  + s ÷ r) l ~ )  = Y-(r + s)f(t), (2.6) 

a linear semi-group of operators J-(s) on 2a, the 
linear semi-group of conditional shifts. Note that this 
semi-group is substantially different from the propa- 
gators acting on the space of probabilities intro- 
duced in recent works [15, 16]. What is now specific 
for a Markov process x(t) in terms of the semi-group 
3--(s)? To answer this questions let M 1 denote the 
linear space of processes f(x(t),t) and similarly M 2 
the linear space of processes f(x(t)). Using foEM1 
and the concept of conditional transition probabili- 
ties R we have in general 

J'(S)fo(t)=(fo(t+s)l~,), s > 0  

=Sfo(y,t+s)R(y(t+s),t+slprehistory)dy (2.7) 

whereas in the Markov case 

J(s)  fo (t) =f0 (Xo, t + s) 
= Sf0(Y, t + s) R (y(t + s), t + s l Xo(t), t) dy. (2.8) 

In terms of stochastic processes, f0(Xo; t+s) is the 
conditional expectation of fo(X(t+s),t+s) on hy- 
pothesis that x ( t ) = x  o. We observe that x(t) is Mar- 
kov if ~-'(s) leaves M 1 invariant and is Markov and 
temporally homogeneous if J-(s) leaves M 2 invariant. 

Dealing with Markov processes one can use the 
whole powerful mathematical apparaturs for semi- 
groups developed in this field [13]. It is well known 
[13, 14] that the probabilities are the solutions of the 
Kolmogrov-forward equation and the conditional ex- 
pectations (fo(X(t),t)lx(s)) the solutions of the Kol- 
mogrov-backward equation with respect to differen- 
tion of the former time s. With differentiation with 
respect to the later time t, the conditional expec- 
tations fulfill the equation [17]: (we use usual opera- 
tor notation) 

+  '0ftt) s\ 
~7 (f(t)ls)=(F+(t)f(t)ls) \ @t I~  s < t .  (2.9) 

In (2.9) F+(t) denotes the transpose of the forward 
generator F(t). To elucidate more the technique of 
semi-groups and to present the advantages of an 
equation like (2.9) we study the Markov process 
composed of continuous and discontinuous jumps 
with the (Ito)-stochastic differential equation 

dx(t) = a(x(t), t) dt ÷ B (x(t), t) dw(t) + dCp(t). (2.10) 

Here, w(t) denotes the standard (n x 1) normalized 
vector Wiener process and ~p is a (n x 1)-generalized 
Poisson process with rate vector £(t) and jump prob- 
abilities p = (Pbl, -.-, Pb~, ..., Pb,): 

mi(t) 

~)( t )=  ~ [b~k)=y]O(t--zk), i=l, . . . ,n.  (2.11) 
k=l 
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me(t ) is the simple Poisson counting process where 
t 

with Xi(t ) =6 2i(z)dz, t > r  
0 

p ((rn e (t) - m i (r)) = k) 
(f~ (t) - ~, (r)) k 

- k! exp(2e(r)-Zi(t))" (2.12) 

The independent random variables {be, i=  1 ... n} are 
independent of {me(t)} and distributed with probabili- 
ty Phi(Y)" O(t--Ze) is the unit step function and {ze} are 
the arrival times of the Poisson counting process re(t). 
In the case ,~(t)=,~t, V i, ~p(t) is time-homogeneous. 
If we choose fo(X)= exp io~x, we obtain 

8~ <ei~'x(')lx (s)) 

= lira l~;[<e"~(~+At)lx(s)>--<e'~'~(t)lx(s)>]. (2.13) 
At~O + / A t  

With 

<exp i~ox(t + A t)[x(s)> = ~ R(y, t + At[v, t)R(v, t[x, s) 

• e x p ( i o ) [ y - v + v ] ) d v d y  

= <exp ie~x(t) <exp i~o(x(t + A t) - x(t))lx (t)> [ x(s)> 
(2.14) 

we obtain by use of (2.4) 

8 
<exp ie~x(t)] x (s)> 

= <exp io~x(t) 7(e~, x(t), t) I x(s)>, (2.15) 

where 

y(~o,x(t),t)= lira ( ( e x p i o ~ d x ( t ) ) - l l x ( t ) > / A t .  (2.16) 
At+O + 

Using again (2.4) and the fact that the two noise 
processes are independent we have from (2.10) 

<(exp ie) dx(t))lx(t)> 

=exp itoa(x(t) dt <exp io) R (x(t), t) dw(t)> 

- <exp i¢od~p(t)>. (2.17) 

Because dw(t) is Gaussian, we obtain 

< exp i~o B (x (t), t) d w (t)> = exp - ½ e~ D (x (t), t) to dt, 
(2.18) 

with 

D (x(t), t ) =  B(x(O,  t) B + (x(t), t). (2.19) 

Further the probability, P, of two and more Poisson 
jumps is of the order o(dt) such that 

<exp io)d ~p(t)> = 1 P [no jumps] 

+ ~ <expio~bj> P[only one jump in d ~  )] 

(1 - 2j(t) dt) 

