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The Many Faces of Entropy* 
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The proper choice will depend on the interests of the individual, the particular 
phenomena under study, the degree of precision available or arbitrarily decided 
upon, or the method of description which is employed; and each of these criteria 
is largely subject to the discretion of the individual. 

hänggi
Hervorheben

hänggi
Hervorheben



Second LawSecond Law

d lf li l l iRudolf Julius Emanuel Clausius
(1822 – 1888)

Heat generally cannot

William Thomson alias Lord Kelvin
(1824 – 1907)

No cyclic process exists whose soleHeat generally cannot 
spontaneously flow from a 
material at lower temperature to 

i l hi h

No cyclic process exists whose sole 
effect is to extract heat from a 
single heat bath at temperature T 
d i i l ka material at higher temperature. and convert it entirely to work.  

δQ = TdS (Zürich, 1865)



The famous Laws
Equilibrium Principle -- minus first Law

An isolated, macroscopic system which is placed in an arbitrary
initial state within a finite fixed volume will attain a unique
state of equilibrium.

Second Law (Clausius)
For a non-quasi-static process occurring in a thermally isolated
system, the entropy change between two equilibrium states is
non-negative.

Second Law (Kelvin)
No work can be extracted from a closed equilibrium system
during a cyclic variation of a parameter by an external source.
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Entropy S – content of transformation
„Verwandlungswert“

dS = δQrev T ; δQirrev < δQrev
V TV2, T2

Γrev Γirrev
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T
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SECOND LAW

Quote by Sir Arthur Stanley Eddington:

“If someone points out to you that your pet theory of the universe is in disagreement
with Maxwell’s equations – then so much the worse for Maxwell’s equations. If it is
found to be contradicted by observation – well, these experimentalists do bungle
things sometimes. But if your theory is found to be against the second law of
thermodynamics I can give you no hope; there is nothing for it but to collapse in
deepest humiliation.“

Freely translated into German:

Falls Ihnen jemand zeigt, dass Ihre Lieblingstheorie des Universums nicht mit den
Maxwellgleichungen übereinstimmt - Pech für die Maxwellgleichungen. Falls die
Beobachtungen ihr widersprechen - nun ja, diese Experimentatoren bauen manchmal
Mist. -- Aber wenn Ihre Theorie nicht mit dem zweiten Hauptsatz der Thermodynamik
übereinstimmt, dann kann ich Ihnen keine Hoffnung machen; ihr bleibt nichts übrig
als in tiefster Schande aufzugeben.



ABUSE OF ENTROPY 
 
"The tendency of institutions to become larger, more complex, and more centralized is the same 
tendency we see with various forms of technology. The reason for this can be found in the operation 
of the Entropy Law" 
 
"While the Eastern religions have understood the value of minimizing energy flow and lessening the 
accumulation of disorder, it is the Western religions that have understood the linear nature of history, 
which is the other important factor in synthesizing a new religious doctrine in line with the requirements 
of the Entropy Law" 
 
Rifkin and T. Howard, Entropy, A New World View (Granada Publ., London, 1985). 
 
 
"Yet our personal lives also obey the Entropy Law. We go from birth to death". "The Second Law states 
unequivocally that the entropy of open [sic] systems must increase. Since we are all open systems, 
this means that all of us are doomed to die" 
 
J.E. Lovelock, Gaia, A New Look at Life on Earth (OUP, 1987). 
 
 
"Since biological information resides in biological systems and has a physical interpretation, it must be 
subject to the consequences of the second law" 
 
B.H. Weber et al. (Herausg.), Entropy, Information, and Evolution (MIT Press, Cambridge, Mass., 
1988), p. 177. 
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… and finally … from the Vatican 
 
 

Pope XII: (Pontifical Academy of Sciences, 1952) 
 
 

….The Second thermodynamic Law by Rudolph Clausius on Entropy 
increase gives us certainty that spontaneous, *natural processes* are always 
associated with a certain loss of free exploitable energy, which implies that 
they cease to exist in a closed materialistic, macroscopic system on the 
macroscopic level. This deplorable necessity provides a demonstrative 
testimony to the existence of a higher being   [i.e. God]….. 
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… and finally … from the Vatican

Pope XII: (Pontifical Academy of Sciences, 1952)

….The Second thermodynamic Law by Rudolph Clausius on Entropy 
increase gives us certainty that spontaneous, *natural processes* are
always associated with a certain loss of free exploitable energy, which
implies that they cease to exist in a closed materialistic, macroscopic
system on the macroscopic level. This deplorable necessity provides
a demonstrative testimony to the existence of a higher being [i.e. 
God]…..



MINUS FIRST LAW vs. SECOND LAW

-1st Law

2nd Law
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THE MANY FACETS OF ENTROPY 

A. WEHRL 

Institut für Theoretische Physik, Universität Wien, Baltzmanngane 5, A-1090, Wien. Austria 

(Received December 31, 1990) 

Several notions of entropy are discussed: classical entropies (Boltzmann, Gihbs, Shan­
non, quantum-mechanical entropy, skcw entropy, among othcr notions as weil as classical and 
quantum-mechanical dynamical entropies. 
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The Gibbs paradox in thermodynamics

gas A gas B

p,V ,T p,V ,T

gas mixture A+ B

p, 2V ,T

Entropy change:

∆S := SA+B − (SA + SB) = 2R log 2

But is A is identical to B then ∆S = 0



Specific Generic

Phase space Γ Γ̃ = Γ/{Π}
phase space volume dx dx̃ = dx/N!
partition function Z =

∫
Γ e

−βH(x)dx Z̃ = Z/N!
expectations 〈A〉s =

1
Z

∫
Γ Ae

−βHdx 〈A〉g = 1
Z̃

∫
Γ Ae

−βHdx̃

Entropy S = ∂
∂T (kT logZ ) S̃ = ∂

∂T (kT log Z̃

Only difference between specific and generic view in canonical
ensemble is in the entropy

S̃ = S − logN! ≈ S − N logN − N

(But since N is constant in the canonical ensemble, this term can
be absorbed in in the arbitrary additive constant.)
There are no empirical differences between the specific and generic
viewpoints with a fixed N.
But Gibbs prefers generic viewpoint.
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for an ideal gas one gets (ignoring terms depending only on T

S =
3

2
kN logV not extensive

S̃ =
3

2
k logV /N extensive

For the entropy of mixing in the specific point of view

∆S = S(2V , 2N) − 2S(V ,N) = 3kN log 2 same gases

∆S = 3kN log 2 different gases

In generic viewpoint

∆S = 0

∆S = 3kN log 2

Hence, in the generic viewpoint we reproduce the Gibbs paradox of
TD!
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Quantum Demon ? 
A measurement → Increase information → Reduction of entropy

Source: H.S. Leff, Maxwell’s Demon (Adam Hilger, Bristol, 1990) 





CHAPTER XIV. 

DISCUSSION OF THERMODYNAMIC ANALOGIES. 

IF we wish to find in rational mechanics an a priori founda-

tion for the principles of thermodynamics, we must seek 

mechanical definitions of temperature and entropy. The 

quantities thus defined must satisfy (under conditions and 

with limitations which again must be specified in the language 

of mechanics) the differential equation 

dE= TdrJ- A1 da1 - A2 da2 - etc., (482) 

where <, T, and 7J denote the energy, temperature, and entropy 

of the system considered, and A
1 
da1, etc., the mechanical work 

(in the narrower sense in which the term is used in thermo-

dynamics, i. e., with exclusion of thermal action) done upon 

external bodies. 

This implies that we are able to distinguish in mechanical 

terms the thermal action of one system on another from that 

which we call mechanical in the narrower sense, if not indeed 

in every case in which the two may be combined, at least so as 

to specify cases of thermal action and cases of mechanical 

action. 

Such a differential equation moreover implies a finite equa-

tion between <, 7J, and a1, a2, etc., which may be regarded 

as fundamental in regard to those properties of the system 

which we call thermodynamic, or which may be called so from 

analogy. This fundamental thermodynamic equation is de-

termined by the fundamental mechanical equation which 

expresses the energy of the system as function of its mo-

menta and coOrdinates with those external coordinates ( al' a
2

, 

etc.) which appear in the differential expression of the work 

done on external bodies. We have to show Lhe mathematical 

opemtions by which the fundamental thermodynamic equation, 

JOSIAH Wll.;LARD. 

Elementary principles 
in statistical mechanics 

Scrjbner's sons 
. II ! 

I I 

New lri.Jrk 1 
111 i r 1 r 1 

JOSIAH Wll.;LARD. 

Elementary principles 
in statistical mechanics 

Scrjbner's sons 
. II ! 

I I 

New lri.Jrk 1 
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CHAPTER VIII. 

ON BfPORTANT FL'NCTIONS OF THE 

ENERGIES OF A SYSTEM. 

IN order to consiuer more particularly the distribution of a 

canonical ensemble in energy, and for other purposes, it will 

be convenient to use the following definitions and notations. 

Let us Jenote by V the extension-in-phase below a certain 

limit of energy which we shall call e. That is, let 

v = f· 0 .j'dp, 0 0 • dq,., (265) 

the integration being extended (with constant values of the 

external coordinates) over all phases for which the energy is 

less than the limit e. We shall suppose that the value of this 

integral is not infinite, except for an infinite value of the lim-

iting energy. This will not exclude any kind of system to 

which the canonical distribution is applicable. For if 

f ... Je- dp
1 

• •• dqn 

taken without limits has a finite value,* the less value repre-

sented by 
• 

e-0 J ... Jdp1 ••• dq,. 

taken below a limiting value of E, and with the E before the 

integral sign repreRenting that limiting value, will also be 

finite. Therefore the value of V, which differs only by a 

constant factor, will also be finite, for finite e. It is a func-

tion of e and the external coordinates, a continuous increasing 

* This is a necessary condition of the canonical distributioiL See 
Chapter IV, p. 35. 
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whieh has been demonstrated in Chapter X, and which relates to 

a mierocanonilal cu,;eruble, -::I;l. uenoting tlw average value of 

A
1 

in an ensemble, cone:-;pomb preci;,;ely tu tl1e thennody-

uamie eq uatlon, except for tlw sign of avemge applied to the 

external forces. But as the:;e forces are not cutirely deter-

mined by the energy with the external coordinates, the use of 

average values i,; entire] y germane to the subject, aud affords 

the reauiest means of getting perfeetly determined quantities. 

These averages, which are taken for a microcanonical ensemble, 

may seem from some points of view a more simple and natural 

conception than those \vhich relate to a canonical ensemble. 

Moreover, the energy, and the quantity corresponding to en-

tropy, are free from the sign of ltvemge in this equation. 

The quantity in the equation which corresponds to entropy 

is log V, the quantity V being defined as the exten>;ion-in-

phase within which the energy is less than a certain limiting 

value (E). This is certainly a more simple conception than the 

average value in a canonical ensemble of the index: of probabil-

ity of phase. Log V has the property that when it is constant 

de=- AJ. da1- A 2 l• aa2 + etc., ( 48{)) 

which closely corresponds to the thermodynamic property of 

entropy, that when it is constant 

(487) 

The quantity in the equation which corresponds to tem-

perature is ,--.P V, or defcllog V: In a canonical ensemble, the 

avemge value of this quantity is equal to the modulus, as has 

been shown by different methods in Chapters IX and X. 

In Chapter X it has also been shown that if the systems 

of a microcanonical ensemble consist of parts with separate 

energies, the average value of e-<I>Vfor any part is equal t0 its 

average value for any other part, and to the unifmm value 

of the same expression for the whole ensemble. This corre-

sponds to the theorem in the theory of heat that in case of 

thermal equilibrium the temperatures of the parts of a hnrly 

are equal to one another and to that of the whole body. 



Entropy in Stat. Mech. 

S = kB ln­(E; V; :::)

Gibbs: ­G =

µ
1

N ! hDOF

¶Z
d¡ £

¡
E ¡H(q; p; V; :::)

¢

Boltzmann: ­B = ²0
@ ­G

@E
/
Z

d¡ ±
¡
E ¡H(q; p; V; :::)

¢

density of states 

QM: ­G(E; V; :::) =
X

0·Ei·E

1

classical 



Quantum
Brownian

motion and
the 3rd law

Specific heat and
dissipation
Two approaches

Microscopic model

Route I

Route II
specific heat

density of states

Conclusions

A bit of thermodynamics

density of states ρ

canonical partition function Z

internal energy U entropy S

specific heat C

Z = ∫
dEρ(E)e−βE

U =−∂ lnZ

∂β
S =− ∂F

∂T
=−∂kB T lnZ

∂T

C = ∂U

∂T
C = T

∂S

∂T

β= 1

kB T



Thermodynamic Temperaturee ody a e pe a u e

δQrev = T dS ← thermodynamic entropy

S = S(E, V,N1, N2, ...;M,P, ...)

S(E ) ( ti ) & diff ti bl dS(E, ...): (continuous) & differentiable and

monotonic function of the internal energy Eµ
∂S

∂E

¶
=
1

T

µ
∂E

¶
... T



canonical: 



The highest temperature 
you can see

Lightning:    

30 000 °C

Fuse soil or sand into glas



Black body radiationBlack body radiation

Planck’s law [1901]: u(λ T ) =
8πhc 1

Planck s law [1901]: u(λ, T ) =
λ5 exp( hc

λ kBT
)− 1

u(λ, T ) : spectral energy density

λ : wavelength

h : Planck constant

c : speed of light

kB : Boltzmann constantB

Stefan – Boltzmann law:  

E ∝ T 4
Thermometer !

E ∝ T



Cosmic background temperatureCosmic background temperature

T = 2.725 ± …. K 
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Gibbs: ­G =
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DoS

IntDoS

D-Operator

Boltzmann (?) Gibbs (1902), Hertz (1910)
vs.

Microcanonical thermostatistics
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II. MICROCANONICAL DISTRIBUTIONS AND
ENTROPY DEFINITIONS

A. Setup

We consider strictly isolated classical or quantum sys-
tems described by a Hamiltonian H(⇠;Z) where ⇠ de-
notes the microscopic states and Z = (Z1, . . .) com-
prises external control parameters. It will be assumed
throughout that the microscopic dynamics conserves the
energy E, that the energy is bounded from below, E � 0,
and that an ensemble of such systems is described by the
microcanonical density operator

⇢(⇠|E,Z) =
�(E �H)

!
, (1)

where the non-negative normalization constant is given
by the DoS

!(E,Z) = Tr[�(E �H)] � 0 (2)

For classical systems, the trace is defined as a phase-space
integral and for quantum system by a sum or integral
over the basis vectors of the underlying Hilbert space.
The energy derivative of the DoS will be denoted by

⌫(E,Z) = @!/@E, (3)

and the integrated DoS is defined as

⌦(E,Z) = Tr[⇥(E �H)], (4)

so that ! = @⌦/@E (with ⇥ denoting the unit-step func-
tion). We shall assume throughout that ! is continuous
and piecewise di↵erentiable, so that its partial derivatives
are well-defined except for a countable number of singu-
lar points. The expectation value of an observable F (⇠)
with respect to the microcanonical density operator ⇢ is
defined by

hF iE,Z = Tr[F⇢]. (5)

As a special case, the probability density of some observ-
able F (⇠) is given by

%F (f |E,Z) = h�(f � F )iE,Z . (6)

To avoid potential confusion, it may be worthwhile to
stress that, although we will compare di↵erent entropy
functions S(E,Z), all expectation value appearing below
will always be defined with respect to the standard mi-
crocanonical density operator ⇢, as defined in Eq. (1).
That is, expectation values h · iE,Z are always computed
by averaging over microstates that are confined to the
energy shell E.

We adopt units such that the Boltzmann constant
kB = 1. For a given entropy function S(E,Z), the mi-
crocanonical temperature T and the heat capacity C are

obtained according to the rules of thermodynamics by
partial di↵erentiation,

T (E,Z) ⌘
✓
@S

@E

◆�1

, C(E,Z) =

✓
@T

@E

◆�1

. (7)

It is important to point out that the primary thermody-
namic state variables of an isolated system are E and Z,
whereas the temperature T is a derived quantity that,
in general, does not uniquely characterize the thermo-
dynamic state of the system (see detailed discussion in
Sec. II C and Fig. 1 below).
To simplify notation, when writing formulas that con-

tain !,⌦, T , etc., we will not explicitly state the func-
tional dependence on Z anymore, while keeping in mind
that the Hamiltonian can contain several additional con-
trol parameters.

B. Microcanonical entropy candidates

We summarize the most commonly considered micro-
canonical entropy definitions and their related tempera-
tures. In Secs. III, IV and V, these candidates will be
tested as to whether they satisfy the zeroth, first and
second law of thermodynamics.

1. Gibbs entropy

The Gibbs entropy is defined by [1, 2]

SG(E) = ln⌦. (8a)

The associated Gibbs temperature

TG(E) =
⌦

!
(8b)

is always non-negative, TG � 0, and remains finite as
long as ! > 0.
For classical Hamiltonian systems with microstates

(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
straightforward to prove [3] that the Gibbs temperature
satisfies the equipartition theorem,

TG =

⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (9)

We will return to this equation later as it relates directly
to the notion of thermal equilibrium.

2. Boltzmann entropy

The perhaps most popular microcanonical entropy def-
inition is the Boltzmann entropy

SB(E) = ln (✏ !) , (10a)
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FIG. 1: Non-uniqueness of microcanonical temperatures illustrated for the integrated DoS from Eq. (19). Left: DoS ! (blue)
and integrated DoS ⌦ (black). Center: Boltzmann entropy SB (blue) and Boltzmann temperature TB (red). Right: Gibbs
entropy SG (black) and Gibbs temperature TG (red). This example shows that, in general, neither the Boltzmann nor the
Gibbs temperature uniquely characterize the thermal state of an isolated system, as the same temperature value can correspond
to very di↵erent energy values. In particular, this means that the microcanonical temperatures of two isolated systems before
thermal coupling generally do not specify the direction of heat flow between the two systems after coupling. Assuming all other
external parameter are kept fixed when two initially isolated systems are brought into contact, the heat transfer between them
has to be computed by comparing the fixed energies E1 and E2 before coupling with the mean energies hE1i12 and hE2i12 after
coupling, where the averages h · i12 are taken with respect to the microcanonical distribution of the combined system at fixed
total energy E12 = E1 + E2 after the coupling.

where ✏ is a small energy constant required to make
the argument of the logarithm dimensionless. The fact
that the definition of SB requires an additional energy
constant ✏ is conceptually displeasing but bears no rele-
vance for physical quantities that are related to deriva-
tives of SB.

