Quantum Dissipation: A Primer

P. Hänggi

Institut für Physik
Universität Augsburg
Dynamics of Open Quantum Systems

P. Hänggi

Institut für Physik
Universität Augsburg
QUANTUM DISSIPATION

\[L = \frac{1}{2} m_0 e^{\gamma t} x^2 - \frac{1}{2} m_0 e^{\gamma t} \omega_0^2 x^2 \]

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = \frac{d}{dt} m_0 e^{\gamma t} \dot{x} = m_0 e^{\gamma t} \ddot{x} + m_0 e^{\gamma t} \dot{y} \dot{x} \]

\[-\frac{\partial L}{\partial x} = m_0 e^{\gamma t} \omega_0^2 x \]

\[\Rightarrow e^{\gamma t} [m_0 \ddot{x} + m_0 \dot{y} \dot{x} + m_0 \omega_0^2 x] = 0 \]

QM: \[L \rightarrow H = \frac{p^2}{2m_0} e^{-\gamma t} + \frac{1}{2} m_0 e^{\gamma t} \omega_0^2 x^2 \]
QUANTUM DISSIPATION

\[L = \frac{1}{2} m_0 e^{\gamma t} x^2 - \frac{1}{2} m_0 e^{\gamma t} \omega_0^2 x^2 \]

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = \frac{d}{dt} m_0 e^{\gamma t} \dot{x} = m_0 e^{\gamma t} \dot{x} + m_0 e^{\gamma t} \gamma x \]

\[- \frac{\partial L}{\partial x} = m_0 e^{\gamma t} \omega_0^2 x \]

\[\Rightarrow \quad [m_0 \ddot{x} + m_0 \gamma \dot{x} + m_0 \omega_0^2 x] = 0 \]

QM: \[L \rightarrow H = \frac{p^2}{2m_0} e^{-\gamma t} + \frac{1}{2} m_0 e^{\gamma t} \omega_0^2 x^2 \]

\[[q_1, p] = +i \frac{\hbar}{\gamma} e^{-\gamma t} \]
THE PROBLEM

potential

\[M \ddot{q} + \frac{dU}{dx} + \eta \dot{q} = 0 \]
\[\Gamma = \pi \frac{\omega_0}{2 \hbar} \exp(-\frac{E_b}{kT}) \]

thermal equilibrium

P.H., P. TALKNER, M. BORKOVEC
REV. MOD. PHYS. 62: 251 (1990)
F A C T S

H on (110) tungsten

[**GOMER**(82)]

D (cm2/sec)

1000/T (K$^{-1}$)

10$^{-11}$

10$^{-12}$

10$^{-13}$

10$^{-14}$

10$^{-15}$

10$^{-16}$

H$_2$ & HD sorbed in
Zeolites

[Bouchard et al. 82]

$H^2p^2(...)$

$+e$

T^{-1}

$T = 18$ mK

CO-MIGRATION
IN HEMOGLOBIN

[Frauenfelder]

TUNNELING IN A JOSEPHSON
JUNCTION SUBJECTED
TO MEMORY FRICTION

[Esteve et al. (79)]
<table>
<thead>
<tr>
<th>Quantum Tunneling</th>
<th>Cross-over</th>
<th>Quantum Corrections</th>
<th>thermal activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k = A e^{-B})</td>
<td>2-0-modes</td>
<td>(k = T) (A)</td>
<td>(k = A(\eta) e^{-E_0/\delta T})</td>
</tr>
<tr>
<td>(B = S_B(T, y))</td>
<td>(\frac{S_B}{\hbar} = \frac{E_0}{kT_0})</td>
<td>quantum enhancement</td>
<td>(\uparrow \eta = \frac{\eta}{\eta})</td>
</tr>
<tr>
<td>(B(T=0) \approx B(0) \approx -aT^2)</td>
<td>smooth!</td>
<td>(Q \sim \exp \frac{\hbar^2(\omega_0^2+\omega_b^2)}{(kT)^2})</td>
<td>Kramers</td>
</tr>
<tr>
<td>(A(T,y) = A(y))</td>
<td>Erfc-behavior</td>
<td>(> 1)</td>
<td>({ \frac{2}{\pi} \left(\frac{\omega}{\omega_0} + \omega_b \right)^2 - \frac{\omega}{\omega_0} })</td>
</tr>
<tr>
<td>(\propto \propto)</td>
<td></td>
<td>i.e.</td>
<td>(\omega_0)</td>
</tr>
<tr>
<td>(\propto \propto (1 + 2.20 y), y \to 0)</td>
<td></td>
<td>(E_0 \to E_0 - \frac{E}{T})</td>
<td>(\frac{\omega_0}{2\pi})</td>
</tr>
</tbody>
</table>
Reaction-rate theory: fifty years after Kramers

Peter Hänggi, Peter Talkner, Michal Borkovec

RMP 62: 251 (90)
VIII. Transition Rates in Nonequilibrium Systems

A. Two examples of one-dimensional nonequilibrium rate problems
 1. Bistable tunnel diode
 2. Nonequilibrium chemical reaction

B. Brownian motion in biased periodic potentials
C. Escape driven by colored noise
D. Nucleation of driven sine-Gordon solitons
 1. Nucleation of a single string
 2. Nucleation of interacting pairs

IX. Quantum Rate Theory

A. Historic background and perspectives; traditional quantum approaches

B. The functional-integral approach

C. The crossover temperature

D. The dissipative tunneling rate
 1. Flux-flux autocorrelation function expression for the quantum rate
 2. Unified approach to the quantum-Kramers rate

E. Dissipative tunneling at weak dissipation
 1. Quantum escape at very weak friction
 2. Quantum turnover

F. Sundry topics on dissipative tunneling
 1. Incoherent tunneling in weakly biased metastable wells
 2. Coherent dissipative tunneling
 3. Tunneling with fermionic dissipation

X. Numerical Methods in Rate Theory

XI. Experiments

A. Classical activation regime
B. Low-temperature quantum effects

XII. Conclusions and Outlook

Acknowledgments

Appendix A: Evaluation of the Gaussian Surface Integral in Eq. (4.77)

Appendix B: A Formal Relation between the MFPT and the Flux-Over-Population Method