<exp ico]bj) 2j(t) at I~I (1 - 2k(t ) dr) 
k:~j 

= 1 - ~ 2j(t) dt [1 - <exp icojbj)] + o (dr). (2.20) 
j = l  

The final result for (2.13) reads therefore 

8 
<exp io~x(t) tx(s)> 

= <exp ie~x(t) [ia)a(x(t), t ) - l o )  D (x(t), t)~o 

- ~ 2~(t) [1 - <exp i o)jbj>]]x(s)>. (2.21) 
j = l  

From (2.21) one immediately can read off with (2.9) 
the form of the generator F(t) in the master equation 
(or by use of an inverse Fourier transform of the 
characteristic function for the condition probability) 
yielding 

~p(x,  t) _ r .  a(x, t) p(x, t) + 1 v r :  a (x, 0 p x, t) 
8t 

+ ~ )~i(t) [ ~ P b i ( X i - - Y i ) P ( X l ,  "'" , Yl . . . . .  Xn, t) d y  i - p ( x  t)] .  

i= 1 (2.22) 

Setting pb,(y)=cS(y) for all i (zero jump amplitudes) 
we obtain the general Fokker-Planck equation for a 
time-inhomogeneous diffusion process whereas with 
n = 1, a 1 =0  and Pb,(Y)= 6(y-- 1) one obtains the usual 
Poisson death process. 
All the detailed dynamics (finite dimensional proba- 
bilities) of a Markov process is determined if the 
Green's function of (2.22), the conditional probability, 
and the initial single-event probability p(x,0) are 
known. Unfortunately an analytical solution for the 
conditional probability is in most cases not available. 
For (multivariable) Markov systems only a few clas- 
ses of processes (time-homogeneous Gaus-Markov 
processes [1], linear birth and death processes [6]) 
are known, where one has succeeded in the solution 
for the whole dynamics. Hence, approximative per- 
turbation schemes play an important role [7-11]. 
However, in a lot of cases one is not necessarily 
interested in the detailed form of the probabilities 
either because some appropriate mean values or 
some low order correlation functions describe the 
system behavior adequately well. In such cases the 
above difficulty can be overcome in constructing a 

j = l  

=fi 
j = l  

j = l  
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cumulant expansion [18] or a continued fraction 
expansion [17, 19] which yields normally a satisfac- 
tory analytical continuation of a badly converging 
series (e.g. a Talor series of a correlation function for 
large times). Nevertheless, for some processes the 
complete solution of the master equation may be 
obtained by use of a nonlinear transformation y(t) 
=f(x(t), t) of the original process x(t). If the transfor- 
med process y(t) fulfills a simpler master equation with 
conditional probability /~(tls) the original multi- 
variate distributions of x(t) are obtained as follows: 
Let g denote the inverse function: g(f(x, t) , t )=x,  
f(g(x, t) , t)=x, which we assume to exist.* Then with 
the Jacobian, H'II, of the inverse transformation we 
obtain 

/~(u = f(x, t), t[ v = f(y, s), s) 
R(xt]ys)= 8g t>s, (2.23) 

u u  u =  f(x, t )  

and for the multivariate probability p(")(t 1 ... . .  t,), 
t 1 <- . .  __<t,, of the Markov process, x(t): 

p(")(x, tl ;. . .  ;x,, t,) 

(I  ~q(u~, t~lu~_ ~, t~_ ~) p(ul,  tl) 
=i=2 - I~-g~ . . . .  8g " (2.24) 

a i =  f (xi,ti) ~ ul  = f ( x l , t l )  

In particular, for a one dimensional Fokker-Planck 
process with an (Ito)-stochastic differential equation 
[14] 

dx (t) = a(x, t) dt + B(x, t) dw (t) (2.25) 

we obtain for any f (x,  t):strict monotonic, f e  C z and 
f = S f ( x , t ) / &  assumed to exist, for the process y(t) 
=f(x,  t), t) by use of the (Ito)-differentiation rule [14]: 

d y(t) = 6(y, t) dt + B(y, t) dw(t) (2.26) 

with 

U(y, t) 
5(y, t)=¢(y, t)ly=g(x,t ) + ~ v v  • a(y = g(x, t), t) 

y y=g(x , t )  

1 82f(y, t) ,=g(~,,) 
q- 2 8y 2 "B2 (y = g(x't)' t). (2.27) 

B(y, t) - Of (y,sy t) y = g(~, ,)" B (y = g (x, t), t). (2.28) 

~, t) dy For example the choice, f ( x , t ) = ! B  ~ -  yields 

• More general we have with y=g(x) and the real roots, y = a  
=g(al) . . . . .  g(a.), for the probability py: py(a) 

~ / " 8g 
= ~ l P ~ ( a l ) /  ~xx . . . .  " 

B(y , t )= l ;  and for time-homogeneous Fokker- 
Planck-processes, x(t), the choice 

f ( x ) = C l + C 2 i e x p { - i  2a(y) } o o B ~  dy dz (2.29) 

yields d(y, t)= 0. In this case we obtain 

/~(y =f(x)) = B(x) exp - i 
2a(y) 

o B ~  dy (2.30) 

yielding for the stationary probability Pst(Y)=c/BZ(Y) 
or for the original process x(t) an old known result 
[20 ]  

c x a(y) 
pst(x) = B ~ x )  exp 2 ! B~ ~ dy. (2.31) 

Especially, in all cases where S dy/B2(y) is not boun- 
ded, the process x(t) does not possess a stationary 
probability (system disperses to infinity: Pst(X)=0).  