The associated Boltzmann temperature

TB(E) =
!

⌫
(11)

becomes negative when ! is a decreasing function of the
energy E, for ⌫ = @!/@E < 0 in this case. Boltzmann
temperature and Gibbs temperature are related by [2]

TB =
TG

1� C�1
G

, (12)

where CG = (@TG/@E)�1 is the Gibbs heat capacity
measured in units of kB. Thus, a small positive Gibbs
heat capacity 0 < CG(E) < 1 implies a negative Boltz-
mann temperature TB < 0 and vice versa.

Unlike the Gibbs temperature TG, the Boltzmann tem-
perature TB does not satisfy the equipartition theorem
for classical Hamiltonian systems,

TB 6=
⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (13)

3. Di↵erential Boltzmann entropy

The energy constant ✏ in Eq. (10a) is sometimes in-
terpreted as a small uncertainty in the system energy E.
Strictly speaking, this interpretation is mathematically
redundant since, according to the postulates of classi-
cal and quantum, systems can at least in principle be

prepared in well-defined energy eigenstates. However,
ignoring this fact for the moment, the uncertainty inter-
pretation suggest a modified microcanonical phase space
probability density [1]

⇢̃(⇠;E, ✏) =
⇥
�
E + ✏�H

�
⇥
�
H � E

�

⌦(E + ✏)� ⌦(E)
. (14)

The Shannon information entropy of this modified den-
sity operator is given by

SD(E, ✏) = �Tr [⇢̃ ln ⇢̃]

= ln [⌦(E + ✏)� ⌦(E)] .
(15a)

Eq. (14) was already discussed by Gibbs [1]. From SD,
one can recover the Boltzmann entropy by expanding the
argument of logarithm for ✏ ! 0,

SD ⇡ ln(✏ !) = SB. (15b)

Note that this is not a systematic Taylor-expansion of SD

itself, but rather of exp(SD). The associated temperature

TD(E, ✏) =
⌦(E + ✏)� ⌦(E)

!(E + ✏)� !(E)
(16a)

approaches for ✏ ! 0 the Boltzmann temperature

TD ⇡ !

⌫
= TB. (16b)

The explicit ✏-dependence in Eq. (16a) disqualifies SD

from being an generic entropy definition for any finite
✏ > 0. We therefore focus below only on the limit ✏ ! 0,
corresponding to Boltzmann entropy SB.
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B. Microcanonical entropy candidates

We summarize the most commonly considered micro-
canonical entropy definitions and their related tempera-
tures. In Secs. III, IV and V, these candidates will be
tested as to whether they satisfy the zeroth, first and
second law of thermodynamics.
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SG(E) = ln⌦. (8a)

The associated Gibbs temperature
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⌦

!
(8b)

is always non-negative, TG � 0, and remains finite as
long as ! > 0.
For classical Hamiltonian systems with microstates

(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
straightforward to prove [3] that the Gibbs temperature
satisfies the equipartition theorem,

TG =

⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (9)

We will return to this equation later as it relates directly
to the notion of thermal equilibrium.

2. Boltzmann entropy

The perhaps most popular microcanonical entropy def-
inition is the Boltzmann entropy

SB(E) = ln (✏ !) , (10a)
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!
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✓
@S

@E

◆�1

, C(E,Z) =

✓
@T

@E

◆�1
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In[1]:= SW@x_, n_, m_, B_D :=
n Log@2D - n ê 2 H1 + x ê Hm B nLL Log@1 + x ê Hm B nLD - n ê 2 H1 - x ê Hm B nLL Log@1 - x ê Hm B nLD

W@x_, n_, m_, B_D := Exp@SW@x, n, m, BDD
W@x_, n_, m_, B_D := Exp@SW@x, n, m, BDD ê H2 m BL
We@x_, n_, m_, B_D := Derivative@1, 0, 0, 0D@WD@x, n, m, BD
WB@x_, n_, m_, B_D := Derivative@0, 0, 0, BD@WD@x, n, m, BD
F@x_, n_, m_, B_D := NIntegrate@W@y, n, m, BD, 8y, -n m B, x<D
FB@x_, n_, m_, B_D := NIntegrate@WB@y, n, m, BD, 8y, -n m B, x<D
S@x_, n_, m_, B_D := Log@F@x, n, m, BDD
T@x_, n_, m_, B_D := F@x, n, m, BD ê W@x, n, m, BD
TW@x_, n_, m_, B_D := W@x, n, m, BD ê We@x, n, m, BD
MW@x_, n_, m_, B_D := WB@x, n, m, BD ê We@x, n, m, BD
M@x_, n_, m_, B_D := -x ê B

In[22]:= n = 10^2;
m = 10^8;
Plot@8SW@e n, n, 1, 1D ê n, S@e n, n, 1, 1D ê n<, 8e, -1, 1<D
Plot@8SW@e m, m, 1, 1D ê m, S@e m, m, 1, 1D ê m<, 8e, -1, 1<D
Plot@8TW@e n, n, 1, 1D, T@e n, n, 1, 1D<, 8e, -1, 1<, PlotRange Ø 8-100, 100<D
Plot@8TW@e m, m, 1, 1D, T@e m, m, 1, 1D<, 8e, -1, 1<, PlotRange Ø 8-100, 100<D
Plot@8MW@e n, n, 1, 1D ê n, M@e n, n, 1, 1D ê n<, 8e, -1, 1<D
Plot@8MW@e m, m, 1, 1D ê m, M@e m, m, 1, 1D ê m<, 8e, -1, 1<D
Clear@n, mD
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‘Non-uniqueness’ of temperature

Temperature does NOT determine direction heat flow.
Energy is primary control parameter of MCE.
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4. Inverse Gibbs entropy

If the total number of microstates is finite,
⌦1 ⌘ ⌦(1) < 1, as for example in spin models with
upper energy bound, then one can also define a comple-
mentary Gibbs entropy

SC(E) = ln [⌦1 � ⌦(E)] . (17a)

The complementary Gibbs temperature

TC(E) = �⌦1 � ⌦

!
. (17b)

is always negative. In a universe where ⌦1 < 1 holds
for all systems, the complementary Gibbs entropy pro-
vides an alternative thermodynamic description that,
roughly speaking, mirrors the thermodynamics based on
the Gibbs entropy. However, while many (if not all) phys-
ical systems are known to have a finite groundstate en-
ergy, we are not aware of any experimental evidence for
the existence of strict upper energy bounds.

5. Penrose entropy

Another entropy definition proposed by Penrose
reads [5]

SP(E) = ln⌦(E) + ln[⌦1 � ⌦(E)]� ln⌦1. (18a)

For systems with ⌦1 = 1, the Penrose entropy becomes
identical to the Gibbs entropy, assuming a sensible defi-
nition of limE!1 SP, but SP di↵ers from SG for systems
with bounded spectrum. The Penrose temperature

TP(E) =
1

!


1

⌦
� 1

⌦1 � ⌦

��1

(18b)

interpolates between TG and TC if ⌦1 < 1, and is equal
to TG otherwise. The definition (18a) leads to peculiar
ambiguities for systems that are physically equivalent on
the energy interval [0, E1] but di↵er for E > E1 (Fig. 2).
Moreover, the example in Sec. XXX below demonstrates
that, similar to the Boltzmann entropy, the Penrose en-
tropy violates the classical equipartition theorem.

6. Piecewise entropies

Finally, we still mention that one may also define en-
tropies that have di↵erent analytic behaviors on di↵er-
ent energy intervals (e.g, a piecewise combination of the
Gibbs entropy for some energy interval and the com-
plementary Gibbs entropy for a di↵erent energy range).
However, such constructions su↵er from deficiencies due
to the non-analyticities at the interval boundaries, result-
ing in artificial phase transitions.

FIG. 2: Left: DoS ! of two systems A (black) and B (or-
ange) that are physically equivalent over the energy interval
[0,⇡✏], but di↵er for E > ⇡✏. The orange curve corresponds
to Eq. (19). Right: Even though systems A and B are phys-
ically equivalent on the energy interval [0,⇡✏], the Penrose
entropy (solid lines) assigns qualitatively di↵erent tempera-
tures (dashed lines) to them. The diagram also illustrates
that the Penrose temperature TP cannot uniquely character-
ize the thermal state of an isolated system, as di↵erent energy
values E can have the same Penrose temperature.

C. Non-uniqueness of microcanonical temperatures

It is often assumed that temperature tells us in which
direction heat will flow when two bodies are placed in
thermal contact. Although this view may be acceptable
in the case of ‘normal’ systems that possess a monotoni-
cally increasing DoS !, one can easily show that, in gen-
eral, neither the Gibbs temperature nor the Boltzmann
temperature nor any of the other suggested alternatives
are capable of specifying uniquely the direction of heat
flow when two isolated systems become coupled. This is
simply due to the fact that the microcanonical tempera-
ture does not always uniquely characterize the state of an
isolated system before it is coupled to another. To illus-
trate this explicitly, consider as a simple generic example
a system with integrated DoS

⌦(E) = exp


E

2✏
� 1

4
sin

✓
2E

✏

◆�
+

E

2✏
, (19)

where ✏ is some energy scale. The associated DoS is
non-negative and non-monotonic, ! ⌘ @⌦/@E � 0 for
all E � 0. As evident from Fig. 1, neither Gibbs
nor Boltzmann temperature provide a unique thermody-
namic characterization in this case, as the same temper-
ature value can correspond to vastly di↵erent energy val-
ues. It is not di�cult to see that qualitatively similar re-
sults are obtained for all continuous functions ! � 0 that
exhibit at least one local maximum and one local mini-
mum on (E,1). This ambiguity reflects the fact that the
essential control parameter (thermodynamic state vari-
able) of an isolated system is the energy E and not the
temperature.
More generally, this means that microcanonical tem-

peratures do not specify the heat flow between two
initially isolated systems [6] and, therefore, naive
temperature-based heat-flow arguments [7] cannot be
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values with respect to the joint distribution ⇢ that re-
late the well-defined microcanonical temperatures Ti(Ei)
of A and B before the coupling to the temperature T of
the combined system AB after coupling. This task can
be solved in a straightforward manner, leading to a first
criterion that allows one to evaluate the microcanonical
entropy candidates.

To see this, recall that the energy distribution of a
subsystem i 2 {A,B} is defined by [cf. Eq. (6)]

⇡i(Ei|E) = h�(Ei �Hi)iE = Tr[�(Ei �Hi) ⇢]. (23a)

For subsystem A, this can be expressed in the form

⇡A(EA|E) =
!A(EA)!B(E � EA)

!(E)
. (23b)

The energy density ⇡B(EB|E) of subsystem B is obtained
by exchanging labels A and B in Eq. (23b). The condi-
tional energy distributions ⇡i(Ei|E) can be used to de-
fined expectation values for the subsystems i = A,B and,
in particular, to define their mean temperatures.

To this end, we denote the microcanonical entropy of
the subsystems before coupling by Si(Ei) and the asso-
ciated temperature by Ti(Ei) = (@Si/@Ei)�1. Within a
consistent thermostatistical formalism, it seems reason-
able to demand that the average temperature

hTi(Ei)iE =

Z 1

0
dEi Ti(Ei)⇡i(Ei|E) (24)

is equal is the microcanonical tempera-
ture T = (@S/@E)�1 of the combined system after
coupling,

hTi(Ei)iE
!
= T (E). (25)

We will refer to this condition (25) as the consistent

temperature-averaging (CTA) criterion. Evidently, if an
entropy definition satisfies Eq. (25) for an arbitrary bi-
nary partition (A,B), then the associated mean temper-
ature automatically satisfies the zeroth law

hTA(EA)iE = hTB(EB)iE = hTC(EC)iE (26)

for any three subsystems A,B,C that are in thermal equi-
librium, where E denotes the conserved energy of the
isolated compound system that contains all these sub-
systems.

The CTA condition (25) is of practical importance as
it encodes the prescription for building a thermometer.
Assume system A is a thermometer and we know the
function TA(E) when A is isolated. If the thermome-
ter A is placed in weak contact with a second system B,
then Eq. (25) tells us that, to obtain the temperature
of the compound system AB, we merely have to measure
the fluctuating energy values EA of the thermometer and
average the corresponding temperature values (provided
the dynamics of the compound system is su�ciently er-
godic).

We next test whether the di↵erent entropy candidates
satisfy Eq. (25).

1. Gibbs temperature

The Gibbs temperatures of the subsystems before cou-
pling are

TGi(Ei) =
⌦i(Ei)

!i(Ei)
, i = A,B (27a)

and the Gibbs temperature of the combined system after
coupling is

TG(E) =
⌦(E)

!(E)
(27b)

with ⌦ and ! given in Eqs. (21). Inserting the defini-
tions (27) into Eqs. (24) and (25), and using Eq. (23b),
we find

hTGA(EA)iE =

Z 1

0
dEA

⌦A(EA)

!A(EA)

!A(EA)!B(E � EA)

!(E)

=
1

!(E)

Z E

0
dEA ⌦A(EA)!B(E � EA)

= TG(E), (28)

where the last equality follows from Eq. (21d). The proof
for subsystem B is identical. Equation (28) implies that
the Gibbs temperature generally satisfies the CTA con-
dition (25). Moreover, given that our choice of A and B
was arbitrary, this also means that the Gibbs tempera-
ture satisfies the zeroth law:

hTGAiE = hTGBiE = hTGCiE (29)

for any three systems that are in thermal equilibrium.
Note that, for classical Hamiltonian systems, we could

have obtained an analogous result directly from the
equipartition theorem (9).

2. Boltzmann temperature

The Boltzmann temperatures of the subsystems before
coupling are

TBi(Ei) =
!i(Ei)

⌫i(Ei)
, i = A,B (30a)

and the Boltzmann temperature of the combined system
after coupling is

TB(E) =
!(E)

⌫(E)
(30b)

with ! and ⌫ given in Eqs. (21). In this case, we find

hTBA(EA)iE =

Z E

0
dEA

!A(EA)!B(E � EA)

!(E)

!A(EA)

⌫A(EA)

6= TB(E). (31)
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6= TB(E). (31)
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a hotter body. As evident from the simple yet generic ex-
ample in Sec. II C, the microcanonical temperature T (E)
can be a non-monotonic or even oscillating function of en-
ergy and, therefore, temperature di↵erences do not suf-
fice to specify the direction of heat flow when two initially
isolated systems are brought into thermal contact with
each other.

The deficiencies of the above formulations can be over-
come by resorting to Planck’s version of the second law.
Planck postulated that the sum of entropies of all bod-
ies taking part in some process never decreases. This
formulation is useful as it allows one to test the various
microcanonical entropy definitions. More precisely, if A
and B are two isolated systems with fixed energy values
EA and EB and fixed entropies SA(EA) and SB(EB),
then their entropy after coupling, SAB(EA + EB) must
be larger than the sum of their original entropies,

SAB(EA + EB) � SA(EA) + SB(EB). (38)

We next analyze whether the inequality (38) is fulfilled
by the microcanonical entropy candidates in Sec. II B

A. Gibbs entropy

To verify Eq. (38) for the Gibbs entropy SG = ln⌦, we
have to compare the phase volume of the compound sys-
tems after coupling, ⌦(EA+EB), with the phase volumes
⌦A(EA) and ⌦B(EB) of the subsystems before coupling.
Starting from Eq. (21d), we find

⌦(EA + EB)

=

Z EA+EB

0
dE0 ⌦A(E

0)!B(EA + EB � E0)

=

Z EA+EB

0
dE0

Z E0

0
dE00!A(E

00)!B(EA + EB � E0)

�
Z EA+EB

EA

dE0
Z EA

0
dE00!A(E

00)!B(EA + EB � E0)

=

Z EA

0
dE00!A(E

00)

Z EB

0
dE000!B(E

000)

= ⌦A(EA)⌦B(EB).
(39)

This result implies that the Gibbs entropy of the com-
pound system is always larger than the sum of the Gibbs
entropies of the subsystems before they were brought into
thermal contact:

SGAB(EA + EB) � SGA(EA) + SGB(EB). (40)

Thus, the Gibbs entropy satisfies Planck’s version of the
second law.

B. Boltzmann entropy

To verify Eq. (38) for the Boltzmann entropy SG =
ln(✏!), we have to compare the ✏-scaled DOS of the com-

pound systems after coupling, ✏!(EA + EB), with the
product of the ✏-scaled DOS ✏!A(EA) and ✏!B(EB) be-
fore the coupling. But, according to Eq. (21b), we have

✏!(EA+EB) = ✏

Z EA+EB

0
dE0!A(E

0)!B(EA+EB�E0),

(41)
which can be larger or smaller than ✏2!A(EA)!B(EB).
Thus, there is no strict relation between Boltzmann en-
tropy of the compound system and the Boltzmann en-
tropies of the subsystems before contact. That is, the
Boltzmann entropy violates the Planck version of the sec-
ond law for certain systems, as we will show in Sec. VIC
with an example.

One might try to ‘rescue’ the Boltzmann entropy from
failing the Planck’s second law by assuming that ✏ may
always be chosen ‘su�ciently’ (i.e., infinitesimally) small,
so that the entropy ordering is governed by the powers
of ✏. Perhaps, a more appealing solution is provided by
the modified definition (15a) of the Boltzmann entropy
that is based on the Shannon entropy. This Shannon
entropy does satisfy Planck’s version of the second law
(but fails the zeroth and first law).