References

LIST OF SYMBOLS

\(A(T) \) temperature-dependent quantum rate prefactor
\(C(t) \) correlation function
\(D \) diffusion coefficient
\(E \) energy function
\(E_b \) activation energy (\(= \)barrier energy with the energy at the metastable state set equal to zero)
\(E^{(A)} \) Hessian matrix of the energy function at the stable state
\(E^{(S)} \) Hessian matrix of the energy function around the saddle-point configuration
\(I \) action variable of the reaction coordinate
\(J \) Jacobian

\(K(x,x') \) transition probability kernel
\(M \) mass of reactive particle
\(P(E) \) period of oscillation in the classically allowed region
\(P(E,E') \) classical conditional probability of finding the energy \(E \), given initially the energy \(E' \)
\(Q \) quantum correction to the classical prefactor
\(S_b \) dissipative bounce action
\(T \) temperature
\(T_0 \) crossover temperature
\(T(E) \) period in the classically forbidden regime
\(U(x) \) metastable potential function for the reaction coordinate
\(V \) volume of a reacting system
\(Z \) partition function, inverse normalization
\(Z_0, Z_A \) partition function of the locally stable state \((A) \)
\(\mathcal{H} \) Hamiltonian function of the metastable system
\(\mathcal{J} \) complex-valued free energy of a metastable state
\(\mathcal{L}, \mathcal{L}^\dagger \) Fokker-Planck operator, backward operator of a Fokker-Planck process
\(j \) total probability flux of the reaction coordinate
\(h \) Planck's constant
\(h_\hbar \) \(h/(2\pi)^{-1} \)
\(k_B \) Boltzmann constant
\(k \) reaction rate
\(k^+ \) forward rate
\(k^- \) backward rate
\(k_{TST} \) microcanonical transition-state rate, semiclassical cumulative reaction probability
\(k_s \) mass of the semi-classical cumulative reaction probability
\(m_i \) mass of \(i \)-th degree of freedom
\(p(x,t) \) probability density
\(p_0(x) \) stationary nonequilibrium probability density for the reaction coordinate
\(p_i \) momentum degree of freedom
\(q_i \) configurational degree of freedom
\(r(E) \) quantum reflection coefficient
\(s(x) \) density of sources and sinks
\(t(E) \) quantum transmission coefficient
\(t_\Omega(x) \) mean first-passage time to leave the domain \(\Omega \), with the starting point at \(x \)
\(t_{MFPT} \) constant part of the mean first-passage time to leave a metastable domain of attraction
\(v = \dot{x} \) velocity of the reaction coordinate
\(x \) reaction coordinate
\(x_{0\Omega} x_a \) location of well minimum or potential minimum of state \(A \), respectively
\(x_h \) barrier location
\(x_T \) location of the transition state
\(\beta \) inverse temperature \((k_B T)^{-1} \)
microscopic approach

\[H_{\text{total}} = \frac{1}{2} M \dot{q}^2 + U(q) \]

system

\[+ \frac{1}{2} \sum_{\alpha} m_\alpha \dot{q}_\alpha^2 + \sum_{\alpha} m_\alpha \omega_\alpha^2 q_\alpha^2 \]

(harmonic) bath

\[+ q \sum_{\alpha} c_\alpha q_\alpha \]

linear coupling

\[+ q^2 \sum_{\alpha} \frac{c^2_\alpha}{2m_\alpha \omega_\alpha^2} \]

compensation of frequency shift

- path integral approach
to density matrix at temperature \(T \)
trace out environment
dissipation

\[H^T = H_{\text{system}} + H_{\text{bath}} + H_{\text{Int}} \]

\[\dot{q} = -\frac{1}{M} \frac{\delta U}{\delta q} - \int_0^t y(t-s) \dot{q}(s) \, ds \]

\[S_E = S_{\text{rev. motion}} + S_{\text{(nonlocal) dissipation}} \]
QUANTUM NOISE
QUANTUM L.-EQ.

\[|0\rangle_{S+B} \neq |0\rangle_S |0\rangle_B \]

\[\downarrow \text{DECOHERENCE} \]
\[\text{AT } T = 0 \]

\[H_{S+B} = H_S + H_{S-B} + H_B \]
\[= \frac{p^2}{2m} + V(x) + \sum_x \left(\frac{p_x^2}{2m_x} + \frac{m_x c_s^2}{2} (q_x - \frac{c_s}{m_x c_s^2} x)^2 \right) \]

\[\downarrow \quad S_S \neq 2^{-1} \exp \left(- \frac{H_S}{\hbar T} \right) ! \]

\[S_{\text{Total}} = S_{S+B} = 2^{-1} \exp \left(- \frac{H_{S+B}}{\hbar T} \right) \]
\[\dot{\mathbf{x}}(t) = [0, \mathbf{H}_T] \]

\[m \ddot{x} + m \int_0^t ds y(t-s) \dot{x}(s) + \frac{\partial V(x)}{\partial x} = \eta(t) - m y(t-0) \dot{x}(0) \]

Initial Slip

\[y(t-s) = \frac{1}{m} \sum_a \frac{c_a^2}{m_a c_a^2} \cos(\omega_a(t-s)) \]

\[= y(s-t) \downarrow \]

\[\eta(t) = \sum_a c_a \left[q_a(0) \cos(\omega_a t) + \frac{\mu_a}{m_a c_a} \sin(\omega_a t) \right] \]
\[[\eta^+, \eta^0] = -i \hbar \sum c_{e_\mu} \frac{s_{\mu e_\mu}}{m_{\eta^+}} \sin(\theta_{e_\mu} (t-s)) \neq 0 \]

\[S_B = 2^{-1} \exp \left\{ -\beta \left[\frac{1}{2} \left(\frac{\not\! p^2}{2m_e} + \frac{m_e^2}{2} \right) + \not\! q^2 \right] \right\} \]

\[\langle \eta^+ \rangle \leq 0 \]

\[\frac{1}{2} \langle \eta^+ \eta^0 + \eta^0 \eta^+ \rangle = C(t-s) \]

\[C(\tau) = \frac{1}{2} \sum \frac{c_{e_\mu}}{m_{\eta^+}} \coth \left(\frac{\hbar c_{e_\mu}}{2kT} \right) \cos \theta_{e_\mu} \]

\[\hbar T \gg \hbar c_{e_\mu} \]

\[\rightarrow kT \gamma(\tau) \]
\[\hat{\delta}(z) = \int_0^\infty \exp(-zt)j(t)dt \]

\[\delta(\omega) = \hat{\delta}(z = -i\omega) \]