The above transformations simplify also the Onsager- 
Machlup functional in the path integrals for one- 
dimensional processes [21, 22]. 
The main purpose is now to find a condition under 
which there exists a nonlinear transformation so that 
tl~e transformed process y(t) reduces to the following 
general Gauss-Markov process [23]: 

dy(t) = c~(t) dt + fl(t) ydt  + 7(t ) dw(t). (2.32) 

For this process, the conditional probability is ex- 
plicitly known in terms of the three functions e(t), 
fl(t), y(t) [23]. Putting in (2.27-2.28) y=f (x ,  t) we 
obtain in shorthand notation which from (2.27) is 
self-explanatory 

¢ ÷  af'  + ½BZ f " =  ~(t) + fl(t) f (2.33) 

f '  - 7(t). (2.34) 
B 

By differentiation of (2.33) with respect to x 

1 B"] =fl(t)  7(0, (2.35) 

we obtain for the condition that there exists a trans- 
formation f such that y(t) fulfills (2.32): 

When x(t) time-homogeneous we can look for the 
most general function f (x)  such that y is a time- 
homogeneous Gauss-Markov process. Then a 
straightforward calculation gives from (2.33~.34) 
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x 1 
f (x) = y ! ~(y) d y + const. (2.37) 

As one simple example for this case we mention the 
Fokker Planck operator 

FFp= ÷½V(sinx c o s x + b  sinx) 

+ ½ V z (cos x + b) 2. (2.38) 

On the other hand, if one looks for a transformation 
yielding a in general time-inhomogeneous process y(t), 
where fl(t)=0 we obtain 

Hence f(x, t) can be chosen to be 

X dy 
f (x, t)=exp ct ! (2.40) 

B(y)' 

and for the drift we find 

if(t) = const/~(t) = const exp ct. (2.41) 

Similar conditions can be derived for Fokker-Planck 
systems, where the conditional probability is known 
in function of a series of orthogonal polynomials [6, 
24]. 

III. On Asymptotic Representations 
of Markov Master Equations 

In a lot of interesting cases the foregoing method 
cannot be applied. This especially holds for mul- 
tivariable systems where in addition perturbation 
techniques for the dynamic behaviour are poorly 
developed. Fortunately, the transition probabilities 
per unit time, W(X' -~ X; t) -= W(X, X'; t), fulfill often 
in terms of a dimensionless parameter ~2" a scaling 
law of the form 

) W(X, X'; t)=f(f2) f2 4o , X - X ' ;  t 

-t- ~ -  1 ~bl ( ~ ,  X - X ' ;  t) + --.]. (3.1) 

The factor f((2) is innocuous because it can be absor- 
bed in a redefinition of the time variable. (In the 
following f(O) is set equal to 1). If we denote by x~(t) 
=X(t)/Q the stochastic process of the "intensive" 
macrovariables we obtain with ~ = ~2-~ for the master 
equation 

* We do not restrict here the meaning of the parameter (2 measur- 
ing the size of the system. It may also measure a kind of non- 
linearity or characterizing the system behaviour for large times etc. 

8P(x~, t) 
8 ~  - ~ {4% (x~ - eY, Y; t) 

+ ~bl (x~-eY, Y; t)+ ...} P(x~-~Y, t) dY 
-P(x~,t)~{Cbo(x,,Y;t)+~Ol(x~,Y;t)+...}dY. (3.2) 

Each of the functions (k~ has a Taylor expansion with 
respect to the first argument. Hence we obtain the 
Kramers-Moyal expansion 

8P(x~,t) ~ (-1)" ~ _ ~ ( 8  )" 
8t -n=l n! ~ e,(x~,t)P(x~,t), (3.3) 

where 

c.(x,, t) 
= ~ (Y)" [qS0(x~, Y; t)+ eq~l (x,, Y; t)+ ...] dY 

o = c, (x~, t) + ec~ (x,, t) + e2 c,2 (x~, t) + . . . .  (3.4) 

Following van Kampen [9] one can derive formally a 
master equation for the fluctuations, ff~(t), around the 
deterministic solution 

,~(t)=e°(x(t),t), x(0)=Xo (3.5) 
~2-* ~(t) = x~(t) - X(Xo, t). (3.6) 

In the limit ~ ~ 0 this procedure yields formally the in 
general time-inhomogeneous Gauss-Markov master 
equation for the Markov process ~= o(t)=~(t) [9, 10] 

8P(~, t)_ V~[Vxe°(x(t), t)] ~P(~, t) 
8t 

+ I v ;  V~: e°(x(t), t) n(~, t). (3.7) 

Although the problem of the validity and conver- 
gence concept of such an expansion was never in- 
vestigated seriously in physical applications the 
above master equation has been applied successfully 
in many problems [see e.g. in 9, 10]. 
The above expansion method poses the following 
questions: 
(1) Under what conditions is it possible to pass from 
(3.3) to the Gauss-Markov equation (3.7)? 
(2) How does the sequence of processes ~(t) con- 
verge to the process ~(t)? 
(3) What can be said about the convergence of the 
processes ~(t) = f(~(t))? 
(4) What when {~(t)} does not converge? 
A remarkable amount of work on the convergence of 
sequences of Markov processes to a limiting Markov 
process has been performed in the mathematical 
literature [25, 26, 27].* This work seems to have been 
overlooked by the physicists and partially by the 