[Comment (Stefan): I guess we should also

show explicitly that the Shannon version of the

Boltzmann entropy satisfies the Second Law]

VI. EXAMPLES

discuss only on the level of prototypical DOS. DOS
prototypes suggested for examples

• normal system: simple power-law DOS (like classi-
cal ideal gas)

• anormal system: upside-down parabola (i.e.
quadratic) DOS with lower and upper bound

• system with extra bump: any of the above, but
with additional large and sharp (delta-like) peak at
the energy of your choice (moving the peak around
influences the energy distribution between systems
in contatc without necessarily changing entropies
or temperatures of systems before contact)

• possible further examples could include simple clas-
sical systems with finite ⌦(1)

The DOS of the normal system:

!(E) =
⌦0

✏0

(
(E/✏0)

↵�1
, 0 < E

0 , otherwise.
(42)

The DOS of the anormal system:

!̂
�
E
�
=

6⌦1
E+

8
<

:

E (E+ � E)

E2
+

, 0 < E < E+

0 , otherwise.
(43)
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a hotter body. As evident from the simple yet generic ex-
ample in Sec. II C, the microcanonical temperature T (E)
can be a non-monotonic or even oscillating function of en-
ergy and, therefore, temperature di↵erences do not suf-
fice to specify the direction of heat flow when two initially
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This result implies that the Gibbs entropy of the com-
pound system is always larger than the sum of the Gibbs
entropies of the subsystems before they were brought into
thermal contact:

SGAB(EA + EB) � SGA(EA) + SGB(EB). (40)

Thus, the Gibbs entropy satisfies Planck’s version of the
second law.

B. Boltzmann entropy

To verify Eq. (38) for the Boltzmann entropy SG =
ln(✏!), we have to compare the ✏-scaled DOS of the com-

pound systems after coupling, ✏!(EA + EB), with the
product of the ✏-scaled DOS ✏!A(EA) and ✏!B(EB) be-
fore the coupling. But, according to Eq. (21b), we have
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which can be larger or smaller than ✏2!A(EA)!B(EB).
Thus, there is no strict relation between Boltzmann en-
tropy of the compound system and the Boltzmann en-
tropies of the subsystems before contact. That is, the
Boltzmann entropy violates the Planck version of the sec-
ond law for certain systems, as we will show in Sec. VIC
with an example.

One might try to ‘rescue’ the Boltzmann entropy from
failing the Planck’s second law by assuming that ✏ may
always be chosen ‘su�ciently’ (i.e., infinitesimally) small,
so that the entropy ordering is governed by the powers
of ✏. Perhaps, a more appealing solution is provided by
the modified definition (15a) of the Boltzmann entropy
that is based on the Shannon entropy. This Shannon
entropy does satisfy Planck’s version of the second law
(but fails the zeroth and first law).
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cal ideal gas)

• anormal system: upside-down parabola (i.e.
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influences the energy distribution between systems
in contatc without necessarily changing entropies
or temperatures of systems before contact)
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II. MICROCANONICAL DISTRIBUTIONS AND
ENTROPY DEFINITIONS

A. Setup

We consider strictly isolated classical or quantum sys-
tems described by a Hamiltonian H(⇠;Z) where ⇠ de-
notes the microscopic states and Z = (Z1, . . .) com-
prises external control parameters. It will be assumed
throughout that the microscopic dynamics conserves the
energy E, that the energy is bounded from below, E � 0,
and that an ensemble of such systems is described by the
microcanonical density operator

⇢(⇠|E,Z) =
�(E �H)

!
, (1)

where the non-negative normalization constant is given
by the DoS

!(E,Z) = Tr[�(E �H)] � 0 (2)

For classical systems, the trace is defined as a phase-space
integral and for quantum system by a sum or integral
over the basis vectors of the underlying Hilbert space.
The energy derivative of the DoS will be denoted by

⌫(E,Z) = @!/@E, (3)

and the integrated DoS is defined as

⌦(E,Z) = Tr[⇥(E �H)], (4)

so that ! = @⌦/@E (with ⇥ denoting the unit-step func-
tion). We shall assume throughout that ! is continuous
and piecewise di↵erentiable, so that its partial derivatives
are well-defined except for a countable number of singu-
lar points. The expectation value of an observable F (⇠)
with respect to the microcanonical density operator ⇢ is
defined by

hF iE,Z = Tr[F⇢]. (5)

As a special case, the probability density of some observ-
able F (⇠) is given by

%F (f |E,Z) = h�(f � F )iE,Z . (6)

To avoid potential confusion, it may be worthwhile to
stress that, although we will compare di↵erent entropy
functions S(E,Z), all expectation value appearing below
will always be defined with respect to the standard mi-
crocanonical density operator ⇢, as defined in Eq. (1).
That is, expectation values h · iE,Z are always computed
by averaging over microstates that are confined to the
energy shell E.

We adopt units such that the Boltzmann constant
kB = 1. For a given entropy function S(E,Z), the mi-
crocanonical temperature T and the heat capacity C are

obtained according to the rules of thermodynamics by
partial di↵erentiation,

T (E,Z) ⌘
✓
@S

@E

◆�1

, C(E,Z) =

✓
@T

@E

◆�1

. (7)

It is important to point out that the primary thermody-
namic state variables of an isolated system are E and Z,
whereas the temperature T is a derived quantity that,
in general, does not uniquely characterize the thermo-
dynamic state of the system (see detailed discussion in
Sec. II C and Fig. 1 below).
To simplify notation, when writing formulas that con-

tain !,⌦, T , etc., we will not explicitly state the func-
tional dependence on Z anymore, while keeping in mind
that the Hamiltonian can contain several additional con-
trol parameters.

B. Microcanonical entropy candidates

We summarize the most commonly considered micro-
canonical entropy definitions and their related tempera-
tures. In Secs. III, IV and V, these candidates will be
tested as to whether they satisfy the zeroth, first and
second law of thermodynamics.

1. Gibbs entropy

The Gibbs entropy is defined by [1, 2]

SG(E) = ln⌦. (8a)

The associated Gibbs temperature

TG(E) =
⌦

!
(8b)

is always non-negative, TG � 0, and remains finite as
long as ! > 0.
For classical Hamiltonian systems with microstates

(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
straightforward to prove [3] that the Gibbs temperature
satisfies the equipartition theorem,

TG =

⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (9)

We will return to this equation later as it relates directly
to the notion of thermal equilibrium.

2. Boltzmann entropy

The perhaps most popular microcanonical entropy def-
inition is the Boltzmann entropy

SB(E) = ln (✏ !) , (10a)
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The perhaps most popular microcanonical entropy def-
inition is the Boltzmann entropy

SB(E) = ln (✏ !) , (10a)
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a hotter body. As evident from the simple yet generic ex-
ample in Sec. II C, the microcanonical temperature T (E)
can be a non-monotonic or even oscillating function of en-
ergy and, therefore, temperature di↵erences do not suf-
fice to specify the direction of heat flow when two initially
isolated systems are brought into thermal contact with
each other.

The deficiencies of the above formulations can be over-
come by resorting to Planck’s version of the second law.
Planck postulated that the sum of entropies of all bod-
ies taking part in some process never decreases. This
formulation is useful as it allows one to test the various
microcanonical entropy definitions. More precisely, if A
and B are two isolated systems with fixed energy values
EA and EB and fixed entropies SA(EA) and SB(EB),
then their entropy after coupling, SAB(EA + EB) must
be larger than the sum of their original entropies,

SAB(EA + EB) � SA(EA) + SB(EB). (38)

We next analyze whether the inequality (38) is fulfilled
by the microcanonical entropy candidates in Sec. II B

A. Gibbs entropy

To verify Eq. (38) for the Gibbs entropy SG = ln⌦, we
have to compare the phase volume of the compound sys-
tems after coupling, ⌦(EA+EB), with the phase volumes
⌦A(EA) and ⌦B(EB) of the subsystems before coupling.
Starting from Eq. (21d), we find

⌦(EA + EB)

=

Z EA+EB

0
dE0 ⌦A(E

0)!B(EA + EB � E0)

=

Z EA+EB

0
dE0

Z E0

0
dE00!A(E

00)!B(EA + EB � E0)

�
Z EA+EB

EA

dE0
Z EA

0
dE00!A(E

00)!B(EA + EB � E0)

=

Z EA

0
dE00!A(E

00)

Z EB

0
dE000!B(E

000)

= ⌦A(EA)⌦B(EB).
(39)

This result implies that the Gibbs entropy of the com-
pound system is always larger than the sum of the Gibbs
entropies of the subsystems before they were brought into
thermal contact:

SGAB(EA + EB) � SGA(EA) + SGB(EB). (40)

Thus, the Gibbs entropy satisfies Planck’s version of the
second law.

B. Boltzmann entropy

To verify Eq. (38) for the Boltzmann entropy SG =
ln(✏!), we have to compare the ✏-scaled DOS of the com-

pound systems after coupling, ✏!(EA + EB), with the
product of the ✏-scaled DOS ✏!A(EA) and ✏!B(EB) be-
fore the coupling. But, according to Eq. (21b), we have

✏!(EA+EB) = ✏

Z EA+EB

0
dE0!A(E

0)!B(EA+EB�E0),

(41)
which can be larger or smaller than ✏2!A(EA)!B(EB).
Thus, there is no strict relation between Boltzmann en-
tropy of the compound system and the Boltzmann en-
tropies of the subsystems before contact. That is, the
Boltzmann entropy violates the Planck version of the sec-
ond law for certain systems, as we will show in Sec. VIC
with an example.

One might try to ‘rescue’ the Boltzmann entropy from
failing the Planck’s second law by assuming that ✏ may
always be chosen ‘su�ciently’ (i.e., infinitesimally) small,
so that the entropy ordering is governed by the powers
of ✏. Perhaps, a more appealing solution is provided by
the modified definition (15a) of the Boltzmann entropy
that is based on the Shannon entropy. This Shannon
entropy does satisfy Planck’s version of the second law
(but fails the zeroth and first law).

[Comment (Stefan): I guess we should also

show explicitly that the Shannon version of the

Boltzmann entropy satisfies the Second Law]

VI. EXAMPLES

discuss only on the level of prototypical DOS. DOS
prototypes suggested for examples

• normal system: simple power-law DOS (like classi-
cal ideal gas)

• anormal system: upside-down parabola (i.e.
quadratic) DOS with lower and upper bound

• system with extra bump: any of the above, but
with additional large and sharp (delta-like) peak at
the energy of your choice (moving the peak around
influences the energy distribution between systems
in contatc without necessarily changing entropies
or temperatures of systems before contact)

• possible further examples could include simple clas-
sical systems with finite ⌦(1)

The DOS of the normal system:

!(E) =
⌦0

✏0

(
(E/✏0)

↵�1
, 0 < E

0 , otherwise.
(42)

The DOS of the anormal system:

!̂
�
E
�
=

6⌦1
E+

8
<

:

E (E+ � E)

E2
+

, 0 < E < E+

0 , otherwise.
(43)
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This proves that the mean Boltzmann temperature does
not satisfy the zeroth law.

Instead, the first line in Eq. (31), combined with
Eq. (21c), suggests that the Boltzmann temperature sat-
isfies the following relation for the inverse temperature

⌧
1

TBA

�

E

=

⌧
1

TBB

�

E

=
1

TB(E)
. (32)

It should be stressed, however, that Eq. (32) is not equiv-
alent to Eq. (28) and therefore also disagrees with the
zeroth law as stated in Eq. (26).

It is sometimes argued that the Boltzmann tempera-
ture characterizes the most probable energy state E⇤

i of
a subsystem i and that the corresponding temperature
values TBi(E

⇤
i ) coincides with the temperature of the

compound system TB(E). To investigate this statement,
consider i = A and recall that the probability ⇡A(EA|E)
of finding the first subsystem A at energy EA becomes
maximal either at a non-analytic point (e.g., a bound-
ary value of the allowed energy range), or at a value E⇤

A
satisfying

0 =
@⇡A(EA|E)

@EA

����
EA=E⇤

A

. (33)

Inserting ⇡A(EA|E) from Eq. (23b), one thus finds

TBA(E
⇤
A) = TBB(E � E⇤

A). (34)

Note, however, that in general

TB(E) 6= TBA(E
⇤
A) = TBB(E � E⇤

A), (35)

with the values TBi(E
⇤
i ) depending on the specific decom-

position into subsystems. This shows that the Boltzmann
temperature TB is in general not equal to the ‘most prob-
able’ Boltzmann temperature TBi(E

⇤
i ) of an arbitrarily

chosen subsystem.

3. Other temperatures

It is straightforward to verify through analogous calcu-
lations that, similar to the Boltzmann temperature, the
temperatures derived from the other entropy candidates
in Sec. II B violate the CTA condition (25) and, therefore,
also the zeroth law (26).

In summary, only the Gibbs temperature satisfies the
zeroth law of thermodynamics.

IV. FIRST LAW

The first law of thermodynamics is the statement of
energy conservation. That is, any change in the inter-
nal energy dE of an isolated system is caused by heat
transfer �Q from or into the system and external work
�A performed on or by the system,

dE = �Q+ �A

= T dS �
X

n

pndZn, (36)

where the pn are the generalized pressure variables.
Specifically, pure work �A corresponds to an adiabatic
variation of the parameters Z = (Z1, . . .) of the Hamil-
tonian H(⇠;Z). Heat transfer �Q = TdS comprises all
other forms of energy exchange (controlled injection or
release of photons, etc.). Subsystems within the isolated
system can permanently exchange heat although the to-
tal energy remains conserved in such internal energy re-
distribution processes.
The formal di↵erential relation (36) is trivially satisfied

for all the entropy definitions listed in Sec. II B, but addi-
tional constraints arise from the fact that the generalized
pressure variables pn should agree with the correspond-
ing microcanonical expectation values. This requirement
leads to the consistency relation [2]

pj = T

✓
@S

@Zj

◆

E,Zn 6=Zj

!
= �

⌧
@H

@Zj

�

E

, (37)

which can be derived from the Hamiltonian or Heisenberg
equations of motion (see Supplementary Information of
Ref. [2]). Subscripts on the lhs. of Eq. (37) indicate
quantities that are kept constant during di↵erentiation.
Equation (37) is physically relevant as it ensures that
abstract thermodynamic observables agree with the sta-
tistical averages.
As discussed in Ref. [2], any function of ⌦(E) satisfies

Eq. (37), implying that the Gibbs entropy, the comple-
mentary Gibbs entropy and the Penrose entropy are ther-
mostatistically consistent with respect to this specific cri-
terion. By contrast, the Boltzmann entropy SB = ln(✏!)
violates Eq. (37) for finite systems of arbitrary size [2].

V. SECOND LAW

The second law of thermodynamics governs the in-
crease of entropy under rather general conditions. Un-
fortunately, this law is sometimes stated in ambiguous
form, and several authors appear to prefer di↵erent non-
equivalent versions. Fortunately, in the case of isolated
systems, it is relatively straightforward to identify a
meaningful minimal version of the second law – originally
proposed by Planck – that imposes a testable constraint
on the microcanonical entropy candidates. However, be-
fore focussing on Planck’s formulation, let us briefly ad-
dress two other rather popular versions that are not ap-
propriate when dealing with isolated systems.
The perhaps simplest form of the second law states

that the entropy of an isolated system never decreases.
For isolated systems described by the MCE, this state-
ment is meaningless for the entropy of an isolated equi-
librium system at fixed energy is constant, regardless of
the chosen entropy definition.
Another naive version of the second law, based on an

oversimplification of Clausius’ original statement [? ], as-
serts that heat never flows spontaneously from a colder to
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see also Campisi, Physica A 2007

More generally, for any parameter Aµ ⇤ {V, Ai} of the Hamiltonian H , one must have

aµ ⇥ T

�
�S

�Aµ

⇥
!
= �

⇧
�H

�Aµ

⌃
⇥ �Tr

⇤�
�H

�Aµ

⇥
⌃

⌅
, (11)

where T ⇥ (�S/�E)�1. These consistency conditions not only ensure that the thermodynamic
potential S fulfills the fundamental differential relation (9). For a given density operator ⌃, they
can also be used to separate consistent entropy definitions from inconsistent ones.

Demanding additivity of entropy S for non-interacting systems and using only the mathe-
matical properties of the MC density operator (1), one finds [22] from the condition (11) that
the MC entropy S must equal the Gibbs entropy SG, since

TG

�
�SG

�Aµ

⇥
=

1

⌥

�

�Aµ
Tr

⇤
⇥(E �H)

⌅

= � 1

⌥
Tr

⇤
� �

�Aµ
⇥(E �H)

⌅

= �Tr

⇤�
�H

�Aµ

⇥
⇥(E �H)

⌥

⌅
= �

⇧
�H

�Aµ

⌃
.

(12)

This proves that only the pair (⌃, SG) constitutes a consistent thermostatistical model in the case
of the MC density operator ⌃. As a corollary, the Boltzmann entropy SB is not a thermodynamic
entropy, implying that it is inconsistent to insert the Boltzmann ‘temperature’ TB into equation-
of-states or efficiency formulas that assume validity of the thermodynamic relations (9).

Similarly to Eq. (12), it is straightforward to show that, for standard classical Hamiltonian
systems, only the Gibbs temperature TG satisfies the mathematically rigorous equipartition the-
orem [10] ⇧

⌅i
�H

�⌅j

⌃
⇥ Tr

⇤�
⌅i

�H

�⌅j

⇥
⌃

⌅
= kBTG ⇥ij (13)

for all canonical coordinates ⌅ = (⌅1, . . .). The direct proof of Eq. (13) requires mild as-
sumptions such as confined trajectories and a finite groundstate energy. The key steps are
identical to those in (12), i.e., one merely exploits the chain rule relation �⇥(E � H)/�⇤ =
�(�H/�⇤)⇥(E � H), which holds for any variable ⇤ in the Hamiltonian H . Equation (13) is
essentially a phase-space version of Stokes’ theorem [10], relating a surface (flux) integral on
the energy shell to the enclosed phase space volume.

Small systems
Differences between SB and SG are negligible for most macroscopic systems with monotonic
DoS ⌥, but can be significant for small systems [10]. This can already be seen for a classical
ideal gas in d-space dimensions, where [15]

⇤(E, V ) = �EdN/2V N , � =
(2⇧m)dN/2

N !hd�(dN/2 + 1)
, (14)
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TABLE I: The di↵erent microcanonical entropy candidates from Sec. II B and whether they satisfy the laws of thermodynamics.

Entropy S(E) second law first law zeroth law equip artition
Eq. (38) Eq. (37) Eq. (20) equipartition

Gibbs ln⌦ yes yes yes yes
Penrose ln⌦+ ln

�
⌦1 � ⌦

�
� ln⌦1 yes yes no no

Complementary Gibbs ln
⇥
⌦1 � ⌦

⇤
yes yes no no

Di↵erential Boltzmann ln
⇥
⌦(E + ✏)� ⌦(E)

⇤
yes no no no

Boltzmann ln
�
✏!