Ohmic Dissipation

\[j(\omega) = \gamma \omega \exp(-\omega/\omega_c) \]

Kondo-Parameter

\[\gamma = (2\pi \hbar / a^2) \times \omega \exp(-\omega/\omega_c) \]

\[a = 2q_a : \text{tunneling length} \]
1. QLE OPERATES IN FULL HILBERT SPACE OF $S \oplus B$

$$\tilde{\phi}(\tau) = \sum_{n=0}^{\infty} \frac{1}{2m} \sum_{\alpha} \frac{\epsilon_{\alpha}^2}{m_{\alpha} c_{\alpha}^2} \left[\frac{1}{2c_{\alpha}} + \frac{1}{2c_{\alpha}} \right]$$

$$\frac{1}{\tau + i0^+} = \mathcal{P}\left(\frac{1}{x} \right) - i\pi \delta(x)$$

$$\text{Re}_{\tau}(\tau = \omega + i0^+) = \frac{\pi}{2m} \sum_{\alpha} \frac{\epsilon_{\alpha}^2}{m_{\alpha} c_{\alpha}^2} \left[d(\omega - c_{\alpha}) + d(\omega + c_{\alpha}) \right]$$

$$C(\tau) = \frac{m}{\pi} \int_0^{\infty} d\omega \text{Re}_{\tau} \tilde{\phi}(\omega + i0^+) \cos(\omega \tau) \cdot \coth \left(\frac{\omega}{2kT} \right)$$

3. with $\tilde{\Phi}(t) = \Phi(t) - m \gamma(t) \times \Phi(0)$

$$\tilde{S}_B = 2^{-1} \exp(-\beta \left[\frac{\epsilon_{\alpha}^2}{2m_{\alpha}} + \frac{m_{\alpha} c_{\alpha}^2}{2} (\vec{x} - \frac{\epsilon_{\alpha}^2}{m_{\alpha} c_{\alpha}^2} \vec{x}) \right]$$

$$\langle \Phi(t) \Phi(0) + \Phi(0) \Phi(t) \rangle = C(\tau)$$
4. DEPHASING AT $T = 0$?

$\langle x(t) \delta(t) \rangle_\beta \neq 0$

$\langle H_{\text{INT}} \rangle_\beta \neq 0$

5. $\delta(t) \rightarrow C$-NOISE $\delta(t)$

WITH CORRELATION $C(\tau)$

IS INCONSISTENT
\[\hat{H}(t) = \hat{H}_0 - F(t)\hat{A} \]
\[s = Z^{-1} \exp(-\beta \hat{H}_0) \]
\[\langle \hat{B}(t) \rangle - \langle \hat{B}(t) \rangle_0 = \langle \delta \hat{B}(t) \rangle = \int_{t_0}^{t} \chi(t-s) F(s) ds \]

Kubo:
\[\chi_{BA}(\tau) = \Theta(\tau) \frac{i}{\hbar} \left\langle [\hat{B}(\tau), \hat{A}(0)] \right\rangle_\beta \]
\[= -\Theta(\tau) \int_0^{\beta} \left\langle \hat{A}(-i\hbar \lambda) \hat{B}(\tau) \right\rangle d\lambda \]

classical limit
\[\rightarrow -\Theta(\tau) \beta \left\langle \hat{B}(t) \hat{A}(0) \right\rangle \]
\[\hat{H}(t) = \hat{H}_0 - F(t) \hat{A} \; ; \; g_\beta = Z^{-1} \exp(-\beta \hat{H}_0) \]

\[\langle \hat{B}(t) \rangle - \langle \hat{B}(t) \rangle = \langle \delta \hat{B}(t) \rangle = \int_{t_0}^{t} \chi(t-s) F(s) ds \]

KUBO: \[\chi_{BA}^B(\tau) = \Theta(\tau) \frac{i}{\hbar} \langle [\hat{B}(\tau), \hat{A}(0)] \rangle \]

\[= -\Theta(\tau) \int_{0}^{\tau} \langle \hat{A}(-i\hbar \lambda) \hat{B}(\lambda) \rangle d\lambda \]

classical limit \[\rightarrow -\Theta(\tau) \beta \langle \hat{B}(\tau) \hat{A}(0) \rangle \]

\[\hat{B} = \hat{A} = \hat{q} \; ; \; F(t) = A \cos \Omega t \]

\[\langle \delta q(t) \rangle = P_1 e^{-i\Omega t} + P_1 e^{-i\Omega t} \]

\[P_{1-1} = \frac{A}{2} e^{\pm i\Omega t} \chi(\pm \Omega) \]
QUANTUM - FDT

\[S_{BA}(\tau) = \frac{1}{2} \langle (\hat{B}(t) - \langle \hat{B} \rangle_\beta) (\hat{A}(0) - \langle \hat{A} \rangle_\beta) \rangle + \langle (\hat{A}(0) - \langle \hat{A} \rangle_\beta) (\hat{B}(t) - \langle \hat{B} \rangle_\beta) \rangle_\beta \]

\[x'_{BA}(\tau) = x'_{BA}(\tau) + i x''_{BA}(\tau) \]
\[\frac{1}{2} [x_{BA}^+(t) + x_{BA}^-(t^-)] - \frac{i}{2} [x_{BA}^+(t) - x_{BA}^-(t^-)] \]

\[x_{BA}(\omega) = \sum_{-\infty}^{\infty} x_{BA}(t) e^{i \omega t} dt \]

\[x''_{BA}(\omega) = \frac{1}{\hbar} \tanh (\hbar \omega \beta / 2) S_{BA}(\omega) \]

\[S_{BA}(\omega) = \hbar \coth (\hbar \omega \beta / 2) x''_{BA}(\omega) \]

\[\hbar \omega \ll 1 \rightarrow 2 x''_{BA}(\omega) / (\beta S_\hbar) \]