* Unfortunately, these works are not always written in the most 
comprehensible form for physicists 
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mathematicians itself. In the "Van Kampen case" the 
expansion procedure is justified by Kurtz's and 
Norman's work [27]. If the fluctuations around the 
deterministic path remain of the order O (g2-~) at any 
time (no anomalous fluctuations with ( 2 - ~ ( t ) =  O (1)) 
and if the probability P~(u, 0) converges to P:(u,0), 
then the finite dimensional probabilities of {~(t)} con- 
verge to the finite dimensional probabilities of the 
process ~(t) (convergence in distribution). The mathe- 
matical conditions that the sequence of processes, 
~(t), converges in distribution to ~(t) have been stu- 
died in detail in terms of the initial fluctuation be- 
haviour of ~(0) and the transition function properties 
of x~(t) in the mathematical literature [27]. In particu- 
lar, a correct and complete discussion represents the 
investigation by Norman [27 b]. 
However, note that this result would mean little in 
problems where we need the convergence of the 
probabilities of a functional ~(t)=f(~(t)).  It is then 
necessary to use a stronger concept of convergence. 
Let us denote by y~=~(t)  the random variable for 
fixed t. Then a necessary and sufficient condition for 
convergence of the probability of y~ to the probability 
of y=f(~(t)) of all continuous f is that (weak con- 
vergence of P:~ to P~): 

lim ~f(u)P~(n=~(t))du=~f(u)P~(~(t)=u)du (3.8) 
f2~oo 

for all bounded functionals f which are continuous 
with respect to the metric p of the space of sample 
functions of ~(t) and ~(t). To see that this is true, note 
that convergence of the sequence of probabilities of y~ 
to the probability of y and the boundedness of f 
imply convergence of (f(~(t))) to (f(~(t))) and hence 
validity of (3.8). On the other hand, (3.8) implies, that 
the sequence of characteristic functions of y~ con- 
verges to the characteristic function of y: 

lim (exp itoy~) 
(2~oo 

= lim ~ exp ito f(u) p~(u = ~(t)) du 

= ~ exp i e~ f(u) p~(u = ~(t)) du. (3.9) 

We define [13, 26] that the process ~(t) converges 
weakly to the process ~(t) if the finite dimensional 
probabilities of {¢~(t)} converge weakly to the finite 
dimensional probabilities of ~(t). This problem has 
been considered in more detail for sequences of Mar- 
kov processes by Liggett [28], who shows that if the 
finite dimensional probabilities of a sequence of dif- 
fusion or birth and death processes converge to those 
of a diffusion, then the processes converge weakly! 
(nontrivial) 
Hence, we obtain: Under the assumptions stated in 
Reference 27, the sequence of the processes ff~(t) 

converges even weakly to a (in general time-inhomo- 
geneous) Gauss-Markov process. Remark however, 
that this does not imply that the sample paths of the 
processes {~(t)} converge to those of the Gauss- 
Markov process ~(t)! 
The success with the "Van Kampen" expansion in 
(3.7) in many cases raised some people to claim 
that the use of a "nonlinear" Fokker-Planck equation, 
i.e. with nonlinear drift and diffusion coefficients, is 
inconsistent. This is false because it is known for 
a long time that in systems with multiple steady 
states [12, 29-31], problems with diffusion in pe- 
riodic potentials as they occur in the description of 
superionic conductors or for the description of the 
current fluctuations in a one-dimensional supercon- 
ductor, in systems undergoing a limit cycle transition 
or even a strange attractor transition, that the expan- 
sion method based on the smallness of the fluc- 
tuations (~=O(f2°)) around the deterministic path 
breaks down completely or is valid only on a re- 
stricted short time range. On the other hand, the use 
of a nonlinear Fokker-Planck equation obtained 
from a truncated Kramers-Moyal expansion yields 
very good results [1, 4, 11, 12, 30, 31]. This fact was 
most clearly demonstrated in the two recent works by 
Horsthemke et al. [11, 12] for systems with absorbing 
states and systems with multiple stationary states. 
They also give an important discussion between the 
differences of the two expansion methods which will 
not be repeated here. Likewise, by use of an extensive 
complete numerical eigenvalue and eigenvector anal- 
ysis satisfactory agreement, between the results of the 
exact master equation of the nonlinear birth and 
death type and the nonlinear Fokker-Planck equa- 
tion for the stochastics of the charge fluctuations N(t) 
in a bistable tunneldiode (Esaki diode [1, 32]) for 
both; the stationary and time-dependent behaviour 
(autocorrelation function) was found [31]. Figure 1 
shows the ratio R of the two stationary probabilities 

R(N) = p~NFP(N) 
. . . .  t (3.10) 