�
no no no no

VII. CONCLUSIONS

We have presented a detailed comparison of the most
frequently encountered microcanonical entropy candi-
dates. After reviewing the various entropy definitions,
we first showed that, regardless of which of those en-
tropy is chosen, the microcanonical temperature of an
isolated system can be a non-monotonic, oscillating func-
tions of the energy (Sec. II C). This fact implies that,
contrary to claims in the recent literature [? ? ], naive
temperature-based heat-flow arguments cannot be used
to judge the various entropy candidates. Any objective
evaluation should be based on whether or not a given
thermostatistical entropy definition is compatible with
the laws of thermodynamics.

Focussing on exact results that hold for a broad class
of densities of states, we found that only the Gibbs en-
tropy simultaneously satisfies the zeroth, first and second
law of thermodynamics (as well as the classical equipar-
tition theorem). If one accepts the results in Table I as
mathematically correct facts, then there remains little
choice but to conclude that the thermodynamic char-
acterization of an isolated systems should build on the
Gibbs entropy, implying a strictly non-negative absolute
temperature and Carnot e�ciencies not larger than 1 for
system with or without upper energy bounds.

Some past objections against the Gibbs entropy [?
? ? ] purport that the Gibbs temperature does not
adequately capture relevant statistical details of large
population-inverted systems – and that it should there-

fore be replaced by the Boltzmann entropy. We consider
arguments of this type inappropriate or even mislead-
ing for they intermingle two questions that should be
treated separately. The first of those questions relates to
whether a certain entropy is thermodynamically consis-
tent. This problem is well-posed and can be answered
unambiguously, as shown in Table I. The second com-
plementary question is whether there exist other types of
characterizations of many-particle systems that add to
the partial information encoded in the thermodynamic
variables. Clearly, even if the popular Boltzmann entropy
is in conflict with the thermodynamic laws for practically
all finite systems, this quantity still encodes valuable in-
formation about the statistical properties of certain phys-
ical systems. In particular, the Boltzmann temperature
can provide a useful e↵ective description of spin systems,
lasers and other population-inverted systems. But one
should refrain from inserting the Boltzmann temperature
(and other e↵ective temperatures) into the Carnot for-
mula or thermodynamic equations of state - especially if
the resulting formulas suggest the possibility of perpetual
motion.
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Example 1:    Classical ideal gas

Using simply the properties of the MC density operator, one derives [? ] from the above
requirements that the MC entropy S equals the Gibbs entropy SG:

aµ = −Tr

[(
∂H

∂Aµ

)
δ(E −H)

ω

]
= − 1

ω
Tr

[
− ∂

∂Aµ
Θ(E −H)

]

=
1

ω

∂

∂Aµ
Tr

[
Θ(E −H)

]
= TG

(
∂SG

∂Aµ

)
.

(12)

This proves that only the pair (ρ, SG) constitutes a consistent thermostatistical model based on
the MC density ρ. As a corollary, the Boltzmann SB is not a thermodynamic entropy of the MC
ensemble.

In a similar way, one can show by a straightforward calculation that, for standard classical
Hamiltonian systems, only the Gibbs temperature TG satisfies the mathematically rigorous10

equipartition theorem [9]
〈

ξi
∂H

∂ξj

〉
≡ Tr

[(
ξi

∂H

∂ξj

)
ρ

]
= kBTG δij (13)

for all canonical coordinates ξ = (ξ1, . . .). Equation (13) is essentially a phase-space version
of Stokes’ theorem, relating a surface (flux) integral on the energy shell to the enclosed phase
space volume.

1.3 Basic examples
Ideal gas. The differences between SB and SG are negligible for most macroscopic systems
with monotonic DoS ω, but can be significant for small systems. This can already be seen for a
classical ideal gas in d-space dimensions, where [13]

Ω(E, V ) = αEdN/2V N , α =
(2πm)dN/2

N !hdΓ(dN/2 + 1)
, (14)

for N identical particles of mass m and Planck constant h. From this, one finds that only the
Gibbs temperature yields exact equipartition

E =

(
dN

2
− 1

)
kBTB, (15)

E =
dN

2
kBTG. (16)

Note that Eq. (15) yields a paradoxical results for dN = 1, where it predicts a negative tem-
perature TB < 0 and heat capacity, and also for dN = 2, where the temperature TB must be

10The direct proof of (13) requires mild assumptions such as confined trajectories and a finite groundstate en-
ergy. The key steps are very similar to those in (12), i.e., one merely needs to exploit the chain rule relation
∂Θ(E −H)/∂λ = −(∂H/∂λ)δ(E −H), which holds for any variable λ appearing in the Hamiltonian H .
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1.1 Entropy and temperature definitions
To make the discussion more specific, let us consider a (quantum or classical) system with
microscopic variables ξ governed by the Hamiltonian H = H(ξ; V, A), where V denotes vol-
ume and A = (A1, . . .) summarizes other external parameters. Assuming that the dynamics
conserves the energy, E = H , all thermostatistical properties are contained in the MC density
operator5

ρ(ξ; E, V,A) =
δ(E −H)

ω
, (1)

which is normalized by the DoS

ω(E, V,A) = Tr[δ(E −H)]. (2)

For classical systems, the trace simply becomes a phase-space integral over ξ. For brevity, we
denote averages of some quantity F with respect to the MC density operator ρ by 〈F 〉 ≡ Tr[Fρ].

We also define the integrated DoS6

Ω(E, V,A) = Tr[Θ(E −H)], (3)

which is related to the DoS ω by differentiation with respect to energy,

ω =
∂Ω

∂E
≡ Ω′. (4)

Given the MC density operator (1), one can find two competing definitions for the MC
entropy in the literature [9, 10, 13, 15, 16, 17]

SB(E, V,A) = kB ln[εω(E)], (5)
SG(E, V,A) = kB ln[Ω(E)], (6)

where ε is a constant with dimensions of energy, required to make the argument of the logarithm
dimensionless7. The first proposal, SB, usually referred to as Boltzmann entropy, is advocated
by the majority of modern textbooks [16] and used by most authors nowadays. The second
candidate SG is often attributed to P. Hertz8 [18] but was in fact already derived by J. W. Gibbs
in 1902 in his discussion of thermodynamic analogies [10, Chapter XIV]. For this reason, we

5As usual, we assume that, in the case of quantum systems, Eq. (1) has a well-defined operator interpretation,
e.g., as a limit of an operator series.

6Intuitively, for a quantum system with spectrum {En}, the quantity Ω(En, V, A) counts the number of eigen-
states with energy less or equal to En.

7Apart from other more severe shortcomings of SB, it is aesthetically displeasing that its definition requires
the !  "#$ introduction of some undetermined constant.

8Hertz proved in 1910 that SG is an adiabatic invariant [18]. His work was highly commended by Planck [19]
and Einstein, who closes his comment [20] on Hertz’s work with the famous statement that he himself would not
have published certain papers, had he been aware of Gibbs’ comprehensive treatise [10].
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ume and A = (A1, . . .) summarizes other external parameters. Assuming that the dynamics
conserves the energy, E = H , all thermostatistical properties are contained in the MC density
operator5

ρ(ξ; E, V,A) =
δ(E −H)

ω
, (1)

which is normalized by the DoS

ω(E, V,A) = Tr[δ(E −H)]. (2)

For classical systems, the trace simply becomes a phase-space integral over ξ. For brevity, we
denote averages of some quantity F with respect to the MC density operator ρ by 〈F 〉 ≡ Tr[Fρ].

We also define the integrated DoS6

Ω(E, V,A) = Tr[Θ(E −H)], (3)

which is related to the DoS ω by differentiation with respect to energy,

ω =
∂Ω

∂E
≡ Ω′. (4)

Given the MC density operator (1), one can find two competing definitions for the MC
entropy in the literature [9, 10, 13, 15, 16, 17]

SB(E, V,A) = kB ln[εω(E)], (5)
SG(E, V,A) = kB ln[Ω(E)], (6)

where ε is a constant with dimensions of energy, required to make the argument of the logarithm
dimensionless7. The first proposal, SB, usually referred to as Boltzmann entropy, is advocated
by the majority of modern textbooks [16] and used by most authors nowadays. The second
candidate SG is often attributed to P. Hertz8 [18] but was in fact already derived by J. W. Gibbs
in 1902 in his discussion of thermodynamic analogies [10, Chapter XIV]. For this reason, we

5As usual, we assume that, in the case of quantum systems, Eq. (1) has a well-defined operator interpretation,
e.g., as a limit of an operator series.

6Intuitively, for a quantum system with spectrum {En}, the quantity Ω(En, V, A) counts the number of eigen-
states with energy less or equal to En.

7Apart from other more severe shortcomings of SB, it is aesthetically displeasing that its definition requires
the !  "#$ introduction of some undetermined constant.

8Hertz proved in 1910 that SG is an adiabatic invariant [18]. His work was highly commended by Planck [19]
and Einstein, who closes his comment [20] on Hertz’s work with the famous statement that he himself would not
have published certain papers, had he been aware of Gibbs’ comprehensive treatise [10].
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Using simply the properties of the MC density operator, one derives [? ] from the above
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aµ = −Tr

[(
∂H

∂Aµ

)
δ(E −H)

ω

]
= − 1

ω
Tr

[
− ∂

∂Aµ
Θ(E −H)

]

=
1

ω

∂

∂Aµ
Tr

[
Θ(E −H)

]
= TG

(
∂SG

∂Aµ

)
.

(12)

This proves that only the pair (ρ, SG) constitutes a consistent thermostatistical model based on
the MC density ρ. As a corollary, the Boltzmann SB is not a thermodynamic entropy of the MC
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In a similar way, one can show by a straightforward calculation that, for standard classical
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equipartition theorem [9]
〈

ξi
∂H

∂ξj

〉
≡ Tr

[(
ξi

∂H

∂ξj

)
ρ

]
= kBTG δij (13)

for all canonical coordinates ξ = (ξ1, . . .). Equation (13) is essentially a phase-space version
of Stokes’ theorem, relating a surface (flux) integral on the energy shell to the enclosed phase
space volume.
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Ω(E, V ) = αEdN/2V N , α =
(2πm)dN/2

N !hdΓ(dN/2 + 1)
, (14)

for N identical particles of mass m and Planck constant h. From this, one finds that only the
Gibbs temperature yields exact equipartition

E =

(
dN

2
− 1

)
kBTB, (15)

E =
dN

2
kBTG. (16)

Note that Eq. (15) yields a paradoxical results for dN = 1, where it predicts a negative tem-
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∂Θ(E −H)/∂λ = −(∂H/∂λ)δ(E −H), which holds for any variable λ appearing in the Hamiltonian H .
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candidate SG is often attributed to P. Hertz8 [18] but was in fact already derived by J. W. Gibbs
in 1902 in his discussion of thermodynamic analogies [10, Chapter XIV]. For this reason, we
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by another elementary example. Considering a quantum particle in a one-dimensional infinite
square-well of length L, the spectral formula

En = an2/L2, a = !2π2/(2m), n = 1, 2, . . . ,∞ (20)

implies Ω = n = L
√

E/a. In this case, the Gibbs entropy SG = kB ln Ω gives

kBTG = 2E, pG ≡ TG

(
∂SG

∂L

)
=

2E

L
, (21)

as well as the heat capacity C = kB/2, in agreement with physical intuition. In particular, the
pressure equation consistent with condition (10), as can be seen by differentiating (20) with
respect to L,

p ≡ −∂E

∂L
=

2E

L
= pG. (22)

By contrast, we find from SB = kB ln(εω) with ω = L/(2
√

Ea) for the Boltzmann temper-
ature13

kBTB = −2E < 0. (23)

While this result in itself seems questionable14, it also implies a violation of Eq. (10), since

pB ≡ TB

(
∂SB

∂L

)
= −2E

L
%= p. (24)

This contradiction corroborates that SB cannot be the correct entropy for quantum systems.

We hope that the arguments and examples presented thus far suffice to convince the reader
that the Boltzmann entropy SB is not a consistent thermodynamic entropy, neither for classical
nor for quantum systems, whereas the Gibbs entropy SG provides a consistent thermodynamic
formalism in the low energy limit (small quantum systems) and in the high-energy limit (clas-
sical systems).

Unfortunately, the Boltzmann entropy has become so widely accepted nowadays that, even
when its application to exotic new states leads to spectacular claims, these are hardly ever
questioned anymore. In Sec. 2, we demonstrate by means of a slightly more elaborate example,
how naive usage of SB can lead to ‘negative temperatures that are hotter than the hottest positive
temperatures’15.

13One sometimes encounters the � � � � �convention that, because the spectrum (20) is non-degenerate, the
‘thermodynamic’ entropy should be zero, SB = 0, for all states. However, this postulate leads to several other
inconsistencies, which are discussed in more detail in Sec. 3. Focussing on the example at hand for the moment,
let us just note that SB = 0 would again imply the nonsensical result TB = ∞, misrepresenting the physical fact
that also a single degree of freedom in a box-like confinement can store heat in finite amounts.

14Unless one believes that a quantum particle in a one-dimensional box is a Dark Energy candidate.
15Spurious arguments, often encountered in attempts to proclaim SB as superior to the Gibbs proposal SG, will

be addressed in Sec 3.
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the !  "#$ introduction of some undetermined constant.

8Hertz proved in 1910 that SG is an adiabatic invariant [18]. His work was highly commended by Planck [19]
and Einstein, who closes his comment [20] on Hertz’s work with the famous statement that he himself would not
have published certain papers, had he been aware of Gibbs’ comprehensive treatise [10].
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by another elementary example. Considering a quantum particle in a one-dimensional infinite
square-well of length L, the spectral formula

En = an2/L2, a = !2π2/(2m), n = 1, 2, . . . ,∞ (20)

implies Ω = n = L
√

E/a. In this case, the Gibbs entropy SG = kB ln Ω gives

kBTG = 2E, pG ≡ TG

(
∂SG

∂L

)
=

2E

L
, (21)

as well as the heat capacity C = kB/2, in agreement with physical intuition. In particular, the
pressure equation consistent with condition (10), as can be seen by differentiating (20) with
respect to L,

p ≡ −∂E

∂L
=

2E

L
= pG. (22)

By contrast, we find from SB = kB ln(εω) with ω = L/(2
√

Ea) for the Boltzmann temper-
ature13

kBTB = −2E < 0. (23)

While this result in itself seems questionable14, it also implies a violation of Eq. (10), since

pB ≡ TB

(
∂SB

∂L

)
= −2E

L
%= p. (24)

This contradiction corroborates that SB cannot be the correct entropy for quantum systems.

We hope that the arguments and examples presented thus far suffice to convince the reader
that the Boltzmann entropy SB is not a consistent thermodynamic entropy, neither for classical
nor for quantum systems, whereas the Gibbs entropy SG provides a consistent thermodynamic
formalism in the low energy limit (small quantum systems) and in the high-energy limit (clas-
sical systems).

Unfortunately, the Boltzmann entropy has become so widely accepted nowadays that, even
when its application to exotic new states leads to spectacular claims, these are hardly ever
questioned anymore. In Sec. 2, we demonstrate by means of a slightly more elaborate example,
how naive usage of SB can lead to ‘negative temperatures that are hotter than the hottest positive
temperatures’15.

13One sometimes encounters the � � � � �convention that, because the spectrum (20) is non-degenerate, the
‘thermodynamic’ entropy should be zero, SB = 0, for all states. However, this postulate leads to several other
inconsistencies, which are discussed in more detail in Sec. 3. Focussing on the example at hand for the moment,
let us just note that SB = 0 would again imply the nonsensical result TB = ∞, misrepresenting the physical fact
that also a single degree of freedom in a box-like confinement can store heat in finite amounts.

14Unless one believes that a quantum particle in a one-dimensional box is a Dark Energy candidate.
15Spurious arguments, often encountered in attempts to proclaim SB as superior to the Gibbs proposal SG, will

be addressed in Sec 3.

8

by another elementary example. Considering a quantum particle in a one-dimensional infinite
square-well of length L, the spectral formula

En = an2/L2, a = !2π2/(2m), n = 1, 2, . . . ,∞ (20)

implies Ω = n = L
√

E/a. In this case, the Gibbs entropy SG = kB ln Ω gives

kBTG = 2E, pG ≡ TG

(
∂SG

∂L

)
=

2E

L
, (21)

as well as the heat capacity C = kB/2, in agreement with physical intuition. In particular, the
pressure equation consistent with condition (10), as can be seen by differentiating (20) with
respect to L,

p ≡ −∂E

∂L
=

2E

L
= pG. (22)

By contrast, we find from SB = kB ln(εω) with ω = L/(2
√

Ea) for the Boltzmann temper-
ature13

kBTB = −2E < 0. (23)

While this result in itself seems questionable14, it also implies a violation of Eq. (10), since

pB ≡ TB

(
∂SB

∂L

)
= −2E

L
%= p. (24)

This contradiction corroborates that SB cannot be the correct entropy for quantum systems.

We hope that the arguments and examples presented thus far suffice to convince the reader
that the Boltzmann entropy SB is not a consistent thermodynamic entropy, neither for classical
nor for quantum systems, whereas the Gibbs entropy SG provides a consistent thermodynamic
formalism in the low energy limit (small quantum systems) and in the high-energy limit (clas-
sical systems).

Unfortunately, the Boltzmann entropy has become so widely accepted nowadays that, even
when its application to exotic new states leads to spectacular claims, these are hardly ever
questioned anymore. In Sec. 2, we demonstrate by means of a slightly more elaborate example,
how naive usage of SB can lead to ‘negative temperatures that are hotter than the hottest positive
temperatures’15.

13One sometimes encounters the ad hoc convention that, because the spectrum (20) is non-degenerate, the
‘thermodynamic’ entropy should be zero, SB = 0, for all states. However, this postulate leads to several other
inconsistencies, which are discussed in more detail in Sec. 3. Focussing on the example at hand for the moment,
let us just note that SB = 0 would again imply the nonsensical result TB = ∞, misrepresenting the physical fact
that also a single degree of freedom in a box-like confinement can store heat in finite amounts.

14Unless one believes that a quantum particle in a one-dimensional box is a Dark Energy candidate.
15Spurious arguments, often encountered in attempts to proclaim SB as superior to the Gibbs proposal SG, will

be addressed in Sec 3.