NOTE: \[x''_{BA}(\omega) = \frac{1}{2} [x^*_{AB}(\omega) - x_{BA}(\omega)] \]

\[\neq \text{Im } x_{BA}(\omega), \text{ except } \lambda = \beta \]

\[\hat{A} = \hat{B} = \hat{a}: \quad S_{qq}(\omega) = \hbar \coth (\hbar \omega \beta / 2) \text{Im } x_{qq}(\omega) \]
EQ.-CURRENT NOISE

\[I = \frac{dI}{dt} \]

\[\chi_{AA}^{ii}(\omega) = \frac{1}{\omega} \text{Im} \left(\frac{Z(\omega)}{i} \right) = -\frac{1}{\omega} \text{Re} Z(\omega) \]

\[S_{II}(\omega) = -\omega^2 S_{BB}(\omega) \]

\[S_{II}(\omega) = (\hbar \omega) \text{coth} \left(\frac{\hbar \omega}{2kT} \right) \text{Re} Z(\omega) \]

\[kT \gg \hbar \omega : S_{II}(\omega) \rightarrow 2kT \text{Re} Z(\omega) \]

\[\frac{2kT}{R} \]

JOHNSON-NYQUIST (1928)

\[kT < \hbar \omega \rightarrow \hbar \omega \text{ Re} Z(\omega) \]

\[S_{II}(\omega=0) = 0 \text{ at } \omega=0 \]

quantum-zero point fluct.
1900-1951

J.B. Johnson

Thermal agitation of electricity in conductors.

Phys. Rev. (1928) 32 (July) 97-109

H. Nyquist

Thermal agitation of electric charge in conductors.

Phys. Rev. (1928) 32 (July) 110-113

L. Onsager

Reciprocal relation in irreversible process.

Phys. Rev. (1931) 32 (February) 405-426

H.B. Callen, T.A. Welton

Irreversibility and Generalized Noise.

Phys. Rev. (1951) 83 (1) 34-40
QUANTUM NOISE

NO QUANTUM EQ.-PARTITION-TH.

FEYNMAN-PATH-INT.

QUANTUM LANG.-EQ.

GME

STOCH.-L.-V.N.-EQ.

\[s := 14 \langle 1 \vert \langle 12 \vert s \rangle \langle 12 \vert s \rangle \langle 1 \vert \], \quad \mu := \frac{2}{\hbar} \int dt \langle 12, \chi\rangle \langle \chi, 12 \rangle \]

\[i \hbar \dot{s} = [H_{\text{in}}, s] + \frac{\hbar}{2} \left[x, \langle 12, \chi \rangle \right] - \frac{1}{2} \nabla (\langle 12, \chi \rangle \left[x, \langle 12, \chi \rangle \right] + \text{complex valued noise}) \]

\[\langle 1 \vert 1 \rangle = 2, \quad \langle 12 \vert 12 \rangle = \frac{2}{\hbar} \theta (12) \text{Im} (12) \quad \langle 1 \vert 2 \rangle = 0 \]
PITFALLS

MARKOV MASTER EQ

\[
\frac{d}{dt} \rho = -\frac{i}{\hbar} [H, \rho] - \Gamma \rho + I(t)
\]

BLOCH-REDFIELD

i.e. **NO DET. BALANCE**

ROTATING WAVE APPROX.

(LINDBLAD; DAVIES-APPROX.)

DET. BALANCE \lor O.K.

BUT

- **WRONG EHRENFEST EQ.**
- **NO FDT**
- **NO KMS-COND.**

\[
\langle \varphi(t) \varphi \rangle = \langle \varphi \varphi(t+\sqrt{t}) \rangle
\]
Schematic of stochastic resonance. The cross-hatched oval represents a black-box system which receives two inputs: one weak and periodic, the other strong and random. The output is relatively regular with small fluctuations.
NOISE-ASSISTED SYNCHRONIZED HOPPING
Bistable Model

\[\dot{x} = x - x^3 + A \cos(\Omega t + \varphi) + \xi(t) \]

\[\langle \xi(t) \rangle = 0 \]

\[\langle \xi(t) \xi(t') \rangle = 2D \delta(t-t') \]

\[T_e = \frac{2\pi}{\Omega} \]

 SIGNAL

 \[T_e \approx 2T^{-1}_{\text{ESCAPE}} \]
More noise → More signal
P. JUNG + P. H., PHYS. REV. A44: 8032 (91)

More noise \rightarrow more signal

$$\mathcal{M}_1 \sim \chi(\tau) = -\frac{1}{D} \frac{d}{dr} \langle \psi(x(r)) | \psi(0) \rangle$$

$$|\mathcal{M}_1|^2 \propto \frac{1}{D^2} e^{-2\omega U(1)}$$
\[V_0 \gg \hbar \omega_0 \gg \hbar \epsilon_0, kT \]

\[\omega_0 \quad -\frac{\hbar}{2} \left(\epsilon_0 \sigma_2 + \Delta \sigma_1 \right) \]

\[\frac{1}{2} \sum_{\alpha} \left(\frac{p_\alpha^2}{m_\alpha} + m_\alpha \omega_\alpha^2 x_\alpha^2 - c_\alpha x_\alpha \sigma_2 \right) \]

\[\frac{\hbar \hat{\epsilon}}{2} \cos (\Omega t) \sigma_2 \]

\[\text{Temperature} \]

\[n \cdot \vec{v} = \hat{\epsilon} \]

\[t \to \infty \]

\[\text{DRIVE} \quad \omega, \hat{\epsilon} \]

\[\text{BATH} \quad T, \sigma \]

\[\text{TS} \]
\[\eta = 4\pi |P_1|^2 = \pi A^2 |\chi(\Omega)|^2 \]

\[\text{SNR} = \frac{\pi A^2 |\chi(\Omega)|^2}{S_{\theta\theta}(\Omega, A=0)} = \frac{\pi A^2 |\chi(\Omega)|^2}{\text{Im} \chi(\Omega) \text{sech}(\hbar \Omega / 2)} \]

- Valid at all temperatures!