P~t (N)  

for three different values of the pump parameter 2, 
the supply current through a vacuumdiode, in a small 
system with parameter value O=I(N-~100 at 
500mV, which corresponds to a junction area of the 
Esaki diode: Ao= 1 =10 - ~  cm2). We note that the 
region around the main maximum is well approxi- 
mated; also the case with two maxima of nearly 
equal height. Deviations occur in the region where N 
is not centered around the peaks with maximal prob- 
ability (pst(N)~l). In this region, (N~{NIN,.~NMa x 
_+(6N2)~}), we have however pst(N)~l so that the 
errors for all stochastic quantities which are most 
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F i g .  1. C o m p a r i s o n  ( r a t i o )  b e t w e e n  t h e  s t a t i o n a r y  p r o b a b i l i t y  P~t(N) 

for the charge fluctuations in a bistable Esaki diode of the non- 
linear Fokker-Planck approximation and the exact solution. The 
ratio R is shown for three different values of the pump parameter; 
)n: dotted, 22: solid, 23: dashed, indicated in the small figure for 
the nonlinear current-charge Esaki diode characteristic 

sensitive to the peaks of maximal probability as (N ) ,  
<N2), etc. are of minor influence. How can this 
behaviour be understood on the basis of semi-group 
methods for the different Markoff processes? Besides 
the processes x~(t) we introduce the processes xNFP(t) 
obtained by truncating off the Kramers-Moyal ex- 
pansion (3.3) consistently in lowest order of £2 [11, 12, 
31]. 

r ~ = - v .  [ c ° ( x ~ ( t ) ,  t) + ~ e l  (x~(t) ,  t ) ]  

÷½e v v :  e°(x~(t), t) (3.11) 

where for the following 

e°(x, t )= B0(x, t) B~-(x, t). (3.12) 

Before stating the main theorem of this section, we 
note that for a Markov process with the generator 
F(t) and the transition function R(xr]yt),  r > t 

3-(s)f(t)=<f(t+s)]~> =(f(x(t+s))]x(t)> s > 0  

= ~f(u) R (u, t + six(t), t) du, (3.13) 

where with a self-explaining notation 

r 

R(x, rly, t )= (x]y> +~ (x  I r(v)l y>dz 
t 

r r 

+ ½ S S <x I r(~) r@ly>  a~ a~ +. . . .  (3.14) 
t t 

A time ordering is implied in (3.14). 

As a by-product from the theorem in Section 4 we 
obtain: A sequence of Markov processes x~(t) with 
the semi-group ~o(s) converges in distribution to the 
Markov process x(t) with semi-group 9-~(s) if 
lira px~(u, 0)=px(u, 0) and 
a ~ 0  

lira ([Yx~(S)/(x~(t)) - ~(s)f(x~(t))[> = 0, t + s < oe (3.15) 
~ 0  

for all t, s > 0 and every f e  C o, the space of continuous 
functions vanishing at the natural boundaries. Mo- 
reover, under some mild mathematical restrictions 
(uniform convergence of the semi-groups [333) the 
sequence of processes x~(t) converges weakly to the 
process x(t)! If we consider the process x(t) where 

F(t) = - Vc°(x(t), t) (3.16) 

one can see that both the processes x~(t), Equation 
(3.3), and x~VV(t), Equation (3.11), converge in the 
above mentioned sense to the process x(0. This fol- 
lows immediately from (3.15) by using (3.13-3.14). 
The term with e ° cancels and all other terms are at 
least of order 0(£2-1) assuming that all the moments 
c,(x, t) are of order unity as usual and the derivatives 
of px~(t) with respect to the "intensive" variable x~ are 
of order unity since always q~(t)=f2-~(t)<O(1) 
[29d] (For the details of an exact proof procedure see 
the similar case in Section 4.) The solution of the 
master equation with the generator in (3.16) can be 
obtained in terms of the characteristic equations: 

(d/dt)x+c°(x(t),t), x(0)=x  o (3.17) 

(d/&) i" + P v .  e ° (x (t), t) = 0. (3.18) 

With the solution x(t)=X(Xo, t) of (3.17) we obtain 

P ( x ' 0 = P ( x ° ' 0 )  ~ xo' t < ~  

t 

= P(xo, 0) exp - S V. e°x(s), s) ds. (3.19) 
0 

Whence, both the processes {x~(t)} and {x~VV(t)} con- 
verge weakly to the process determined by the de- 
terministic motion where the fluctuation behaviour 
enters only by the randomness contained in the ini- 
tial probability for x o. This proves on a qualitative 
basis the validity of the nonlinear Fokker-Planck 
equation. 
A more detailed treatment is obtained by the study of 
the sequence of the processes )~(t), describing the 
fluctuations around the regular part of x~(t), defined 
through the (Ito)-stochastic differential equation 

e6df,~(t) = dx~(t)-  dy(t) (3.20) 
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with 

y(t) = x~(0) ÷ i {c°(x~, s) ÷ ec I (x~, s)} ds. (3.21) 
0 

The actual value of the random variable £~(t) is 
determined by use of (3.21) in terms of the starting 
value x,(0), time t and the sample function character- 
ized by a certain label. The master equation for x~(t) 
becomes then with (3.20-3.21) and (3.3) 

0P (K~, t) 

8t 

8 
= - -  g~- - -  [C 1 (Xe,  t)  - -  C0(Xe,  t) - ec I (x~, t)] P(ff~, t), 

+ ~ , - - o  c,(x~,t)P(g~,t). (3.22) 
,=2 n! 