8

by another elementary example. Considering a quantum particle in a one-dimensional infinite
square-well of length L, the spectral formula

En = an2/L2, a = !2π2/(2m), n = 1, 2, . . . ,∞ (20)

implies Ω = n = L
√

E/a. In this case, the Gibbs entropy SG = kB ln Ω gives

kBTG = 2E, pG ≡ TG

(
∂SG

∂L

)
=

2E

L
, (21)

as well as the heat capacity C = kB/2, in agreement with physical intuition. In particular, the
pressure equation consistent with condition (10), as can be seen by differentiating (20) with
respect to L,

p ≡ −∂E

∂L
=

2E

L
= pG. (22)

By contrast, we find from SB = kB ln(εω) with ω = L/(2
√

Ea) for the Boltzmann temper-
ature13

kBTB = −2E < 0. (23)

While this result in itself seems questionable14, it also implies a violation of Eq. (10), since

pB ≡ TB

(
∂SB

∂L

)
= −2E

L
%= p. (24)

This contradiction corroborates that SB cannot be the correct entropy for quantum systems.

We hope that the arguments and examples presented thus far suffice to convince the reader
that the Boltzmann entropy SB is not a consistent thermodynamic entropy, neither for classical
nor for quantum systems, whereas the Gibbs entropy SG provides a consistent thermodynamic
formalism in the low energy limit (small quantum systems) and in the high-energy limit (clas-
sical systems).

Unfortunately, the Boltzmann entropy has become so widely accepted nowadays that, even
when its application to exotic new states leads to spectacular claims, these are hardly ever
questioned anymore. In Sec. 2, we demonstrate by means of a slightly more elaborate example,
how naive usage of SB can lead to ‘negative temperatures that are hotter than the hottest positive
temperatures’15.

13One sometimes encounters the ad hoc convention that, because the spectrum (20) is non-degenerate, the
‘thermodynamic’ entropy should be zero, SB = 0, for all states. However, this postulate leads to several other
inconsistencies, which are discussed in more detail in Sec. 3. Focussing on the example at hand for the moment,
let us just note that SB = 0 would again imply the nonsensical result TB = ∞, misrepresenting the physical fact
that also a single degree of freedom in a box-like confinement can store heat in finite amounts.

14Unless one believes that a quantum particle in a one-dimensional box is a Dark Energy candidate.
15Spurious arguments, often encountered in attempts to proclaim SB as superior to the Gibbs proposal SG, will

be addressed in Sec 3.

8

by another elementary example. Considering a quantum particle in a one-dimensional infinite
square-well of length L, the spectral formula

En = an2/L2, a = !2π2/(2m), n = 1, 2, . . . ,∞ (20)

implies Ω = n = L
√

E/a. In this case, the Gibbs entropy SG = kB ln Ω gives

kBTG = 2E, pG ≡ TG

(
∂SG

∂L

)
=

2E

L
, (21)

as well as the heat capacity C = kB/2, in agreement with physical intuition. In particular, the
pressure equation consistent with condition (10), as can be seen by differentiating (20) with
respect to L,

p ≡ −∂E

∂L
=

2E

L
= pG. (22)

By contrast, we find from SB = kB ln(εω) with ω = L/(2
√

Ea) for the Boltzmann temper-
ature13

kBTB = −2E < 0. (23)

While this result in itself seems questionable14, it also implies a violation of Eq. (10), since

pB ≡ TB

(
∂SB

∂L

)
= −2E

L
%= p. (24)

This contradiction corroborates that SB cannot be the correct entropy for quantum systems.

We hope that the arguments and examples presented thus far suffice to convince the reader
that the Boltzmann entropy SB is not a consistent thermodynamic entropy, neither for classical
nor for quantum systems, whereas the Gibbs entropy SG provides a consistent thermodynamic
formalism in the low energy limit (small quantum systems) and in the high-energy limit (clas-
sical systems).

Unfortunately, the Boltzmann entropy has become so widely accepted nowadays that, even
when its application to exotic new states leads to spectacular claims, these are hardly ever
questioned anymore. In Sec. 2, we demonstrate by means of a slightly more elaborate example,
how naive usage of SB can lead to ‘negative temperatures that are hotter than the hottest positive
temperatures’15.

13One sometimes encounters the ad hoc convention that, because the spectrum (20) is non-degenerate, the
‘thermodynamic’ entropy should be zero, SB = 0, for all states. However, this postulate leads to several other
inconsistencies, which are discussed in more detail in Sec. 3. Focussing on the example at hand for the moment,
let us just note that SB = 0 would again imply the nonsensical result TB = ∞, misrepresenting the physical fact
that also a single degree of freedom in a box-like confinement can store heat in finite amounts.

14Unless one believes that a quantum particle in a one-dimensional box is a Dark Energy candidate.
15Spurious arguments, often encountered in attempts to proclaim SB as superior to the Gibbs proposal SG, will

be addressed in Sec 3.

8

by another elementary example. Considering a quantum particle in a one-dimensional infinite
square-well of length L, the spectral formula

En = an2/L2, a = !2π2/(2m), n = 1, 2, . . . ,∞ (20)

implies Ω = n = L
√

E/a. In this case, the Gibbs entropy SG = kB ln Ω gives

kBTG = 2E, pG ≡ TG

(
∂SG

∂L

)
=

2E

L
, (21)

as well as the heat capacity C = kB/2, in agreement with physical intuition. In particular, the
pressure equation consistent with condition (10), as can be seen by differentiating (20) with
respect to L,

p ≡ −∂E

∂L
=

2E

L
= pG. (22)

By contrast, we find from SB = kB ln(εω) with ω = L/(2
√

Ea) for the Boltzmann temper-
ature13

kBTB = −2E < 0. (23)

While this result in itself seems questionable14, it also implies a violation of Eq. (10), since

pB ≡ TB

(
∂SB

∂L

)
= −2E

L
%= p. (24)

This contradiction corroborates that SB cannot be the correct entropy for quantum systems.

We hope that the arguments and examples presented thus far suffice to convince the reader
that the Boltzmann entropy SB is not a consistent thermodynamic entropy, neither for classical
nor for quantum systems, whereas the Gibbs entropy SG provides a consistent thermodynamic
formalism in the low energy limit (small quantum systems) and in the high-energy limit (clas-
sical systems).

Unfortunately, the Boltzmann entropy has become so widely accepted nowadays that, even
when its application to exotic new states leads to spectacular claims, these are hardly ever
questioned anymore. In Sec. 2, we demonstrate by means of a slightly more elaborate example,
how naive usage of SB can lead to ‘negative temperatures that are hotter than the hottest positive
temperatures’15.

13One sometimes encounters the ad hoc convention that, because the spectrum (20) is non-degenerate, the
‘thermodynamic’ entropy should be zero, SB = 0, for all states. However, this postulate leads to several other
inconsistencies, which are discussed in more detail in Sec. 3. Focussing on the example at hand for the moment,
let us just note that SB = 0 would again imply the nonsensical result TB = ∞, misrepresenting the physical fact
that also a single degree of freedom in a box-like confinement can store heat in finite amounts.

14Unless one believes that a quantum particle in a one-dimensional box is a Dark Energy candidate.
15Spurious arguments, often encountered in attempts to proclaim SB as superior to the Gibbs proposal SG, will

be addressed in Sec 3.

8

by another elementary example. Considering a quantum particle in a one-dimensional infinite
square-well of length L, the spectral formula

En = an2/L2, a = !2π2/(2m), n = 1, 2, . . . ,∞ (20)

implies Ω = n = L
√

E/a. In this case, the Gibbs entropy SG = kB ln Ω gives

kBTG = 2E, pG ≡ TG

(
∂SG

∂L

)
=

2E

L
, (21)

as well as the heat capacity C = kB/2, in agreement with physical intuition. In particular, the
pressure equation consistent with condition (10), as can be seen by differentiating (20) with
respect to L,

p ≡ −∂E

∂L
=

2E

L
= pG. (22)

By contrast, we find from SB = kB ln(εω) with ω = L/(2
√

Ea) for the Boltzmann temper-
ature13

kBTB = −2E < 0. (23)

While this result in itself seems questionable14, it also implies a violation of Eq. (10), since

pB ≡ TB

(
∂SB

∂L

)
= −2E

L
%= p. (24)

This contradiction corroborates that SB cannot be the correct entropy for quantum systems.

We hope that the arguments and examples presented thus far suffice to convince the reader
that the Boltzmann entropy SB is not a consistent thermodynamic entropy, neither for classical
nor for quantum systems, whereas the Gibbs entropy SG provides a consistent thermodynamic
formalism in the low energy limit (small quantum systems) and in the high-energy limit (clas-
sical systems).

Unfortunately, the Boltzmann entropy has become so widely accepted nowadays that, even
when its application to exotic new states leads to spectacular claims, these are hardly ever
questioned anymore. In Sec. 2, we demonstrate by means of a slightly more elaborate example,
how naive usage of SB can lead to ‘negative temperatures that are hotter than the hottest positive
temperatures’15.

13One sometimes encounters the ad hoc convention that, because the spectrum (20) is non-degenerate, the
‘thermodynamic’ entropy should be zero, SB = 0, for all states. However, this postulate leads to several other
inconsistencies, which are discussed in more detail in Sec. 3. Focussing on the example at hand for the moment,
let us just note that SB = 0 would again imply the nonsensical result TB = ∞, misrepresenting the physical fact
that also a single degree of freedom in a box-like confinement can store heat in finite amounts.

14Unless one believes that a quantum particle in a one-dimensional box is a Dark Energy candidate.
15Spurious arguments, often encountered in attempts to proclaim SB as superior to the Gibbs proposal SG, will

be addressed in Sec 3.

8

Dark energy ???



4 JANUARY 2013    VOL 339    SCIENCE    www.sciencemag.org 42

PERSPECTIVES

        U
ltracold quantum gases present an 
exquisitely tunable quantum sys-
tem. Applications include preci-

sion measurement ( 1), quantum simulations 
for advanced materials design ( 2), and new 
regimes of chemistry ( 3). Typically trapped 
in a combination of magnetic fi elds and laser 
beams, strongly isolated from the environ-
ment in an ultrahigh vacuum, and cooled to 
temperatures less than a microdegree above 
absolute zero, they are the coldest known 
material in the universe. The interactions 
between atoms in the gas can be tuned over 
seven orders of magnitude and from repul-
sive to attractive ( 4). The addition of stand-
ing waves made from interfering lasers at 
optical wavelengths gives rise to an optical 
lattice, a crystal of light, periodic just like 
the usual crystals made of matter. On page 
52 of this issue, Braun et al. ( 5) use these 
special features of ultracold quantum gases 
to produce a thermodynamic oddity—nega-
tive temperature.

Temperature is casually associated with 
hot and cold. How can something be “colder” 
than absolute zero? The answer lies in a more 
precise notion of temperature. Temperature is 
a single-parameter curve fi t to a probability 
distribution. Given a large number of parti-
cles, we can say each of them has a probabil-
ity to have some energy, P(E). Most will be in 
low-energy states and a few in higher-energy 
states. This probability distribution can be fi t 
very well with an exponential falling away to 
zero. Of course, the actual distribution may 
be very noisy, but an exponential fi t is still 
a good approximation (see the fi gure, panel 
A). Negative temperature means most parti-
cles are in a high-energy state, with a few in a 
low-energy state, so that the exponential rises 
instead of falls (see the fi gure, panel E).

To create negative temperature, Braun et 

al. had to produce an upper bound in energy, 
so particles could pile up in high-energy rather 
than low-energy states. In their experiment, 
there are three important kinds of energy: 
kinetic energy, or the energy of motion in the 
optical lattice; potential energy, due to mag-
netic fi elds trapping the gas; and interaction 
energy, due to interactions between the atoms 
in their gas. The lattice naturally gives an 

upper bound to kinetic energy via the forma-
tion of a band gap, a sort of energetic barrier 
to higher-energy states. The potential energy 
was made negative by the clever use of an 
anti-trap on top of the lattice, taking the shape 
of an upside-down parabola. Finally, the 
interactions were tuned to be attractive (neg-
ative). Thus, all three energies had an upper 
bound and, in principle, the atoms could pile 
up in high-energy states.

Braun et al. convinced their gas to undergo 
such a strange inversion using a quantum 
phase transition ( 6), an extension of the well-
known thermodynamic concept of phase tran-
sitions to a regime in which the temperature 
is so low that it plays no role in the change 
of phase. In this case, they worked with two 
phases, superfl uid and Mott insulator. In a 
superfl uid, the gas fl ows freely without vis-
cosity and is coherent, like a laser, but made 
of matter instead of light. In a Mott insula-
tor, the atoms freeze into a regular pattern and 
become incompressible, similar to a solid. 

Braun et al. fi rst make their atoms repulsive 
in a superfl uid phase. They tune them to a 
Mott insulating phase by simply turning up 
the intensity of the optical lattice lasers, mak-
ing the lattice deeper. Then they tune the inte-
reactions to be attractive and at the same time 
turn their trap upside down to be an anti-trap. 
Finally, they melt the Mott insulator to obtain 
an attractive superfl uid. These anti-traps have 
been used before, to create a self-propagat-
ing pulse of atoms that does not disperse (a 
bright soliton) from attractive gases in one 
dimension ( 7,  8). However, attractive quan-
tum gases in two and three dimensions can 
implode, rather spectacularly ( 9). This ten-
dency to implode is called negative pressure. 
The negative temperature is precisely what 
stabilizes the gas against negative pressure 
and implosion; the Mott insulator serves as 
a bridge state between positive temperature 
and pressure, and negative temperature and 
pressure (see the fi gure, panels B to D).

Braun et al.’s exploration of negative 
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phase transition.

Positive temperatureA E

B C D

Negative temperature

Repulsive superfluid Mott insulator Attractive superfluid

Pr
ob

ab
ili

ty
 P

(E
)

Pr
ob

ab
ili

ty
 P

(E
)

Energy E Energy E

Schematic experimental distribution

Low energy, positive pressure High energy, negative pressure

High energy

Quantum phase transition

Superfluid amplitude

Atoms Superfluid amplitude
 envelope

Trap flipped to anti-trap, interactions 
from repulsive to attractiveOptical lattice

Anti-trap

Low energy
Trap

Low energy, incompressible

One-parameter thermal fit

k
B
T > 0 k

B
T < 0

Low energy E
min High energy E

max

Less than zero. (A) Temperature is a one-parameter fi t: As the energy gets large, the probability that an atom 
will have that energy falls away exponentially. A quantum phase transition from a repulsive superfl uid (B) to 
a Mott insulator (C) provides a bridge to an attractive superfl uid (D), resulting in negative pressure balanced 
by negative temperature (E).

Department of Physics, Colorado School of Mines, Boulder, 
CO 80401, USA. E-mail: lcarr@mines.edu

Published by AAAS

 o
n

 J
a

n
u

a
ry

 3
, 

2
0

1
3

w
w

w
.s

c
ie

n
c
e

m
a

g
.o

rg
D

o
w

n
lo

a
d

e
d

 f
ro

m
 

4 JANUARY 2013    VOL 339    SCIENCE    www.sciencemag.org 42

PERSPECTIVES

        U
ltracold quantum gases present an 
exquisitely tunable quantum sys-
tem. Applications include preci-

sion measurement ( 1), quantum simulations 
for advanced materials design ( 2), and new 
regimes of chemistry ( 3). Typically trapped 
in a combination of magnetic fi elds and laser 
beams, strongly isolated from the environ-
ment in an ultrahigh vacuum, and cooled to 
temperatures less than a microdegree above 
absolute zero, they are the coldest known 
material in the universe. The interactions 
between atoms in the gas can be tuned over 
seven orders of magnitude and from repul-
sive to attractive ( 4). The addition of stand-
ing waves made from interfering lasers at 
optical wavelengths gives rise to an optical 
lattice, a crystal of light, periodic just like 
the usual crystals made of matter. On page 
52 of this issue, Braun et al. ( 5) use these 
special features of ultracold quantum gases 
to produce a thermodynamic oddity—nega-
tive temperature.

Temperature is casually associated with 
hot and cold. How can something be “colder” 
than absolute zero? The answer lies in a more 
precise notion of temperature. Temperature is 
a single-parameter curve fi t to a probability 
distribution. Given a large number of parti-
cles, we can say each of them has a probabil-
ity to have some energy, P(E). Most will be in 
low-energy states and a few in higher-energy 
states. This probability distribution can be fi t 
very well with an exponential falling away to 
zero. Of course, the actual distribution may 
be very noisy, but an exponential fi t is still 
a good approximation (see the fi gure, panel 
A). Negative temperature means most parti-
cles are in a high-energy state, with a few in a 
low-energy state, so that the exponential rises 
instead of falls (see the fi gure, panel E).

To create negative temperature, Braun et 

al. had to produce an upper bound in energy, 
so particles could pile up in high-energy rather 
than low-energy states. In their experiment, 
there are three important kinds of energy: 
kinetic energy, or the energy of motion in the 
optical lattice; potential energy, due to mag-
netic fi elds trapping the gas; and interaction 
energy, due to interactions between the atoms 
in their gas. The lattice naturally gives an 

upper bound to kinetic energy via the forma-
tion of a band gap, a sort of energetic barrier 
to higher-energy states. The potential energy 
was made negative by the clever use of an 
anti-trap on top of the lattice, taking the shape 
of an upside-down parabola. Finally, the 
interactions were tuned to be attractive (neg-
ative). Thus, all three energies had an upper 
bound and, in principle, the atoms could pile 
up in high-energy states.

Braun et al. convinced their gas to undergo 
such a strange inversion using a quantum 
phase transition ( 6), an extension of the well-
known thermodynamic concept of phase tran-
sitions to a regime in which the temperature 
is so low that it plays no role in the change 
of phase. In this case, they worked with two 
phases, superfl uid and Mott insulator. In a 
superfl uid, the gas fl ows freely without vis-
cosity and is coherent, like a laser, but made 
of matter instead of light. In a Mott insula-
tor, the atoms freeze into a regular pattern and 
become incompressible, similar to a solid. 