PROBLEM: QUANTUM \[\chi_{\theta\theta}^\text{FDT} S_{\theta\theta}(\Omega) \]

\[S_{\theta\theta}(t) = \frac{1}{2} \langle d\theta(t) d\theta(0) + d\bar{\theta}(0) d\bar{\theta}(t) \rangle_B \]

- **DIFFICULT!**
LINEAR RESPONSE & QSR

with \(P_1 = \frac{A}{2} \chi_{99}(\omega) = \frac{A}{2} \chi(\Omega) \)

\[
\eta_1 = 4\pi |P_1|^2 = \pi A^2 |\chi(\Omega)|^2
\]

\[
\text{SNR} = \frac{\pi A^2 |\chi(\Omega)|^2}{S_{99}(\omega, A=0)} = \frac{\pi A^2 |\chi(\Omega)|^2}{\text{Im} \chi(\Omega) \coth(\hbar \beta/2)}
\]

\text{Valid at all temperatures!}

PROBLEM: QUANTUM \(\chi_{99}(\omega) \) vs. \(S_{99}(\omega) \)

\[
S_{99}(\tau) = \frac{1}{2} \langle \delta q(\tau) \delta q(0) + \delta q(0) \delta q(\tau) \rangle
\]

\text{DIFFICULT!}

\[\text{2 LIMITS} \]

\text{above ~ near crossover to thermal hopping}

\text{AT LOW T}
\[\frac{\alpha}{\hbar \omega_b} = 0.2 \]
\[T = 0 \]

Classically allowed

Classically forbidden

\[U(q) \]

Thermal activation

Tunnelling

\[\gamma > 0 \]

\[M \frac{d^2}{d\tau^2} q_B(\tau) = \frac{\delta U}{\delta q_B} \]

\[- M \frac{d^2}{d\tau^2} \dot{q}_B(\tau) + \left(\frac{\delta^2 U}{\delta q_B^2} \right) \ddot{q}_B(\tau) = 0 \]
\[-\dot{M} \dot{q}_B + \frac{\partial U(q_B)}{\partial q_B} + \int_{-\frac{\Theta}{2}}^{\frac{\Theta}{2}} k(\tau - \tau') q_B(\tau') d\tau' = 0\]

\[\Theta = \hbar/kT\]

\[q_B(\tau + \Theta) = q_B(\tau)\]
QUANTUM SR

(a) LOW FREQUENCIES
LOW TEMPERATURES
adiabatic quantum coherence

(b) LOW FREQUENCIES
HIGH TEMPERATURES
incoherent regime

(c) $\alpha \ll 1$, $\bar{\epsilon} \neq 0$
HIGH FREQUENCIES
HIGH TEMPERATURES
driving induced coherence
DRIVEN QUANTUM TUNNELING

M. GRIFONI, P.H. PHYS. REP. 304: 229–358 (98)

FREE COPY

http://www.physik.uni-augsburg.de/theo1/hanggi/
Third Law of thermodynamics

Walter Hermann NERNST
(1864 - 1941)

„mein Wärmesatz“
(during his lecture August 15, 1905)

\[
\frac{\Delta H - \Delta G}{T} = \Delta S \longrightarrow 0 \quad \text{as} \quad T \longrightarrow 0
\]
Famous exceptions to the Third Law

classical ideal gas

\[S = N\left(c_V \ln(T) + k_B \ln(V/N) + \sigma \right) \]

Moreover:
classical statistical mechanics: \(n \)-vector model with \(n \)-dimensional vectors > 1 violates third law.
(e.g. planar Heisenberg \(n = 2 \) or the \(n = 3 \) Heisenberg model)
Quantum Brownian motion and the Third Law of thermodynamics

Peter Hänggi, Michele Campisi, Gert-Ludwig Ingold, and Peter Talkner

Uni Augsburg

The entropy $s = S/N$ per particle approaches at $T = 0$ a constant
($s_0 = k_B \ln g(N)/N$) value that possibly depends on the chemical
composition of the system. This limiting value can generally be set to zero.

Max PLANCK
(1858 - 1947)
The Nobel Prize in Chemistry 1949

"for his contributions in the field of chemical thermodynamics, particularly concerning the behaviour of substances at extremely low temperatures"

William Francis Giauque

USA

University of California
Berkeley, CA, USA

b. 1895
d. 1982
A bit of thermodynamics

\[\beta = \frac{1}{k_B T} \]

\[\mathcal{Z} = \int dE \rho(E) e^{-\beta E} \]

\[U = -\frac{\partial \ln \mathcal{Z}}{\partial \beta} \]

\[S = -\frac{\partial F}{\partial T} = -\frac{\partial k_B T \ln \mathcal{Z}}{\partial T} \]

\[C = \frac{\partial U}{\partial T} \]

\[C = T \frac{\partial S}{\partial T} \]
What is the specific heat of a damped system?
Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches
Microscopic model

Route I
Route II
specific heat
density of states

Conclusions

Specific heat from the system energy

Route I

density of states ρ

canonical partition function Z

system energy $E = \langle H_S \rangle$

entropy S

specific heat C^E

$Z = \int dE \rho(E) e^{-\beta E}$

$U = -\frac{\partial \ln Z}{\partial \beta}$

$S = -\frac{\partial F}{\partial T} = -\frac{\partial k_B T \ln Z}{\partial T}$

$C = \frac{\partial U}{\partial T}$

$C = T \frac{\partial S}{\partial T}$

$\beta = \frac{1}{k_B T}$
Specific heat from the partition function

Route II

density of states ρ

canonical partition function $\mathcal{Z} = \frac{\text{Tr}_{S+B}(e^{-\beta H})}{\text{Tr}_{B}(e^{-\beta H_B})}$

internal energy U

entropy S

specific heat C^Z

$\text{Tr}_{S+B}(e^{-\beta H})$

$\text{Tr}_{B}(e^{-\beta H_B})$

$\int dE \rho(E) e^{-\beta E}$

$U = -\frac{\partial \ln Z}{\partial \beta}$

$S = -\frac{\partial F}{\partial T} = -\frac{\partial k_B T \ln Z}{\partial T}$

$C^Z = \frac{\partial U}{\partial T}$

$C^Z = T \frac{\partial S}{\partial T}$

$\beta = \frac{1}{k_B T}$
Free energy of a system strongly coupled to an environment

Thermodynamic argument:

\[\mathcal{Z} = \frac{\text{Tr}_{S+B}(e^{-\beta H})}{\text{Tr}_B(e^{-\beta H_B})} \rightarrow F_S = F - F_B^0 \]

\(F \) total system free energy
\(F_B \) bare bath free energy

With this form of free energy the three laws of thermodynamics are fulfilled.