Using again in a straightforward way the above 
procedure, Equation (3.15), and the fact that for 
x~(0)-, Zo, in (3.21) x~(t) converges to x(z 0, t) for e ~ 0 
((3.19) and [27a]), we obtain that {K~(t)} converges 
(weakly) to the Markov process if(t) with the genera- 
tor (see also theorem 3.1 of [27a]) 

Fx= 1 e°(X(Zo, t) t): V~ Vx. (3.23) 

Hence, x~(t) is asymptotically well approximated by 
the non-linear Fokker-Planck process x~VV(t), since 
with (3.12): 

-NFP __ - ½ NFP 0 NFP 1 NFP dx~ ( t)-~ [dx~ (t)-Cl(X e , t )d t -ec , (x~  ,t)dt 3 

= Bo(x N~e, t) dw(t). (3.24) 

This all generalizes for multivariable systems the 
result of Kurtz, (Theorem 3.1 in 2nd Ref. of [27a]), to 
the time-inhomogeneous case and general scaling law 
(3.1) using a more elegant proof procedure. 
But nothing is said about a quantitative difference in 
the probabilities of the processes x,(t) and NVe x~ (t) for 
afinite value of the parameter O. Error estimates can 
be obtained in principle by use of (3.15) and setting 
f(x~) =exp im x~(t) yielding the characteristic function 
(exp ie)x~(t + s) lx~(t)) for the conditional probability 
and investigating the terms of 0(£2- ~) in more detail. 
As one can see from Figure 1 a kind of a L~ or L 2- 
estimate for the difference in P~(t) and P~v~(t), e.g. 

L~ : ~ IP~(u, t) - Px~x.(u, Old u .~ 0. (3.25) 

yields about zero, since the regions of deviations, 
where P(x, t)~P(u,  t), (u: at main maxima), have near- 
ly a vanishing weight. 
Finally we mention that with the validity of the Van 
Kampen procedure (no anomalous fluctuations) both 
master equations for the processes NFP x~ (t) and ~(t) 

can be used. The sequence of processes 

-- ½ NFP NFP £2 ~ (t)=x~ ( t ) -x(x0,  t ) (3.25) 

converges also weakly to the Gauss-Markov process 
given by (3.7). The difference in use of either (3.11) or 
(3.7) is that with use of (3.7) the limit, O ~ 0% has been 
performed whereas with use of the master equation in 
(3.11), or in terms of the transformed process ~NFP(t)." 

8 P  (ffNFP t)  

8 
= - - / 3 -  ~- ~ [-C 0 (X ( t )  -[- ~ ~NFP (t) ,  t)  

+ecl  (x(t) + e~ cNFP(t), t) -- C o (X(t), t)] n (~NFP, t) 

82 
1 c O ( x ( t )  ½ NFP t NFP + ~  ÷e if, (t)),)e(~, ,t) (3.27) ( ~ . )  

still some O-dependence is retained which converges 
to zero as f2--, o9. 

IV. Limit Theorem for Non-Markov Processes- 
a Model for Macroscopic Irreversibility 

Any macroscopic stochastic process with physical 
relevance has its origin in a microscopic reversible 
dynamics of a total closed system. On the microscop- 
ic level, the dynamics is described in terms of an 
unitary group of time-shifts. A first step towards a 
macroscopic irreversible dynamics consists in the re- 
placement of the microscopic phase function p(q, p; t) 
by some "coarse grained" probability pC(xC, t) by use 
of a projection into some subspace [5, 15]. Such a 
"reduction" destroys usually the semi-group property 
governing the propagation of the probability p. Mo- 
reover, the process xqt), which still contains in hid- 
den form (memory effect) the whole microscopic in- 
formation as long as the projectin procedure is per- 
formed without any approximations, is usually non- 
Markovian [15]. The process xqt) can be considered 
as a kind of a microscopic dynamics including irre- 
versibility represented by the linear semigroup of con- 
ditional shifts (Eq. (2.1)). In a final step, macroscopic 
irreversibility on a restricted time scale, characterized 
for example by the linear Markovian semi-group for 
a Fokker-Planck-process, can be obtained with con- 
vergence of a sequence of non-Markovian processes 
xC(t), (we assume an "intensive" character for x~(t)), to 
the Fokker-Planck process x(t). In summary, this 
approach seems to provide the "missing link" be- 
tween microscopic reversible dynamics and macros- 
copic irreversible dynamics. From a mathematical 
point of view, convergence of a sequence of non-Mar- 
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kov processes to a Markov  process has been first 
considered in the pioneering work of G ihman  [34] 
and Borokov  [35]. Very recently, the results have 
been formulated in the language of semi-groups by 
Kur tz  [33]. F r o m  his work we will use in the follow- 
ing a theorem which reads in a for physicists compre-  
hensible form: Let  {x~(t)} be a sequence of non- 

* - -  x Markov  processes and l lmp~o(u ,0) -p  (u,0), where 
e ~ 0  

x(t) denotes the limiting Markov  process with semi- 
group ~ .  Suppose 

l im([ ( f (x~( t+s) ) [~) -~(s ) f (x~( t ) ) l )=O,  t+s<oo  
~-o (4.1) 

for all t, s > 0 and every f ~  C o. Then the finite dimen- 
sional probabili t ies n(") of x~(t) converge to the finite r x e  

dimensional  probabili t ies p(~") of the Markov  process 
x(t) with the semi-group ~(s ) .  (See Eqs. (2.7-2.8).) 
The special model  we have in mind is the following: 
The characteristics of the process x~(t) is the existence 
of a set of states in the state space which on each visit 
knock  out  some amoun t  of non -Markov  behaviour  
(memory). With increasing parameter  value f2, 
( e ( ~ ) ~ 0  for O ~ O o )  these states are hit more  and 
more  faster so that  the remaining history decays on a 
characterist ic time -c~ with z~---, 0 in the limit e ~ 0. In 
particular,  we suppose for the condit ional  moments  
of  Ax,(t)=x~(t+z~)-x~(t), z~>0* 

(A x~(t) I ~tt) = q a (x~(t)) + e~ (t) 

((A x~ (t))2 ] ~ )  = z~ D (x~(t)) + e 2 (t) 

(IA x~(t)l 3 I ~ )  -- e2 (t). 