Braun et al. fi rst make their atoms repulsive 
in a superfl uid phase. They tune them to a 
Mott insulating phase by simply turning up 
the intensity of the optical lattice lasers, mak-
ing the lattice deeper. Then they tune the inte-
reactions to be attractive and at the same time 
turn their trap upside down to be an anti-trap. 
Finally, they melt the Mott insulator to obtain 
an attractive superfl uid. These anti-traps have 
been used before, to create a self-propagat-
ing pulse of atoms that does not disperse (a 
bright soliton) from attractive gases in one 
dimension ( 7,  8). However, attractive quan-
tum gases in two and three dimensions can 
implode, rather spectacularly ( 9). This ten-
dency to implode is called negative pressure. 
The negative temperature is precisely what 
stabilizes the gas against negative pressure 
and implosion; the Mott insulator serves as 
a bridge state between positive temperature 
and pressure, and negative temperature and 
pressure (see the fi gure, panels B to D).
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Less than zero. (A) Temperature is a one-parameter fi t: As the energy gets large, the probability that an atom 
will have that energy falls away exponentially. A quantum phase transition from a repulsive superfl uid (B) to 
a Mott insulator (C) provides a bridge to an attractive superfl uid (D), resulting in negative pressure balanced 
by negative temperature (E).
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Negative Absolute Temperature for
Motional Degrees of Freedom
S. Braun,1,2 J. P. Ronzheimer,1,2 M. Schreiber,1,2 S. S. Hodgman,1,2 T. Rom,1,2

I. Bloch,1,2 U. Schneider1,2*

Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probability Pi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a

1Fakultät für Physik, Ludwig-Maximilians-Universität München,
Schellingstraße 4, 80799Munich, Germany. 2Max-Planck-Institut
für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching,
Germany.
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PERSPECTIVES

        U
ltracold quantum gases present an 
exquisitely tunable quantum sys-
tem. Applications include preci-

sion measurement ( 1), quantum simulations 
for advanced materials design ( 2), and new 
regimes of chemistry ( 3). Typically trapped 
in a combination of magnetic fi elds and laser 
beams, strongly isolated from the environ-
ment in an ultrahigh vacuum, and cooled to 
temperatures less than a microdegree above 
absolute zero, they are the coldest known 
material in the universe. The interactions 
between atoms in the gas can be tuned over 
seven orders of magnitude and from repul-
sive to attractive ( 4). The addition of stand-
ing waves made from interfering lasers at 
optical wavelengths gives rise to an optical 
lattice, a crystal of light, periodic just like 
the usual crystals made of matter. On page 
52 of this issue, Braun et al. ( 5) use these 
special features of ultracold quantum gases 
to produce a thermodynamic oddity—nega-
tive temperature.

Temperature is casually associated with 
hot and cold. How can something be “colder” 
than absolute zero? The answer lies in a more 
precise notion of temperature. Temperature is 
a single-parameter curve fi t to a probability 
distribution. Given a large number of parti-
cles, we can say each of them has a probabil-
ity to have some energy, P(E). Most will be in 
low-energy states and a few in higher-energy 
states. This probability distribution can be fi t 
very well with an exponential falling away to 
zero. Of course, the actual distribution may 
be very noisy, but an exponential fi t is still 
a good approximation (see the fi gure, panel 
A). Negative temperature means most parti-
cles are in a high-energy state, with a few in a 
low-energy state, so that the exponential rises 
instead of falls (see the fi gure, panel E).

To create negative temperature, Braun et 

al. had to produce an upper bound in energy, 
so particles could pile up in high-energy rather 
than low-energy states. In their experiment, 
there are three important kinds of energy: 
kinetic energy, or the energy of motion in the 
optical lattice; potential energy, due to mag-
netic fi elds trapping the gas; and interaction 
energy, due to interactions between the atoms 
in their gas. The lattice naturally gives an 

upper bound to kinetic energy via the forma-
tion of a band gap, a sort of energetic barrier 
to higher-energy states. The potential energy 
was made negative by the clever use of an 
anti-trap on top of the lattice, taking the shape 
of an upside-down parabola. Finally, the 
interactions were tuned to be attractive (neg-
ative). Thus, all three energies had an upper 
bound and, in principle, the atoms could pile 
up in high-energy states.

Braun et al. convinced their gas to undergo 
such a strange inversion using a quantum 
phase transition ( 6), an extension of the well-
known thermodynamic concept of phase tran-
sitions to a regime in which the temperature 
is so low that it plays no role in the change 
of phase. In this case, they worked with two 
phases, superfl uid and Mott insulator. In a 
superfl uid, the gas fl ows freely without vis-
cosity and is coherent, like a laser, but made 
of matter instead of light. In a Mott insula-
tor, the atoms freeze into a regular pattern and 
become incompressible, similar to a solid. 

Braun et al. fi rst make their atoms repulsive 
in a superfl uid phase. They tune them to a 
Mott insulating phase by simply turning up 
the intensity of the optical lattice lasers, mak-
ing the lattice deeper. Then they tune the inte-
reactions to be attractive and at the same time 
turn their trap upside down to be an anti-trap. 
Finally, they melt the Mott insulator to obtain 
an attractive superfl uid. These anti-traps have 
been used before, to create a self-propagat-
ing pulse of atoms that does not disperse (a 
bright soliton) from attractive gases in one 
dimension ( 7,  8). However, attractive quan-
tum gases in two and three dimensions can 
implode, rather spectacularly ( 9). This ten-
dency to implode is called negative pressure. 
The negative temperature is precisely what 
stabilizes the gas against negative pressure 
and implosion; the Mott insulator serves as 
a bridge state between positive temperature 
and pressure, and negative temperature and 
pressure (see the fi gure, panels B to D).

Braun et al.’s exploration of negative 
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A cloud of potassium atoms is tuned 

to negative temperatures via a quantum 

phase transition.
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Less than zero. (A) Temperature is a one-parameter fi t: As the energy gets large, the probability that an atom 
will have that energy falls away exponentially. A quantum phase transition from a repulsive superfl uid (B) to 
a Mott insulator (C) provides a bridge to an attractive superfl uid (D), resulting in negative pressure balanced 
by negative temperature (E).
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Population inversion of one-particle levels



Experimental  evidence (?)
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FIG. 2. Relaxation time constant as a function of magnetic
field for Lir in LiF.

concerned and the reduction in the energy of the photons emitted

and absorbed.

Therefore, when one of us (R.V.P.)s discovered the long relaxa-

tion time of a pure single crystal of LiF, it was suggested by the

other (N.F.R.) that such long relaxation times make possible a

new nuclear magnetic resonance technique which would have high

sensitivity at low frequencies of the oscillating magnetic 6eld.

%'ith the new method, the crystal is removed from a strong mag-

netic field for a time short compared to the relaxation time of the

crystal in the absence of a strong field (15 sec for LiF) and during

this short time is placed in a weak audiofrequency magnetic

6eld. For one isotope of the crystal, the ratio of the nuclear mag-

netization immediately before and immediately after the removal

from the strong field is measured' with a radiofrequency spec-

trometer. This ratio is then observed as a function of the frequency

of the audio-oscillator. The dependence of this ratio on the audio-

oscillator frequency presumably arises from resonant heating of

the nuclear spin system to a temperature above the low value

attained by adiabatic demagnetization when the crystal is re-

moved from the strong magnetic field.

In this way the audiofrequency spectrum of LiF was studied

between 20 and 200,000 cycles/sec with the strong 6eld (6376

gauss) observations being of the Li' resonance. Kith audio-

frequency magnetic fields of about 0.2 gauss, it was found that

resonant heating did not take place below 100 cycles but did occur

continuously and completely at frequencies between 1000 cycles

and 200,000 cycles. However, when the amplitude of the audio-

frequency field was reduced to 0.018 gauss applied for 3 sec,

a nuclear audiofrequency spectrum was observed which possessed

a broad maximum centered at 50 kc and with a width at half

maximum of about 45 kc as shown in the lowest curve in Fig. i.
The first practical application of the 50 kc audiofrequency

spectrum of LiF was its indication that the magnetic field reversal

in the negative temperature experiments described in an accom-

panying paper' must be accomplished in a time short compared

to 1/50 of a msec.
The efFect of an external fixed magnetic 6eld on the audio-

frequency spectrum was also measured and is shown for difFerent

values of the magnetic 6eld between 0 and 42 gauss in the upper

curves of Fig. 1.It is of interest to note that the ratios of frequency
to 6eld for the two pronounced minima of the highest field curve

correspond to nuclear g-factors 5.2 and 2.2 in surprisingly close

agreement with the nuclear g-factors 5.26 and 2.17 for F"and Li~

respectively. The reduction of the subsequent Li7 magnetization

by an oscillatory field appropriate to F"indicates that during or

subsequent to the application of the oscillatory 6eld the Li and F
spin systems are in at least partial thermal equilibrium.

The efFect of the external fixed magnetic 6eld on the relaxation

time in the absence of an audiofrequency field is shown in Fig. 2,
where the length of time for reduction of the strong 6eld resonance

by a factor of two is plotted as a function of the strength of the

weak magnetic 6eld in which the sample is stored.

I Bloembergen, Purcell, and Pound, Phys. Rev. 'V3, 679 (1948).
' R. V. Pound, Phys. Rev. Sl, 156 (1951).
3 E. M. Purcell and R. V. Pound, Phys. Rev. S1. 279 (1951).

A Nuclear Spin System at Negative Temperature

E. M. PURCEI.L AND R. V. POUND
Department of Physics, Harvard Uwieersity, Cambridge, Massachusetts

November 1, 1950

A NUMBER of special experiments have been performed with

a crystal of LiF which, as reported previously, ' had long

relaxation times both in a strong field and in the earth's 6eld.

These experiments were designed to discover the conditions deter-

mining the sense of remagnetization by a strong field when the

initially magnetized crystal was put for a brief interval in the

earth's field.

At field strengths allowing the system to be described by its

net magnetic moment and angular momentum, a suKciently rapid

reversal of the direction of the magnetic 6eld should result in a
magnetization opposed to the new sense of the 6eld. The reversal

must occur in such a way that the time spent below a minimum

effective 6eld is so small compared to the period of the Larmor

precession that the system cannot follow the change adiabatically.

The experiments in zero 6eld reported above' showed a zero field

resonance at about 50 kc and therefore the following experiment

was tried.

The crystal, initially at equilibrium magnetization in the strong

(6376 gauss) field, was quickly removed, through the earth' s

field, and placed inside a small solenoid, the axis of which was

FIG. 1. A typical record of the reversed nuclear magnetization. On the
left is a deflection characteristic of the normal state at equilibrium mag-
netization (T=300'K), followed by the reversed deflection (T= -350'K),
decaying (T-+—~) through *ero deflection (T = ~) to the initial equi-
librium state.

280 LETTE RS TO THE E D I TOR

parallel to a 6eld of about 100 gauss, provided by a small perma-
nent magnet. A 2 pfd condenser, initially charged to 8 kv, was
discharged through the coil, with 500 ohms in series, in such a
sense that the 6eld in the coil reversed to about —100 gauss,
with a time constant of about 0.2 @sec and decayed back to the
original 6eld with a time constant of 1 msec. The crystal was

quickly returned, through the earth's 6eld, to the strong magnet

and the Liv resonance sampled. The operation could be done in 2

to 3 sec. A reversed deflection was found and it decayed, through
zero, to the equilibrium state with the characteristic 5-min time

constant. A typical record is shown in Fig. 1.
The state of spin system just after this treatment is thought to

be properly described by a negative spin temperature. The system
loses internal energy as it gains entropy, and the reversed de-

Qection corresponds to induced radiation. Statistically, the most

probable distribution of systems over a ftnke number of equally
spaced energy levels, holding the total energy constant, is the

Boltzmann distribution with either positive or negative tempera-

ture determined by whether the average energy per system is

smaller or larger, respectively, than the mid-energy of the avail-

able levels. The sudden reversal of the magnetic 6eld produces

the latter situation.
One needs yet to be convinced that a single temperature ade-

quately describes the nuclear spin state. Bearing on this is the

fact that the crystal passes through the earth's Geld after the

inverted population is produced, on its way back to the main

magnet. The retention of the reversed magnetization requires

that the spin-only-state, in the earth's field, have an inverted

population and be described by a suitably small (~—1'K)
negative temperature. Thus a very short time is required for the

attainment of thermal equilibrium within the spin system itself

(not the ordinary T&, however}.

A system in a negative temperature state is not cold, but very

hot, giving up energy to any system at positive temperature put
into contact with it. It decays to a normal state through infinite

temperature.
This and related experiments indicate that the spin system is

able to follow changes in even a small 6eld adiabatically unless

they occur in a time presumed to be less than about 20 @sec,

~ R. V. Pound, Phys. Rev. 81, 156 (1951).
2 N. F. Ramsey and R. V. Pound, Phys. Rev. 81, 278 (1951).

Erratum: Experiments on the Effect of Atomic
Electrons on the Decay Constant of Be'. lI

[Phys. Rev. 76, 897 (1949)]

R. F. LEININGER, E. SEGRE, AND C. WIEGAND
Radiation Laboratory, Department of Physics, University of California,

Berkeley, California

N Fig. 1 we have erroneously plotted 28e"t instead of he"t as
~ - indicated on the ordinate scale on the left, The 6nal result is
in error by a factor 2 and should read:

)I (BeO)—) (BeF2}= (0.69~0.03)10 9(BeO)
P (Be)—X(BeF2)= (0.84&0.10)10 'X(Be).

On the Nuclear Magnetic Moment of Na"
R. A. LOGAN AND P. KUSCH

Cohcmbia University, + !m York, !vu York
November 30, 1950

DISCREPANCY occurs between the nuclear g values of'

Ga and' In as determined from measurements on the hfs

spectrum of these atoms in the ground state (sPIt~) and as deter-

mined by the nuclear resonance method where the nuclei occur in

molecules. Foley' has discussed the effect of the partial decoupling

by the applied magnetic field of the I. and S vectors in the 2PIls

state on the nuclear g-value obtained from observational data
under the assumption that decoupling does not occur. He con-

cludes that the diagonal magnetic interaction term mlglppH

which was assumed in finding gt from the experimental data is to

be modi6ed by a small perturbation term which is, itself, pro-
portional to the applied magnetic 6eld. For the cases of gallium
and indium the apparent g-value determined from the hfs of
atoms is thus greater than the g-value obtained in the nuclear

resonance experiments. Foley indicates a satisfactory agreement
between the observed and calculated values of the discrepancy,
especially in view of uncertainties in the theoretical calculations

and a rather large experimental error.
It is of interest to determine whether or not a similar dis-

crepancy appears for the case of a nucleus which occurs in an
atom in the 'SI&2 state, where the eBect considered by Foley
cannot appeaq. A previous measurement4 has indicated that the
apparent nuclear g-value of Cs is, indeed, the same within a
rather large experimental uncertainty when measured in a mole-
cule and when measured in an atom in the ISING state. A precision
measurement of the g-value of sodium is reported here.
Essentially use is made of the fact that certain lines

(F, tn)~(F, m—1) consist of doublets, one component of which
arises in the state F=I+q and the other one of which arises in the
state F=I—$.The frequency separation of the doublet is 2gl poH/It
and the mean frequency of the doublet permits determination of
the quantity x=(gg—gt)IJ,OH/b'av, if Av is itself known, and

hence of gl/gg. The Av of Na~ was found to be 1771.631&0.002
X10' sec ' by a method previously described' which depends on
the existence of a maximum in the frequencies of certain lines

in the hfs spectrum. The doublet (F, 1}~(F,0) was observed at
a field of about 6800 gauss where the mean frequency of the
doublet is still sufIiciently Geld dependent to permit an accurate
determination of x and the doublet separation becomes large
enough (~16X10 sec ') to permit accurate measurement in

the face of a large over-all frequency (~430)&10 sec '). Ke find
then that

gg(Na, ~SI12)/gt(Na 'SI(2) =—2488 39+0 15
Since' gt(H)/gg(Na, 'SII2) =—15.1927)&10 '~0.005 percent, we

find gr(Na, 'SI12)/gl(H}=0. 26451+0.008 percent. This is to be
compared with Bitter'ss result gI(Na, mole}/gt(H) =0.26450&0.01
percent. The excellent agreement indicates that the apparent
nuclear g-value measured in an atom in the sSIt~ state is, in fact,
equal to the true nuclear g-value within the diamagnetic correc-
tion. Since no effect is here observed, it appears that the effect

discussed by Foley accounts for the entire discrepancy observed

for atoms in the 'PI) 2 state.
Determinations of the spin g-value of the electron reported

heretofore depend on a measurement of the ratio of the electronic

gg of atoms in different electronic configurations. A combination
of our present result with that of Bitter and with the result of
Gardner and PurcelP for 2gI./gl(8) yields g,/gl, =2(1.00107
&0.00012} under the assumption that g J(Na, 'SI~2) =g, and that
no differential diamagnetic correction is to be applied to the

nuclear moment of sodium in an atom and in a molecular con-

6guration. It is of interest that this result does not depend on any
assumption as to the gg-values of P-states. The result agrees with
other data on the spin moment of the electron. While it could be
improved, a very accurate determination is precluded by the
nature of the assumptions.
*This research was supported in part by the ONR.
~ P. Kusch, Phys. Rev. 78, 615 (1950).' Private communication from W. G. Proctor.
3 H. M. Foley, Phys. Rev. 80, 288 (1950).
4 P, Kusch and H. Taub, Phys. Rev. 75, 1477 (1949).
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~ F. Bitter, Phys. Rev. 75, 1326 (1949).
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Numerical Evaluation of the Fermi
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TTENTION has recently been drawn by Feister' to methods
of calculating the Fermi P-distribution function,

f(s, q) =q'+"e "~I'(1+s+iy) ~'.
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FIG. 2. Relaxation time constant as a function of magnetic
field for Lir in LiF.

concerned and the reduction in the energy of the photons emitted

and absorbed.

Therefore, when one of us (R.V.P.)s discovered the long relaxa-

tion time of a pure single crystal of LiF, it was suggested by the

other (N.F.R.) that such long relaxation times make possible a

new nuclear magnetic resonance technique which would have high

sensitivity at low frequencies of the oscillating magnetic 6eld.

%'ith the new method, the crystal is removed from a strong mag-

netic field for a time short compared to the relaxation time of the

crystal in the absence of a strong field (15 sec for LiF) and during

this short time is placed in a weak audiofrequency magnetic

6eld. For one isotope of the crystal, the ratio of the nuclear mag-

netization immediately before and immediately after the removal

from the strong field is measured' with a radiofrequency spec-

trometer. This ratio is then observed as a function of the frequency

of the audio-oscillator. The dependence of this ratio on the audio-

oscillator frequency presumably arises from resonant heating of

the nuclear spin system to a temperature above the low value

attained by adiabatic demagnetization when the crystal is re-

moved from the strong magnetic field.