The role of quantum dissipation

Energy of damped harmonic oscillator

\[E = \langle H_S \rangle = \frac{\langle p^2 \rangle}{2M} + \frac{M}{2} \omega_0^2 \langle q^2 \rangle \]

Expectation value of system operator

\[\langle O_S \rangle = \frac{\text{Tr} [O_S \exp(-\beta H)]}{\text{Tr} [\exp(-\beta H)]} \]
Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches

Microscopic model

Route I

Route II

An important difference

For finite coupling E and U differ!
Entrophy of the damped harmonic oscillator

\[S = k_B \left[1 - \ln(\hbar \beta \omega_0) + \frac{\hbar \beta \gamma}{2\pi} + g(\lambda_+) + g(\lambda_-) \right] \]

with \(g(z) = \ln[\Gamma(1 + z)] - z\psi(1 + z) \)

leading low-temperature behavior

\[S = \frac{\pi \gamma}{3} \frac{k_B^2 T}{\hbar \omega_0} + O(T^3) \]

third Law is satisfied ✔
The concept of a partition function...

...for dissipative quantum systems

$$Z = \frac{\text{Tr} \left[\exp(-\beta H) \right]}{\text{Tr}_B \left[\exp(-\beta H_B) \right]}$$

harmonic oscillator

$$Z = \frac{1}{\hbar \beta \omega_0} \prod_{n=1}^{\infty} \frac{v_n^2}{v_n^2 + \nu_n \gamma(v_n) + \omega_0^2} \quad \text{with} \quad v_n = \frac{2\pi}{\hbar \beta} n$$

$$\langle E \rangle_Z = -\frac{\partial}{\partial \beta} \ln(Z)$$

$$= \frac{1}{\beta} \left[1 + \sum_{n=1}^{\infty} \frac{2\omega_0^2 + \nu_n \gamma(v_n) - v_n^2 \gamma'(v_n)}{v_n^2 + \nu_n \gamma(v_n) + \omega_0^2} \right]$$
The fundamental relation

\[\langle E \rangle_Z = -\frac{\partial}{\partial \beta} \ln(Z) = \frac{1}{\beta} \left[1 + \sum_{n=1}^{\infty} \frac{2\omega_0^2 + \nu_n \hat{\gamma}(\nu_n) - \nu_n^2 \hat{\gamma}'(\nu_n)}{\nu_n^2 + \nu_n \hat{\gamma}(\nu_n) + \omega_0^2} \right] \]

\[\approx \frac{1}{\beta} \left[1 + \sum_{n=1}^{\infty} \frac{2\omega_0^2 + \nu_n \hat{\gamma}(\nu_n)}{\nu_n^2 + \nu_n \hat{\gamma}(\nu_n) + \omega_0^2} \right] = \langle E \rangle \]

in general: NO

\[\langle E \rangle_Z = \langle H \rangle - \langle H_B \rangle_B \]

\[= \langle E \rangle + [\langle H_{SB} \rangle + \langle H_B \rangle - \langle H_B \rangle_B] \]

\[\parallel \]

\[\langle H_S \rangle \]

\[\neq \langle H_S \rangle \]
\[S_{VN} = -k \text{ Tr } (\rho_s \ln \rho_s) \geq S(T) \]

Temperature dependence of the ratio \(|\delta Q/dS_v|\) (in bits) with the heat defined by \(\delta Q = T dS(T)\) for quasi-static variations of the oscillator frequency \(d\omega_0\). The system-bath-couplings are chosen to be \(\gamma = m\omega^2_0/\Gamma = 0.1\) (dark line) and \(\gamma = m\omega^2_0/\Gamma = 0.5\) (gray line). At low T deviations from the Landauer bound \(kT \ln 2\) (dashed line) occur.

\(? \quad |\delta Q/dS_{VN}| \geq kT \ln 2 \quad ?\)
Drude model

damping kernel

\[\gamma(t) = \gamma \omega_D e^{-\omega_D t} \]

Quantum Langevin equation

\[M \frac{d^2 q}{dt^2} + M \gamma \omega_D \int_{t_0}^{t} ds e^{-\omega_D (t-s)} \frac{d}{ds} q = \xi(t) \]

equivalent equations of motion

\[\dot{q} = v \]
\[\dot{v} = z \]
\[\dot{z} = -\omega_D z - \gamma \omega_D v \]

oscillations occur for \(\omega_D < 4\gamma \)
Model for a damped free particle

Hamiltonian

\[H = H_S + H_B + H_{SB} \]

\[= \frac{p^2}{2M} + \sum_{n=1}^{\infty} \left(\frac{p_n^2}{2m_n} + \frac{m_n}{2} \omega_n^2 x_n^2 \right) + \sum_{n=1}^{\infty} \left(-c_n x_n q + \frac{c_n^2}{2m_n \omega_n^2} q^2 \right) \]

translational invariance: \(c_n = m_n \omega_n^2 \)

\[= \frac{p^2}{2M} + \sum_{n=1}^{\infty} \left(\frac{p_n^2}{2m_n} + \frac{m_n}{2} \omega_n^2 (x_n - q)^2 \right) \]

Quantum Langevin equation

\[M \frac{d^2}{dt^2} q + M \int_{t_0}^{t} ds \gamma(t - s) \frac{d}{ds} q = \xi(t) \]
Damping kernel and noise

damping kernel

\[
\gamma(t) = \frac{1}{M} \sum_{n=1}^{\infty} \frac{c_n^2}{m_n \omega_n^2} \cos(\omega_n t)
\]

\[
= \frac{1}{M} \sum_{n=1}^{\infty} m_n \omega_n^2 \cos(\omega_n t)
\]

noise operator

\[
\xi(t) = -M \gamma(t-t_0) q(t_0) + \sum_{n=1}^{\infty} \left[c_n x_n(t_0) \cos(\omega_n(t-t_0))
\right.
\]

\[
+ \frac{c_n}{m_n \omega_n} p_n(t_0) \sin(\omega_n(t-t_0)) \right]
\]

\[
= -M \gamma(t-t_0) q(t_0) + \sum_{n=1}^{\infty} \left[m_n \omega_n^2 x_n(t_0) \cos(\omega_n(t-t_0))
\right.
\]

\[
+ \omega_n p_n(t_0) \sin(\omega_n(t-t_0)) \right]
\]
A gas of free Brownian particles

energy

\[E = \frac{\langle p^2 \rangle}{2M} = \frac{1}{2\beta} \left[1 + 2 \sum_{n=1}^{\infty} \frac{\gamma(v_n)}{v_n + \gamma(v_n)} \right] \]

specific heat

\[C^E = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{\gamma^2(v_n) + v_n^2 \gamma'(v_n)}{(v_n + \gamma(v_n))^2} \]
Specific heat of a damped free particle