(4.2) 

(4.3) 

(4.4) 

e 1 2 Here  the "e r ro r" - te rms  { ~,e~,e2} are of the order 
o('Q as e~O. For  the following it is convenient  to 
introduce the corresponding non -Markov  chain ap- 
proximat ion  for x~(t) (discretization of the t ime-pa- 
rameter  t) in the sense that 

x~(t)=x~ (4.5) 

with 

n = Integer [t/z~]. (4.6) 

Equat ions  (4.2~.4) can simply be rewrit ten; e.g. we 
have for (4.2) 

( A  x,] [ ~ )  = z~ a (x~,) + e~ (n) (4.7) 

with e~(n), i= 1, 2, 3, in the form 

lim ~ (le~(n)l)=0. (4.8) 
e ~ O  n <[tlz~] 

* Note that the relations (4.2-4.4) hold for any sequence of non- 
Markovian processes as long as the "error'-terms ae not specified 
more. In the random variables, e~(t), the dependence on the con- 
dition, ~ ,  is suppressed 

In this section we end up, by use of the above 
theorem showing that  the multivariate probabilit ies 
p(") converge to those of the Fokker -P lanck  process, Xe 

p{2), character ized by the condit ion [13, 14, 17]: 

S (Y - x) R (x ~ y; z) d y ='c a (x) + e 1 (z) (4.9) 

S (Y - x) 2 R (x --, y; z) dy = z D (x) + e 2 (z) (4.10) 

S ly-x l  3 R(x -* y; z) dy=e3(z ) (4.11) 

where el(z), i= 1, 2, 3, is of the order  o(z). 
In a first step we show that  for f~Co,  n>m: 

( [ ( f (x , ) l~ , , )  - ~ ( [ n  - m ]  ~)f(x,,)l ) 
n - - i  

< ~ ( l ( h i + l ( x i + 0 1 o ~ ) - ~ ( v ) h z + l ( X 0 1 ) ,  (4.12) 
i = m  

where h i = ~ ( [ n -  i] z) f  (4.13) 

and e has been suppressed. By use of 

f(Xn) -- J~([n -- m] z)f(xm) = h, (x,) - hm (xm) 
n - - 1  

= ~ (hi +i (xi + 1) - hi(xi)) (4.14) 
i = m  

we obtain with Equat ions (2.4 2.5): 

( / ( x , )  lYz> - J~([n - m ]  z)/(xm) 
n - - t  

= ~ ( h i + l ( x i + 0 - h i ( x l ) l ~ m )  
i = m  

n - - 1  

= 2 ((hi +1 (xi +1)[ ~ )  - hi(xl) lY~). (4.15) 
i = m  

Using h i = ~ ( z )  h i+ 1 and taking absolute values and 
expectations on both  sides of (4.15) we obtain the 
result in (4.12). Next  we need an estimation for the 
terms on the right side of (4.12). First we note, that  
the Kolmogorov-backward  equat ion for the time- 
homogeneous  Fokker -P lanck  process gives the re- 
lation [14, 17]: 

f t  ( f (x( t)) ly)  =F+f (Y)  (4.16) 

F + f ( y )  =a (y )  Vf(y) +½D(y):  VVf(y). (4.17) 

Using the Taylor  series for gs  Co2: 

g(y) = g(x) + ( y -  x) Vg(x) + ½(y -  x)2: 

V V g ( x ) + c l y - x l  3 Ig"l L, (4.18) 

where with 

g (y) - g (x) - (y - x) Vg (x) 
1 

= ( y - x ) 2 :  S (1-O)VVg(x  + O ( y -  x))dO 
0 

= ½ ( y - x ) 2 :  VVg(x )+(y -  x)2: 
1 

~(1 -O)[VVg(x+O(y -x ) ) -VVg(x ) ]dO.  (4.19) 
0 
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[c1<1, and Ig"l L denotes the Lipschitz norm: 
sup lVgg(y) -VVg(x) [ / [y -x l<  oc. For  the following 
x ~ y  

let 

IIg II = sup IVgl + sup ]VVgl ÷ sup IVVg(y) 

- VVg(x)l/ly- xl. (4.20) 

Hence in view of Equations (4.16-4.17) we have 

3 

~(z)g(xl)=g(xi)+zF+g(xi)+ c IIgl[ ~ lej(~)l (4.21) 
j=l 

and from (4.2-4.4) 

3 

(g(xi+l ) l~> =g(xi )+~F + g(xl)+c]lgll ~ leJ(i)l. (4.22) 
j=l 

Consequently, with (4.21-4.22) we obtain 

([(hi+ 1 (xi + x)l ~i> - G ( z )  hi+l (xi)l > 
3 

< [Igll X E<le~(*)t> + <leJ(i)l>]. (4.23) 
j=l 

Using n = [(t + s)/z~] and m = [t/z~] and some constant 
S we can write 

< 1< f(x~,) I ~-m> - ~ ([n - m] ~)f(X~m)l > 

<Sj~.= n-m)(lej(z)]>+ ~=,,Y" <le{(i)l> • (4.24) 