In this way the audiofrequency spectrum of LiF was studied

between 20 and 200,000 cycles/sec with the strong 6eld (6376

gauss) observations being of the Li' resonance. Kith audio-

frequency magnetic fields of about 0.2 gauss, it was found that

resonant heating did not take place below 100 cycles but did occur

continuously and completely at frequencies between 1000 cycles

and 200,000 cycles. However, when the amplitude of the audio-

frequency field was reduced to 0.018 gauss applied for 3 sec,

a nuclear audiofrequency spectrum was observed which possessed

a broad maximum centered at 50 kc and with a width at half

maximum of about 45 kc as shown in the lowest curve in Fig. i.
The first practical application of the 50 kc audiofrequency

spectrum of LiF was its indication that the magnetic field reversal

in the negative temperature experiments described in an accom-

panying paper' must be accomplished in a time short compared

to 1/50 of a msec.
The efFect of an external fixed magnetic 6eld on the audio-

frequency spectrum was also measured and is shown for difFerent

values of the magnetic 6eld between 0 and 42 gauss in the upper

curves of Fig. 1.It is of interest to note that the ratios of frequency
to 6eld for the two pronounced minima of the highest field curve

correspond to nuclear g-factors 5.2 and 2.2 in surprisingly close

agreement with the nuclear g-factors 5.26 and 2.17 for F"and Li~

respectively. The reduction of the subsequent Li7 magnetization

by an oscillatory field appropriate to F"indicates that during or

subsequent to the application of the oscillatory 6eld the Li and F
spin systems are in at least partial thermal equilibrium.

The efFect of the external fixed magnetic 6eld on the relaxation

time in the absence of an audiofrequency field is shown in Fig. 2,
where the length of time for reduction of the strong 6eld resonance

by a factor of two is plotted as a function of the strength of the

weak magnetic 6eld in which the sample is stored.

I Bloembergen, Purcell, and Pound, Phys. Rev. 'V3, 679 (1948).
' R. V. Pound, Phys. Rev. Sl, 156 (1951).
3 E. M. Purcell and R. V. Pound, Phys. Rev. S1. 279 (1951).
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A NUMBER of special experiments have been performed with

a crystal of LiF which, as reported previously, ' had long

relaxation times both in a strong field and in the earth's 6eld.

These experiments were designed to discover the conditions deter-

mining the sense of remagnetization by a strong field when the

initially magnetized crystal was put for a brief interval in the

earth's field.

At field strengths allowing the system to be described by its

net magnetic moment and angular momentum, a suKciently rapid

reversal of the direction of the magnetic 6eld should result in a
magnetization opposed to the new sense of the 6eld. The reversal

must occur in such a way that the time spent below a minimum

effective 6eld is so small compared to the period of the Larmor

precession that the system cannot follow the change adiabatically.

The experiments in zero 6eld reported above' showed a zero field

resonance at about 50 kc and therefore the following experiment

was tried.

The crystal, initially at equilibrium magnetization in the strong

(6376 gauss) field, was quickly removed, through the earth' s

field, and placed inside a small solenoid, the axis of which was

FIG. 1. A typical record of the reversed nuclear magnetization. On the
left is a deflection characteristic of the normal state at equilibrium mag-
netization (T=300'K), followed by the reversed deflection (T= -350'K),
decaying (T-+—~) through *ero deflection (T = ~) to the initial equi-
librium state.

 nuclear spin 
population inversion 
in LiF crystal due to 
rapid switching of 

MF

5 Conclusions
Groundbreaking experiments like those by Purcell and Pound [1] and Braun et al. [6] are es-
sential for verifying the conceptual foundations of thermodynamics and thermostatistics. Such
studies disclose previously unexplored regimes, thereby enabling us to test and, where neces-
sary, expand theoretical concepts that will allow us to make predictions and are essential for the
development of new technologies. However, the correct interpretation of data and the consistent
formulation of heat and work exchange [11] under extreme physical conditions (e.g., at ultra-
cold or ultrahot temperatures, or on atomic or astronomical scales) require special care [29]
when it comes to applying the definitions and conventions that constitute a specific theoreti-
cal framework. When interpreted within a consistent thermostatistical theory, as developed by
Gibbs [10] more than a century ago, the pioneering experiments of both Purcell and Pound [1]
and Braun et al. [6] suggest that the answer to the question ‘Negative absolute temperatures?’
should remain: ‘Not in thermodynamics.’

To end on a conciliatory note, we do not question that alternative temperature concepts (e.g.,
effective spin temperatures) can be very useful if their terms-of-use have been well-defined, and
agreed upon, in a specific context – they should however be carefully distinguished from the
absolute thermodynamic temperature T , especially when misidentification causes unnecessary
confusion about the validity of well-established thermostatistical axioms and theorems [9], such
as the non-negativity of T or the efficiencies of heat engines.

Acknowledgements. We thank I. Bloch and U. Schneider for discussions. We are grateful
to M. Campisi for pointing out Eq. (28), and to P. Hänggi and R. E. Goldstein for numerous
helpful comments.
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Negative Absolute Temperature for
Motional Degrees of Freedom
S. Braun,1,2 J. P. Ronzheimer,1,2 M. Schreiber,1,2 S. S. Hodgman,1,2 T. Rom,1,2

I. Bloch,1,2 U. Schneider1,2*

Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probability Pi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a

1Fakultät für Physik, Ludwig-Maximilians-Universität München,
Schellingstraße 4, 80799Munich, Germany. 2Max-Planck-Institut
für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching,
Germany.
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ulrich.schneider@lmu.de.
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sufficiently deep optical lattice are described by
the Bose-Hubbard Hamiltonian (12)

H ¼ −J ∑
〈i;j〉

b%
†
i b
%
j þ

U
2
∑
i
n%iðn%i − 1Þ þ V∑

i
r2i n% i ð2Þ

Here, J is the tunneling matrix element be-
tween neighboring lattice sites 〈i, j〉, and b%i and
b%
†
i are the annihilation and creation operator,
respectively, for a boson on site i,U is the on-site
interaction energy, n% i ¼ b%

†
i b
%
i is the local number

operator, and V º w2 describes the external har-
monic confinement, with ri denoting the posi-

tion of site i with respect to the trap center andw
the trap frequency.

In Fig. 1B, we show how lower and upper
bounds can be realized for the three terms in the
Hubbard Hamiltonian. The restriction to a single
band naturally provides lower and upper bounds
for the kinetic energy Ekin, but the interaction
term Eint presents a challenge: Because in prin-
ciple all bosons could occupy the same lattice
site, the interaction energy can diverge in the
thermodynamic limit. For repulsive interactions
(U > 0), the interaction energy is only bounded

from below but not from above, thereby limiting
the system to positive temperatures; in contrast,
for attractive interactions (U < 0), only an upper
bound for the interaction energy is established,
rendering positive temperature ensembles unsta-
ble. The situation is different for the Fermi-Hubbard
model, where the Pauli principle enforces an up-
per limit on the interaction energy per atom of
U/2 and thereby allows negative temperatures
even in the repulsive case (13, 14). Similarly, a
trapping potential V > 0 only provides a lower
bound for the potential energy Epot, whereas an

Fig. 1. Negative absolute temperature in optical lattices. (A) Sketch of entropy
as a function of energy in a canonical ensemble possessing both lower (Emin) and
upper (Emax) energy bounds. (Insets) Sample occupation distributions of single-
particle states for positive, infinite, and negative temperature, assuming a weakly
interacting ensemble. (B) Energy bounds of the three terms of the 2D Bose-
Hubbard Hamiltonian: kinetic (Ekin), interaction (Eint), and potential (Epot) energy.
(C) Measured momentum distributions (TOF images) for positive (left) and neg-
ative (right) temperature states. Both images are averages of about 20 shots;
both optical densities (OD) are individually scaled. The contour plots below show
the tight-binding dispersion relation; momenta with large occupation are high-
lighted. The white square in the center indicates the first Brillouin zone.

Fig. 2. Experimental sequence and TOF images. (A) Top to bottom: lattice
depth, horizontal trap frequency, and scattering length as a function of
time. Blue indicates the sequence for positive, red for negative temper-
ature of the final state. (B) TOF images of the atomic cloud at various times
t in the sequence. Blue borders indicate positive, red negative temper-

atures. The initial picture in a shallow lattice at t = 6.8 ms is taken once for
a scattering length of a = 309(5) a0 (top) as in the sequence, and once for
a = 33(1) a0 (bottom; OD rescaled by a factor of 0.25), comparable to the
final images. All images are averages of about 20 individual shots. See
also Fig. 1C.
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• U>0:   repulsive interactions
• U<0:   attractive interactions 

Ultra-cold boson gas in optical lattice  

anti-trapping potential V < 0 creates an upper
bound.Therefore, stable negative temperature states
with bosons can exist only for attractive interac-
tions and an anti-trapping potential.

To bridge the transition between positive and
negative temperatures, we used the n = 1 Mott
insulator (15) close to the atomic limit (|U |/J →∞),
which can be approximated by a product of Fock
states jY〉 ¼ ∏ib

%†
i j0〉. Because this state is amany-

body eigenstate in both the repulsive and the at-
tractive case, it allows us to switch between these
regimes, ideally without producing entropy. The
employed sequence (Fig. 2A) is based on a pro-
posal by Rapp et al. (4), building on previous ideas
by Mosk (3). It essentially consists of loading a
repulsively interacting Bose-Einstein condensate
(BEC) into the deep Mott insulating regime (I in
Fig. 2A), switching U and V to negative values
(II), and finally melting the Mott insulator again
by reducing |U |/J (III). For comparison, we also
created a final positive temperature state with an
analog sequence.

The experiment startedwith a BEC of 1.1(2)×
105 39K atoms in a pure dipole trap with hori-
zontal trap frequency wdip (V > 0) at positive
temperature (T > 0) and a scattering length of a =
309(5) a0, with a0 the Bohr radius. We ramped
up a three-dimensional (3D) optical lattice (I) with
simple cubic symmetry to a depth ofVlat = 22(1)
Er. Here, Er ¼ h2=ð2ml2latÞ is the recoil energy
with Planck’s constant h, the atomic mass m,
and the lattice wavelength llat = 736.65 nm. The
blue-detuned optical lattice provides an overall
anti-trapping potential with a formally imaginary
horizontal trap frequency wlat that reduces the
confinement of the dipole trap, giving an effective
horizontal trap frequencywhor ¼ ðw2

dip þ w2
latÞ

1=2.
Once the atoms are in the deep Mott insulating
regime where tunneling can essentially be ne-

glected [tunneling time t = h/(2pJ ) = 10(2) ms],
we set the desired attractive (repulsive) interac-
tions (II) to prepare a final negative (positive)
temperature state using a Feshbach resonance
(16). Simultaneously, we decreased the horizon-
tal confinement to an overall anti-trapping (trap-
ping) potential by reducing wdip. Subsequently,
we lowered the horizontal lattice depths (III), yield-
ing a final value ofU/J = −2.1(1) [U/J = +1.9(1)],
and probed the resulting momentum distribution
by absorption imaging after 7 ms time-of-flight
(TOF). The whole sequence was experimentally
optimized to maximize the visibility of the final
negative temperature state. We chose a 2D geom-
etry for the final state to enable strong anti-trapping
potentials and to avoid detrimental effects due to
gravity (9).

In Fig. 2B, we show TOF images of the cloud
for various times t in the sequence, indicated in
Fig. 2A. During the initial lattice ramp [at Vlat =
6.1(1)Er], interference peaks of the superfluid
in the lattice can be observed (t = 6.8 ms) (Fig.
2B, top). Because quantum depletion caused by
the strong repulsive interactions already reduces
the visibility of the interference peaks in this
image (17), we also show the initial superfluid for
identical lattice and dipole ramps, but at a scat-
tering length of a = 33(1) a0 (t = 6.8 ms) (Fig. 2B,
bottom). The interference peaks are lost as the
Mott insulating regime is entered (t = 25 ms). In
the deep lattice, only weak nearest-neighbor cor-
relations are expected, resulting in similar images
for both repulsive and attractive interactions (t =
28ms). After reducing the horizontal lattice depths

back into the superfluid regime, the coherence
of the atomic sample emerges again. For positive
temperatures, the final image at t = 30.5 ms is
comparable, albeit somewhat heated, to the ini-
tial one at t = 6.8 ms, whereas for attractive in-
teractions, sharp peaks show up in the corners of
the first Brillouin zone, indicating macroscopic
occupation ofmaximumkinetic energy. The spon-
taneous development of these sharp interference
peaks is a striking signature of a stable negative
temperature state formotional degrees of freedom.
In principle, the system can enter the negative
temperature regime following one of two routes:
It either stays close to thermal equilibrium during
the entire sequence or, alternatively, relaxes toward
a thermal distribution during lattice ramp-down.
Either way demonstrates the thermodynamic sta-
bility of this negative temperature state.

To examine the degree of thermalization in
the final states, we used band-mapped (18) im-
ages and extracted the kinetic energy distribution,
assuming a noninteracting lattice dispersion rela-
tion Ekin(qx,qy). The result is shown in Fig. 3,
displaying very good agreement with a fitted
Bose-Einstein distribution. The fitted tempera-
tures of T = −2.2J/kB and T = 2.7J/kB for the two
cases only represent upper bounds for the ab-
solute values |T | of the average temperature be-
cause the fits neglect the inhomogeneous filling
of the sample (9). Both temperatures are slight-
ly larger than the critical temperature |TBKT| ≈
1.8J/kB (19) for the superfluid transition in an
infinite 2D system but lie below the condensation
temperature |TC| = 3.4(2)J/kB of noninteracting

Fig. 3. Occupation distributions. The occupation
of the kinetic energies within the first Brillouin
zone is plotted for the final positive (blue) and neg-
ative (red) temperature states. Points show exper-
imental data extracted from band-mapped pictures.
Solid lines are fits to a noninteracting Bose-Einstein
distributionassumingahomogeneous system. (Insets)
Top row: Symmetrized positive (left) and negative
(right) temperature images of the quasimomentum
distribution in the horizontal plane. Bottom row:
Fitted distributions for the two cases. All distribu-
tions are broadened by the in situ cloud size (9).

Fig. 4. Stability of the positive (blue) and negative (red) temperature states. Main figure: Visibility
V = (nb − nr)/(nb + nr) extracted from the atom numbers in the black (nb) and red (nr) boxes (indicated in
the TOF images) plotted versus hold time in the final state for various horizontal trap frequencies. Dark
red, |whor|/2p = 43(1) Hz anti-trapping; medium red, 22(3) Hz anti-trapping; light red, 42(3) Hz trapping;
blue, 45(3) Hz trapping. (Inset) Coherence lifetimes t extracted from exponential fits (solid lines in main
figure). The statistical error bars from the fits are smaller than the data points. The color scale of the
images is identical to Fig. 2B (see also fig. S3).

4 JANUARY 2013 VOL 339 SCIENCE www.sciencemag.org54

REPORTS

 o
n
 J

a
n
u
a
ry

 3
, 
2
0
1
3

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f
ro

m
 

sufficiently deep optical lattice are described by
the Bose-Hubbard Hamiltonian (12)

H ¼ −J ∑
〈i;j〉

b%
†
i b
%
j þ

U
2
∑
i
n%iðn%i − 1Þ þ V∑

i
r2i n% i ð2Þ

Here, J is the tunneling matrix element be-
tween neighboring lattice sites 〈i, j〉, and b%i and
b%
†
i are the annihilation and creation operator,
respectively, for a boson on site i,U is the on-site
interaction energy, n% i ¼ b%

†
i b
%
i is the local number

operator, and V º w2 describes the external har-
monic confinement, with ri denoting the posi-

tion of site i with respect to the trap center andw
the trap frequency.

In Fig. 1B, we show how lower and upper
bounds can be realized for the three terms in the
Hubbard Hamiltonian. The restriction to a single
band naturally provides lower and upper bounds
for the kinetic energy Ekin, but the interaction
term Eint presents a challenge: Because in prin-
ciple all bosons could occupy the same lattice
site, the interaction energy can diverge in the
thermodynamic limit. For repulsive interactions
(U > 0), the interaction energy is only bounded

from below but not from above, thereby limiting
the system to positive temperatures; in contrast,
for attractive interactions (U < 0), only an upper
bound for the interaction energy is established,
rendering positive temperature ensembles unsta-
ble. The situation is different for the Fermi-Hubbard
model, where the Pauli principle enforces an up-
per limit on the interaction energy per atom of
U/2 and thereby allows negative temperatures
even in the repulsive case (13, 14). Similarly, a
trapping potential V > 0 only provides a lower
bound for the potential energy Epot, whereas an

Fig. 1. Negative absolute temperature in optical lattices. (A) Sketch of entropy
as a function of energy in a canonical ensemble possessing both lower (Emin) and
upper (Emax) energy bounds. (Insets) Sample occupation distributions of single-
particle states for positive, infinite, and negative temperature, assuming a weakly
interacting ensemble. (B) Energy bounds of the three terms of the 2D Bose-
Hubbard Hamiltonian: kinetic (Ekin), interaction (Eint), and potential (Epot) energy.
(C) Measured momentum distributions (TOF images) for positive (left) and neg-
ative (right) temperature states. Both images are averages of about 20 shots;
both optical densities (OD) are individually scaled. The contour plots below show
the tight-binding dispersion relation; momenta with large occupation are high-
lighted. The white square in the center indicates the first Brillouin zone.