Route I

- $T \to \infty$: classical value $k_B/2$
- damping constant γ sets the temperature scale
- coupling to the environment ensures 3rd law
- less damping makes the system more classical

Explicit results

- $T \to \infty$: classical value $k_B/2$
- damping constant γ sets the temperature scale
- coupling to the environment ensures 3rd law
- less damping makes the system more classical
Specific heat from system energy

\[
\frac{C^E}{k_B} = \frac{x_1 x_2}{x_1 - x_2} \left[x_2 \psi'(x_2) - x_1 \psi'(x_1) \right] - \frac{1}{2}
\]

with

\[
x_{1,2} = \frac{\hbar \beta \omega_D}{4\pi} \left(1 \pm \sqrt{1 - \frac{4\gamma}{\omega_D}} \right)
\]

high-temperature expansion

\[
\frac{C^E}{k_B} = \frac{1}{2} - \frac{\hbar^2 \gamma \omega_D}{24(k_B T)^2} + O(T^{-3})
\]

low-temperature expansion

\[
\frac{C^E}{k_B} = \frac{\pi}{3} \frac{k_B T}{\hbar \gamma} - \frac{4\pi^3}{15} \left(\frac{k_B T}{\hbar \gamma} \right)^3 \left(1 - 2 \frac{\gamma}{\omega_D} \right) + O(T^5)
\]
Partition function and internal energy

undamped case

$$Z_0 = \frac{L}{\hbar} \left(\frac{2\pi m}{\beta} \right)^{1/2}$$

with damping

$$Z = Z_0 \prod_{n=1}^{\infty} \frac{\nu_n}{\nu_n + \hat{\gamma}(\nu_n)}$$

internal energy ▶ compare with energy E

$$U = \frac{1}{2\beta} \left[1 + 2 \sum_{n=1}^{\infty} \frac{\hat{\gamma}(\nu_n) - \nu_n \hat{\gamma}'(\nu_n)}{\nu_n + \hat{\gamma}(\nu_n)} \right]$$

$$= \frac{\hbar \omega_D}{2\pi} \psi \left(\frac{\hbar \beta \omega_D}{2\pi} \right) - \frac{x_+}{\beta} \psi(x_+) - \frac{x_-}{\beta} \psi(x_-) - \frac{1}{2\beta}$$
Specific heat from partition function

\[
\frac{C^Z}{k_B} = x_1^2 \psi'(x_1) + x_2^2 \psi'(x_2) - \left(\frac{\hbar \beta \omega_D}{2\pi} \right)^2 \psi' \left(\frac{\hbar \beta \omega_D}{2\pi} \right) - \frac{1}{2}
\]

with

\[
x_{1,2} = \frac{\hbar \beta \omega_D}{4\pi} \left(1 \pm \sqrt{1 - \frac{4\gamma}{\omega_D}} \right)
\]

high-temperature expansion

\[
\frac{C^Z}{k_B} = \frac{1}{2} - \frac{\hbar^2 \gamma \omega_D}{12(k_B T)^2} + O(T^{-3})
\]

low-temperature expansion

\[
\frac{C^Z}{k_B} = \frac{\pi}{3} \frac{k_B T}{\hbar \gamma} \left(1 - \frac{\gamma}{\omega_D} \right) - \frac{4\pi^3}{15} \left(\frac{k_B T}{\hbar \gamma} \right)^3 \left[1 - 3 \frac{\gamma}{\omega_D} - \left(\frac{\gamma}{\omega_D} \right)^3 \right] + O(T^5)
\]
Specific heat of a damped free particle

The specific heat can be negative!??
Origin of a negative density of states

a simple model:

• system

• one single bath oscillator with frequency ω

\Rightarrow total system with eigenenergies E_n and degeneracies g_n

$$Z = \frac{\text{Tr}_{S+osc}(e^{-\beta H})}{\text{Tr}_{osc}(e^{-\beta H_{osc}})} = \sum_n g_n e^{-\beta E_n}(e^{\hbar \beta \omega/2} - e^{-\hbar \beta \omega/2})$$

$$\rho(E) = \sum_n g_n \delta(E - E_n + \hbar \omega/2) - \sum_n g_n \delta(E - E_n - \hbar \omega/2)$$
Density of states of a damped free particle

Route II

\[\rho(E) \sim \frac{1}{\sqrt{E}} \]

\[\rho(\hbar \omega_D L_D / L) \]

\[(E - U_0) / \hbar \omega_D \]

\[\omega_D / \gamma = \infty \]

\[= 5 \]

\[= 1 \]

\[= 0.2 \]

negative d.o.s.
Strong coupling: Example

System: Two-level atom; “bath”: Harmonic oscillator

\[H = \frac{\epsilon}{2} \sigma_z + \Omega \left(a^{\dagger} a + \frac{1}{2} \right) + \chi \sigma_z \left(a^{\dagger} a + \frac{1}{2} \right) \]

\[H^* = \frac{\epsilon^*}{2} \sigma_z + \gamma \]

\[\epsilon^* = \epsilon + \chi + \frac{2}{\beta} \text{artanh} \left(\frac{e^{-\beta \Omega} \sinh(\beta \chi)}{1 - e^{-\beta \Omega} \cosh(\beta \chi)} \right) \]

\[\gamma = \frac{1}{2\beta} \ln \left(\frac{1 - 2e^{-\beta \Omega} \cosh(\beta \chi) + e^{-2\beta \Omega}}{(1 - e^{-\beta \Omega})^2} \right) \]

\[Z_S = \text{Tr} e^{-\beta H^*} \quad F_S = -k_b T \ln Z_S \]

\[S_S = -\frac{\partial F_S}{\partial T} \quad C_S = T \frac{\partial S_S}{\partial T} \]