But ( n - m ) - z  ~ s as e--* 0 and Cg dense in C O so that 
with the properties for ej('c) and e{(i): 

lira <l<f(x~(t+s)l~>-~(s)f(x,(t))l>=O. (4.25) 
e--+0 

Hence, after some inevitable mathematics, we have 
shown that the multivariate probabilities r~(") con- r x a  

verge indeed to the multivariate probabilities p~") of 
the Fokker-Planck process. Note that this does not 
imply necessarily weak convergence of x~(t) to x(t). 
- A n  approximative validity of this model justifies 
the broad use of (Markov)-Fokker-Planck processes 
for the description of macroscopic physical systems 
[1, 2, 4, 5, 11, 12, 29-32]. 
The method used in this section can also be applied 
without essential modifications to the investigation of 
the convergence to a Fokker-Planck process which is 
inhomogeneous in time. 

V. Discussion 

In this paper we presented various results for Markov 
processes and non-Markov processes by using the 
apparatus of semi-groups. The elegance of the meth- 

od has been clearly demonstrated in the derivation of 
a master equation for a Markov process which 
undergoes both continuous and discontinuous jumps. 
This method is well based on mathematical grounds 
whereas the alternative approach based on genera- 
lized Langevin equations is subject to some pitfalls. 
First the properties for the stochastic forces (e.g., 
their cumulant averages) may not be always con- 
sistent with a descritpion for a Markov process. In 
addition one needs the information between the cor- 
relations of the macroscopic variables x(t) and the 
stochastic forces, a task which is normally not easy to 
untangle. The concept of nonlinear transformation of 
stochastic processes yields a broader class of master 
equations whose solutions can be written down ex- 
plicitly. 
The results in Section III elucidate the validity and 
the relationships among different asymptotic repre- 
sentations of Markov processes. Further, we stress 
that for an initially time-homogeneous process X(t) 
the occurrence of in general time-inhomogeneous 
drift and diffusion coefficients in the master equation 
for the fluctuations around the time-dependent de- 
terministic solution, Equation (3.7), yielding a two- 
parameter propagator description, does not imply a 
non-Markofficity for x~(t) as it is the underlying 
philosophy in a series of papers about chemical re- 
actions by Keizer [36]. The result that the sequence 
of processes converges weakly to the corresponding 
asymptotic representation justifies the broad use of 
the asymptotic probabilities for the calculation of 
stochastic quantities. In a very recent letter [27] 
Van Kampen himself discusses the validity of the 
nonlinear Fokker-Planck approximation. He claims 
that the nonlinear Fokker-Planek equation can be 
used consistently only in the case where c°(x, t) (see 
(3.4)) is zero and " that  the oft quoted Kolmogomov 
derivation applies to this case alone because it is 
based on the Lindeberg condition and thereby pre- 
cludes the possibility that c°(x,t) differs from zero." 
Such statements are just not true because the Lin- 
deberg condition guarantees for a Markov process 
continuous sample functions and whence the validity 
of any general nonlinear Fokker-Planck equation 
independent of any special scaling assumptions for 
the transition probabilities. Furthermore, his claim 
about the inconsistent use of the nonlinear Fokker- 
Planck equation beyond the Gaussian approximation 
is not justified. (See end of Section III and the situa- 
tion with multiple stationary states.) Some people 
justify the incosistence of a nonlinear Fokker- 
Planck equation beyond the Gauss-Markov approxi- 
mation with the impossibility to take both Pst and the 
stochastic forces in a Langevin equation Gaussian for 
a nonlinear system. This is true as long as one 



P. Hgnggi: On Derivations and Solutions of Master Equations 95 

restricts the nonlinear Fokker-Planck equations to 
those with a constant diffusion coefficient. With the 
possibility of a nonlinear diffusion coefficient the 
argument breaks down as can be seen easily from 
simple examples and again Section III. 
The model in Section IV provides an understanding 
between the concepts of microscopic reversible dy- 
namics and macroscopic irreversibility. In this con- 
text there are other topics related to the very de- 
finition of unstable particles; a problem which at- 
tracts presently a great deal of interest. The concept 
of the characteristic overall m e m o r y -  decay time ~ is 
closely related to the relaxation time of the memory 
kernels occuring in the exact master equation for the 
single event probability [5, 15]. But the relaxation 
time z~ has much more restrictive properties. It also 
assures a short time decay for "higher"-memory ker- 
nels as they occur in the exact master equations for 
multivariate probabilities [15]. Unfortunately, the 
approach for macroscopic irreversibility lacks uni- 
queness in the sense that no unambiguous prescrip- 
tion for the operation "coarse graining" can be for- 
mulated. But on the other hand the construction of 
the (ambiguous) irreversible microprocess x~(t) is di- 
rected by a certain physical insight. A different point 
of view is taken in an interesting paper by Prigogine 
et al. [38]. They introduce on a microscopic level a 
quadratic Liapunov functional ~2 with a non-increas- 
ing time derivative. However, the ambiguity enters 
here through the fact that for a given reversible 
microdynamics the construction of such a Liapunov 
functional is certainly not unique. 
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