Fig. 2. Experimental sequence and TOF images. (A) Top to bottom: lattice
depth, horizontal trap frequency, and scattering length as a function of
time. Blue indicates the sequence for positive, red for negative temper-
ature of the final state. (B) TOF images of the atomic cloud at various times
t in the sequence. Blue borders indicate positive, red negative temper-

atures. The initial picture in a shallow lattice at t = 6.8 ms is taken once for
a scattering length of a = 309(5) a0 (top) as in the sequence, and once for
a = 33(1) a0 (bottom; OD rescaled by a factor of 0.25), comparable to the
final images. All images are averages of about 20 individual shots. See
also Fig. 1C.
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Claim:   for U,V<0 spectrum bounded from above,  
population inversion in momentum space 

via Feshbach resonance
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Negative Absolute Temperature for
Motional Degrees of Freedom
S. Braun,1,2 J. P. Ronzheimer,1,2 M. Schreiber,1,2 S. S. Hodgman,1,2 T. Rom,1,2
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Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probabilityPi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a
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sufficiently deep optical lattice are described by
the Bose-Hubbard Hamiltonian (12)

H ¼ −J ∑
〈i;j〉

b%
†
i b
%
j þ

U
2
∑
i
n%iðn%i − 1Þ þ V∑

i
r2i n% i ð2Þ

Here, J is the tunneling matrix element be-
tween neighboring lattice sites 〈i, j〉, and b%i and
b%
†
i are the annihilation and creation operator,
respectively, for a boson on site i,U is the on-site
interaction energy, n% i ¼ b%

†
i b
%
i is the local number

operator, and V º w2 describes the external har-
monic confinement, with ri denoting the posi-

tion of site i with respect to the trap center andw
the trap frequency.

In Fig. 1B, we show how lower and upper
bounds can be realized for the three terms in the
Hubbard Hamiltonian. The restriction to a single
band naturally provides lower and upper bounds
for the kinetic energy Ekin, but the interaction
term Eint presents a challenge: Because in prin-
ciple all bosons could occupy the same lattice
site, the interaction energy can diverge in the
thermodynamic limit. For repulsive interactions
(U > 0), the interaction energy is only bounded

from below but not from above, thereby limiting
the system to positive temperatures; in contrast,
for attractive interactions (U < 0), only an upper
bound for the interaction energy is established,
rendering positive temperature ensembles unsta-
ble. The situation is different for the Fermi-Hubbard
model, where the Pauli principle enforces an up-
per limit on the interaction energy per atom of
U/2 and thereby allows negative temperatures
even in the repulsive case (13, 14). Similarly, a
trapping potential V > 0 only provides a lower
bound for the potential energy Epot, whereas an

Fig. 1. Negative absolute temperature in optical lattices. (A) Sketch of entropy
as a function of energy in a canonical ensemble possessing both lower (Emin) and
upper (Emax) energy bounds. (Insets) Sample occupation distributions of single-
particle states for positive, infinite, and negative temperature, assuming a weakly
interacting ensemble. (B) Energy bounds of the three terms of the 2D Bose-
Hubbard Hamiltonian: kinetic (Ekin), interaction (Eint), and potential (Epot) energy.
(C) Measured momentum distributions (TOF images) for positive (left) and neg-
ative (right) temperature states. Both images are averages of about 20 shots;
both optical densities (OD) are individually scaled. The contour plots below show
the tight-binding dispersion relation; momenta with large occupation are high-
lighted. The white square in the center indicates the first Brillouin zone.

Fig. 2. Experimental sequence and TOF images. (A) Top to bottom: lattice
depth, horizontal trap frequency, and scattering length as a function of
time. Blue indicates the sequence for positive, red for negative temper-
ature of the final state. (B) TOF images of the atomic cloud at various times
t in the sequence. Blue borders indicate positive, red negative temper-

atures. The initial picture in a shallow lattice at t = 6.8 ms is taken once for
a scattering length of a = 309(5) a0 (top) as in the sequence, and once for
a = 33(1) a0 (bottom; OD rescaled by a factor of 0.25), comparable to the
final images. All images are averages of about 20 individual shots. See
also Fig. 1C.
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Negative Absolute Temperature for
Motional Degrees of Freedom
S. Braun,1,2 J. P. Ronzheimer,1,2 M. Schreiber,1,2 S. S. Hodgman,1,2 T. Rom,1,2

I. Bloch,1,2 U. Schneider1,2*

Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probabilityPi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a
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1.4 Measuring TB vs. TG

To conclude this section, let us still clarify why the method employed, for example, by Braun et
al. [6] measures TB and not the thermodynamic temperature T = TG. We restrict ourselves to
sketching the main idea as the technical details of the derivation can be found in most modern
textbooks on statistical mechanics [15, 16].

We recall that Braun et al. [6] estimate an effective ‘temperature’ by fitting an exponential
Bose-Einstein function to their experimentally obtained one-particle distributions. Let us as-
sume their system contains N ⌅ 1 particles and denote the corresponding Hamiltonian by HN

and the DoS by ⇤N . Then, the formally exact MC one-particle density operator is given by

⇥1 = TrN�1[⇥N ] =
TrN�1[�(E �HN)]

⇤N
. (25)

To obtain an exponential (canonical) fitting formula, as used in the experiments, one first has to
rewrite ⇥1 in the equivalent form

⇥1 = exp[ln ⇥1]. (26)

Then, applying a standard steepest descent approximation [15, 16] to the logarithm and assum-
ing discrete one-particle levels E�, one finds for the relative occupancy p� of one-particle level
E� the canonical form16

p� ⇧
e�E�/(kBTB)

Z
, Z =

�

�

e�E�/(kBTB). (27)

The key observation here is that this exponential approximation features TB and not the absolute
thermodynamic Gibbs temperature T = TG. Hence, by fitting the one-particle distribution,
Braun et al. [6] determined the Boltzmann temperature TB, which can be negative, whereas the
thermodynamic Gibbs temperature T = TG is always non-negative. From the above definitions,
it is straightforward to show that, generally,

TB =
TG

1� kB/C
, (28)

where C = (⌅TG/⌅E)�1 is the heat capacity. Evidently, differences between TG and TB

become relevant only if |C| is close to or smaller than kB; in particular, TB is negative if
0 < C < kB. From a practical perspective, Eq. (28) is useful as it allows to reconstruct the
non-negative absolute temperature T = TG from measurements of TB and C, but TG can, of
course, also be directly measured.

16This becomes obvious by writing (25) for a given one-particle energy E� as p� = �N�1(E � E�)/�N (E) =
exp[ln�N�1(E � E�)]/�N (E) and expanding for E� ⇤ E, which gives p� ⌃ exp[�E�/(kBTB,N�1)] where
kBTB,N�1 ⇥ �N�1(E)/�⇥

N�1(E) in agreement with Eq. (7). That is, TB in (27) is actually the Boltzmann
temperature of the (N � 1)-particle system.
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course, also be directly measured.

16This becomes obvious by writing (25) for a given one-particle energy E� as p� = �N�1(E � E�)/�N (E) =
exp[ln�N�1(E � E�)]/�N (E) and expanding for E� ⇤ E, which gives p� ⌃ exp[�E�/(kBTB,N�1)] where
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N�1(E) in agreement with Eq. (7). That is, TB in (27) is actually the Boltzmann
temperature of the (N � 1)-particle system.
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PERSPECTIVES

        U
ltracold quantum gases present an 
exquisitely tunable quantum sys-
tem. Applications include preci-

sion measurement ( 1), quantum simulations 
for advanced materials design ( 2), and new 
regimes of chemistry ( 3). Typically trapped 
in a combination of magnetic fi elds and laser 
beams, strongly isolated from the environ-
ment in an ultrahigh vacuum, and cooled to 
temperatures less than a microdegree above 
absolute zero, they are the coldest known 
material in the universe. The interactions 
between atoms in the gas can be tuned over 
seven orders of magnitude and from repul-
sive to attractive ( 4). The addition of stand-
ing waves made from interfering lasers at 
optical wavelengths gives rise to an optical 
lattice, a crystal of light, periodic just like 
the usual crystals made of matter. On page 
52 of this issue, Braun et al. ( 5) use these 
special features of ultracold quantum gases 
to produce a thermodynamic oddity—nega-
tive temperature.

Temperature is casually associated with 
hot and cold. How can something be “colder” 
than absolute zero? The answer lies in a more 
precise notion of temperature. Temperature is 
a single-parameter curve fi t to a probability 
distribution. Given a large number of parti-
cles, we can say each of them has a probabil-
ity to have some energy, P(E). Most will be in 
low-energy states and a few in higher-energy 
states. This probability distribution can be fi t 
very well with an exponential falling away to 
zero. Of course, the actual distribution may 
be very noisy, but an exponential fi t is still 
a good approximation (see the fi gure, panel 
A). Negative temperature means most parti-
cles are in a high-energy state, with a few in a 
low-energy state, so that the exponential rises 
instead of falls (see the fi gure, panel E).

To create negative temperature, Braun et 

al. had to produce an upper bound in energy, 
so particles could pile up in high-energy rather 
than low-energy states. In their experiment, 
there are three important kinds of energy: 
kinetic energy, or the energy of motion in the 
optical lattice; potential energy, due to mag-
netic fi elds trapping the gas; and interaction 
energy, due to interactions between the atoms 
in their gas. The lattice naturally gives an 

upper bound to kinetic energy via the forma-
tion of a band gap, a sort of energetic barrier 
to higher-energy states. The potential energy 
was made negative by the clever use of an 
anti-trap on top of the lattice, taking the shape 
of an upside-down parabola. Finally, the 
interactions were tuned to be attractive (neg-
ative). Thus, all three energies had an upper 
bound and, in principle, the atoms could pile 
up in high-energy states.

Braun et al. convinced their gas to undergo 
such a strange inversion using a quantum 
phase transition ( 6), an extension of the well-
known thermodynamic concept of phase tran-
sitions to a regime in which the temperature 
is so low that it plays no role in the change 
of phase. In this case, they worked with two 
phases, superfl uid and Mott insulator. In a 
superfl uid, the gas fl ows freely without vis-
cosity and is coherent, like a laser, but made 
of matter instead of light. In a Mott insula-
tor, the atoms freeze into a regular pattern and 
become incompressible, similar to a solid. 

Braun et al. fi rst make their atoms repulsive 
in a superfl uid phase. They tune them to a 
Mott insulating phase by simply turning up 
the intensity of the optical lattice lasers, mak-
ing the lattice deeper. Then they tune the inte-
reactions to be attractive and at the same time 
turn their trap upside down to be an anti-trap. 
Finally, they melt the Mott insulator to obtain 
an attractive superfl uid. These anti-traps have 
been used before, to create a self-propagat-
ing pulse of atoms that does not disperse (a 
bright soliton) from attractive gases in one 
dimension ( 7,  8). However, attractive quan-
tum gases in two and three dimensions can 
implode, rather spectacularly ( 9). This ten-
dency to implode is called negative pressure. 
The negative temperature is precisely what 
stabilizes the gas against negative pressure 
and implosion; the Mott insulator serves as 
a bridge state between positive temperature 
and pressure, and negative temperature and 
pressure (see the fi gure, panels B to D).

Braun et al.’s exploration of negative 
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1.4 Measuring TB vs. TG

To conclude this section, let us still clarify why the method employed, for example, by Braun et
al. [6] measures TB and not the thermodynamic temperature T = TG. We restrict ourselves to
sketching the main idea as the technical details of the derivation can be found in most modern
textbooks on statistical mechanics [15, 16].

We recall that Braun et al. [6] estimate an effective ‘temperature’ by fitting an exponential
Bose-Einstein function to their experimentally obtained one-particle distributions. Let us as-
sume their system contains N ⌅ 1 particles and denote the corresponding Hamiltonian by HN

and the DoS by ⇤N . Then, the formally exact MC one-particle density operator is given by

⇥1 = TrN�1[⇥N ] =
TrN�1[�(E �HN)]

⇤N
. (25)

To obtain an exponential (canonical) fitting formula, as used in the experiments, one first has to
rewrite ⇥1 in the equivalent form

⇥1 = exp[ln ⇥1]. (26)

Then, applying a standard steepest descent approximation [15, 16] to the logarithm and assum-
ing discrete one-particle levels E�, one finds for the relative occupancy p� of one-particle level
E� the canonical form16

p� ⇧
e�E�/(kBTB)

Z
, Z =

�

�

e�E�/(kBTB). (27)

The key observation here is that this exponential approximation features TB and not the absolute
thermodynamic Gibbs temperature T = TG. Hence, by fitting the one-particle distribution,
Braun et al. [6] determined the Boltzmann temperature TB, which can be negative, whereas the
thermodynamic Gibbs temperature T = TG is always non-negative. From the above definitions,
it is straightforward to show that, generally,

TB =
TG

1� kB/C
, (28)

where C = (⌅TG/⌅E)�1 is the heat capacity. Evidently, differences between TG and TB

become relevant only if |C| is close to or smaller than kB; in particular, TB is negative if
0 < C < kB. From a practical perspective, Eq. (28) is useful as it allows to reconstruct the
non-negative absolute temperature T = TG from measurements of TB and C, but TG can, of
course, also be directly measured.

16This becomes obvious by writing (25) for a given one-particle energy E� as p� = �N�1(E � E�)/�N (E) =
exp[ln�N�1(E � E�)]/�N (E) and expanding for E� ⇤ E, which gives p� ⌃ exp[�E�/(kBTB,N�1)] where
kBTB,N�1 ⇥ �N�1(E)/�⇥

N�1(E) in agreement with Eq. (7). That is, TB in (27) is actually the Boltzmann
temperature of the (N � 1)-particle system.
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2 Generic example with bounded spectrum
That the difference between TG and TB is practically negligible for conventional macroscopic
systems [15, 16] may explain why they are rarely distinguished in most modern textbooks apart
from a few exceptions [9, 15]. However, for quantum systems with bounded energy spectrum,
SG and SB are generally very different (Fig. 1), and a careful distinction between TG and TB

becomes necessary.
To demonstrate this, we consider a generic quantum model that formalizes the example

presented by Braun et al. [6] in Fig. 1A of their paper18. The model consists of N weakly
interacting bosonic oscillators with Hamiltonian

HN ⌅
N⇧

n=1

hn, (29)

such that each oscillator can occupy non-degenerate single-particle energy levels E�n = ⇥⌃n

with spacing ⇥ and ⌃n = 0, 1 . . . , L. Assuming indistinguishable bosons, permissible N -particle
states can be labelled by ⇥ =( ⌃1, . . . , ⌃N), where 0 ⇥ ⌃1 ⇥ ⌃2 . . . ⇥ ⌃N ⇥ L, and the associated
energy eigenvalues E� = ⇥(⌃1 + . . . + ⌃N) are bounded by 0 ⇥ E� ⇥ E+ = ⇥LN . The DoS

⇧N(E) = TrN [�(E �HN)] (30)

counts the degeneracy of the eigenvalues E and equals the number of integer partitions [21] of
z = E/⇥ into N addends ⌃n ⇥ L. For N, L⇤ 1, the DoS can be approximated by a continuous
Gaussian,

⇧(E) = ⇧� exp[�(E � E�)
2/⌅2], (31)

and the degeneracy attains its maximum ⇧� at the center E� = E+/2 of the energy band (Fig. 1).
The integrated DoS is then obtained as

⇤(E) = TrN [�(E �HN)]

⌅ 1 +

⌃ E

0

⇧(E ⇥)dE ⇥

= 1 +
⇧�
⇧

⇤⌅

2

⇤
erf

�
E � E�

⌅

⇥
+ erf

�
E�

⌅

⇥⌅
,

(32)

where the parameters ⌅ and ⇧� are determined by the boundary condition ⇧(0) = 1/⇥ and the
total number [21] of possible N -particle states ⇤(E+) = (N + L)!/(N !L!). For this model, the
Gaussian approximation gives

kBTB =
⌅2

E+ � 2E
(33)

18When interpreted in terms of spins, this model applies also to the experiments of Purcell and Pound [1].
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where the parameters ⌅ and ⇧� are determined by the boundary condition ⇧(0) = 1/⇥ and the
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energy eigenvalues E� = ⇥(⌃1 + . . . + ⌃N) are bounded by 0 ⇥ E� ⇥ E+ = ⇥LN . The DoS

⇧N(E) = TrN [�(E �HN)] (30)

counts the degeneracy of the eigenvalues E and equals the number of integer partitions [21] of
z = E/⇥ into N addends ⌃n ⇥ L. For N, L⇤ 1, the DoS can be approximated by a continuous
Gaussian,

⇧(E) = ⇧� exp[�(E � E�)
2/⌅2], (31)

and the degeneracy attains its maximum ⇧� at the center E� = E+/2 of the energy band (Fig. 1).
The integrated DoS is then obtained as

⇤(E) = TrN [�(E �HN)]

⌅ 1 +

⌃ E

0

⇧(E ⇥)dE ⇥

= 1 +
⇧�
⇧

⇤⌅

2

⇤
erf

�
E � E�

⌅

⇥
+ erf

�
E�

⌅

⇥⌅
,

(32)

where the parameters ⌅ and ⇧� are determined by the boundary condition ⇧(0) = 1/⇥ and the
total number [21] of possible N -particle states ⇤(E+) = (N + L)!/(N !L!). For this model, the
Gaussian approximation gives

kBTB =
⌅2

E+ � 2E
(33)

18When interpreted in terms of spins, this model applies also to the experiments of Purcell and Pound [1].
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Generic spin or oscillator model
arxiv: 1304.2066
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Quantum Hamiltonian of Mean Force

ZS(t) :=
Y (t)

ZB
= TrSe

−βH∗(t)

where

H∗(t) := − 1

β
ln

TrBe
−β(HS (t)+HSB+HB)

TrBe−βHB

also
e−βH

∗(t)

ZS(t)
=

TrBe
−βH(t)

Y (t)

M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009).
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Strong coupling: Example

System: Two-level atom; “bath”: Harmonic oscillator

H =
✏

2
�z + ⌦

✓
a†a +

1

2

◆
+ ��z

✓
a†a +

1

2

◆

H⇤ =
✏⇤

2
�z + �

✏⇤ = ✏ + � +
2

�
artanh

✓
e��⌦ sinh(��)

1� e��⌦ cosh(��)

◆

� =
1

2�
ln

✓
1� 2e��⌦ cosh(��) + e�2�⌦

(1� e��⌦)2

◆

ZS = Tre��H⇤
FS = �kbT lnZS

SS = �@FS

@T
CS = T

@SS

@T
M. Campisi, P. Talkner, P. Hänggi, J. Phys. A: Math. Theor. 42 392002

(2009)
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Entropy and specific heat
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⌦/✏ = 3

⌦/✏ = 1/3



 

Tampering with the 2-nd Law 

using generalized (non thermodynamic) 

entropies is not the best idea 

 doomed to yield unphysical results 

(Landauer limit,…) 
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