Strong coupling: Example

System: Two-level atom; “bath”: Harmonic oscillator

\[H = \frac{\epsilon}{2} \sigma_z + \Omega \left(a^\dagger a + \frac{1}{2} \right) + \chi \sigma_z \left(a^\dagger a + \frac{1}{2} \right) \]

\[H^* = \frac{\epsilon^*}{2} \sigma_z + \gamma \]

\[\epsilon^* = \epsilon + \chi + \frac{2}{\beta} \text{artanh} \left(\frac{e^{-\beta \Omega} \sinh(\beta \chi)}{1 - e^{-\beta \Omega} \cosh(\beta \chi)} \right) \]

\[\gamma = \frac{1}{2\beta} \ln \left(\frac{1 - 2e^{-\beta \Omega} \cosh(\beta \chi) + e^{-2\beta \Omega}}{(1 - e^{-\beta \Omega})^2} \right) \]

\[Z_S = \text{Tr} e^{-\beta H^*} \quad F_S = -k_b T \ln Z_S \]

\[S_S = -\frac{\partial F_S}{\partial T} \quad C_S = T \frac{\partial S_S}{\partial T} \]

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

Entropy and specific heat

\[\Omega / \epsilon = 3 \]

\[\Omega / \epsilon = 1/3 \]
Conclusions

• specific heat depends on friction strength
• finite damping restores third Law for the free Brownian particle
 \[C \propto \frac{k_B T}{\hbar \gamma} \]
• dependence on prescription
 \(H_{SB} \) part of “S” and/or part of “B”
 \textit{exception:} strict ohmic damping

References:

Low temperature behaviour of the specific heat

Route II

Free damped particle

\[
\frac{C^Z}{k_B} = \frac{\pi}{3} \frac{1 + \hat{\gamma}'(0)}{\hat{\gamma}(0)} \frac{k_B T}{\hbar} + O(T^3)
\]

Damped harmonic oscillator

\[
\frac{C^Z}{k_B} = \frac{\pi}{3} \frac{\hat{\gamma}(0)}{\omega_0^2} \frac{k_B T}{\hbar} + O(T^3)
\]

for the damped harmonic oscillator the specific heat is always positive
GO TO: FEATURE ARTICLES

• Quantum Dissipation and Quantum Transport

http://www.physik.uni-augsburg.de/theo1/hanggi/Quantum.html
DRIVEN - TUNNELING - ZOO

SUPPR. vs. ENH.

CDT

EHG

CHAOS-ASSISTED

QSR

COHERENT TUNNELING CONTROL

- DRIVING (R, A,)
- BATH SPECTRUM
- NOISE INPUT
Quantum Dissipation: A Primer

P. Hänggi

Institut für Physik
Universität Augsburg
NOISE-INDUCED ESCAPE

\[
\text{rate} = A(y) \frac{\omega_0}{2\pi} \exp(-\alpha \Pi/\Gamma)
\]

RMP 62: 251 (90)
Reaction-rate theory: fifty years after Kramers

Peter Hänggi
Lehrstuhl für Theoretische Physik, University of Augsburg, D-8900 Augsburg, Federal Republic of Germany

Peter Talkner*
Department of Physics, University of Basel, CH-4056 Basel, Switzerland

Michal Borkovec
Institut für Lebensmittelwissenschaft, ETH-Zentrum, CH-8092 Zürich, Switzerland

The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers’ seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers’ reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers’ work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers’ theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers’ reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

CONTENTS

List of Symbols 252
I. Introduction 253
 A. Separation of time scales 257
 B. Equation of motion for the reaction coordinate 257
 C. Theoretical concepts for rate calculations 258
 1. The flux-over-population method 258
 2. Method of reactive flux 259
 3. Method of lowest eigenvalue, mean first-passage time, and the like 261
II. Roadway To Rate Calculations 262
 A. Simple transition-state theory 263
 B. Canonical multidimensional transition-state theory 263
 1. Multidimensional transition-state rate for a collection of N vibrational bath modes 264
 2. Atom-transfer reaction 264
 3. Dissociation reaction 264
 4. Recombination reaction 265
 C. Model case: particle coupled bilinearly to a bath of harmonic oscillators 266
 1. The model 266
 2. Normal-mode analysis 266
 3. The rate of escape 267
III. Classical Transition-State Theory 268
 A. Simple transition-state theory 269
 B. Canonical multidimensional transition-state theory 269
 1. Multidimensional transition-state rate for a collection of N vibrational bath modes 270
 2. Atom-transfer reaction 270
 3. Dissociation reaction 270
 4. Recombination reaction 270
 C. Model case: particle coupled bilinearly to a bath of harmonic oscillators 271
 1. The model 271
 2. Normal-mode analysis 271
 3. The rate of escape 272
IV. Kramers Rate Theory 273
 A. The model 273
 B. Stationary flux and rate of escape 273
 C. Energy of injected particles 274
 D. Energy-diffusion-limited rate 274
 E. Spatial-diffusion-limited rate: the Smoluchowski limit 275
 F. Spatial-diffusion-limited rate in many dimensions and fields 275
 1. The model 275
 2. Stationary current-carrying probability density 276
 3. The rate of nucleation 277
 G. Regime of validity for Kramers’ rate theory 278
V. Unimolecular Rate Theory 279
 A. Strong collision limit 281
 B. Weak collision limit 282
 C. Between strong and weak collisions 284
 D. Beyond simple unimolecular rate theory 285
VI. Turnover between Weak and Strong Friction 286
 A. Interpolation formulas 286
 B. Turnover theory: a normal-mode approach 287
 C. Peculiarities of Kramers’ theory with memory friction 289
VII. Mean-First-Passage-Time Approach 290
 A. The mean first-passage time and the rate 290
 B. The general Markovian case 290
 C. Mean first-passage time for a one-dimensional Smoluchowski equation 291
 1. The transition rate in a double-well potential 291
 2. Transition rates and effective diffusion in periodic potentials 292
 3. Transition rates in random potentials 293
 4. Diffusion in spherically symmetric potentials 294
 D. Mean first-passage times for Fokker-Planck processes in many dimensions 295
 E. Sundry topics from contemporary mean-first-passage-time theory 297
 1. Escape over a quartic (−x^4) barrier 297

*Present address: Paul Scherrer Institut, CH-5232 Villigen, Switzerland.

Reviews of Modern Physics, Vol. 62, No. 2, April 1990

Copyright ©1990 The American Physical Society 251