Quantum Dissipation: A Primer

P. Hänggi

Institut für Physik Universität Augsburg

Dynamics of Open Quantum Systems

P. Hänggi

Institut für Physik Universität Augsburg

QUANTUM DISSIPATION $\mathcal{L} = \frac{1}{2} m_0 e^{xt_2} - \frac{1}{2} m_0 e^{xt_2}^2$ L'éco

d dL = d moex = moex + moex

 $QM: L \rightarrow H = \frac{p^2}{2m_0}e^{-yt} + \frac{1}{2}m_0e^{st}\omega_0^2x^2$

THE PROBLEM

thermal equilibrium P.H., P. TALKNER, M. BORKOVEC REV. MOD. PHys. <u>62</u>: 251(1990)

FACTS

H2& HD sorbed in Zeolites [Bouchand etal (92)

GOMER(82)]

CO-MIGRATION IN HEHOGLOBIN [Frauenfelder]

TUNNELING IN A JOSEPHSON JUNCTION SUBJECTED TO MEMORY FRICTION [Esteve et. al. (79)]

Results

Quantum Tunneling	Cross- over	Quantum Corrections	thermal T activation T
R=Aexp-B	2-0-mode	$k = F_{ep} Q$	$k = A(\eta)e^{-E_0/kT}$
$B=S_B(T,\gamma)$	$\frac{S_B}{E} = \frac{E_b}{E}$	quantum enhancement	$f_{\mathcal{S}} = \pi / M$
B(T=0)= B(T=0) -a T2!	smooth!		$ \begin{array}{l} $
A(Ty) = A(y)	Erfc-	>1 i.e. $E_b \rightarrow E_b - \frac{c}{T}$	· 60 277
$\neq \chi^{7/2}, \chi \to \infty$ $\neq \chi^{(1+2,30\chi)}, \chi \to 0$ $= \chi^{(1+2,30\chi)}, \chi \to 0$		$E_b \rightarrow E_b - \frac{c}{T}$	
214000			

Reaction-rate theory: fifty years after Kramers

Peter Hänggi, Peter Talkner, Michal Borkovec

RMP 62: 251 (90)

		2. Escape over a cusp-shaped barrier	298	K(x,x')	transition probability kernel
		3. Mean first-passage time for shot noise	299	M	mass of reactive particle
		4. First-passage-time problems for non-Markovian		P(E)	period of oscillation in the classically al-
VIII	T	processes	300		lowed region
v 111.		ansition Rates in Nonequilibrium Systems Two examples of one-dimensional nonequilibrium	300	P(E,E')	classical conditional probability of finding
	А.	rate problems	301		the energy E , given initially the energy E'
		1. Bistable tunnel diode	301	Q	quantum correction to the classical prefac-
		2. Nonequilibrium chemical reaction	302	£	tor
	В.	Brownian motion in biased periodic potentials	302	S_b	dissipative bounce action
		Escape driven by colored noise	304	T^{b}	temperature
	D.	Nucleation of driven sine-Gordon solitons	306		-
		1. Nucleation of a single string	307	T_0	crossover temperature
_		2. Nucleation of interacting pairs	308	T(E)	period in the classically forbidden regime
IX.	-	antum Rate Theory	308	U(x)	metastable potential function for the reac-
	А.	Historic background and perspectives; traditional			tion coordinate
		quantum approaches	308	V	volume of a reacting system
		The functional-integral approach	310	Ζ	partition function, inverse normalization
		The crossover temperature	311 313	Z_0, Z_A	partition function of the locally stable state
	D.	The dissipative tunneling rate 1. Flux-flux autocorrelation function expression for	515		(A)
		the quantum rate	314	$Z^{ eq}$	partition function of the transition rate
		2. Unified approach to the quantum-Kramers rate	314	\mathcal{H}	Hamiltonian function of the metastable sys-
		3. Results for the quantum-Kramers rate	315		tem
		a. Dissipative tunneling above crossover	315	F	complex-valued free energy of a metastable
		b. Dissipative tunneling near crossover	316	U	state
		c. Dissipative tunneling below crossover	316	ſ	
		4. Regime of validity of the quantum-Kramers rate	318	$\stackrel{\mathcal{L}}{\mathcal{L}^{\dagger}}$	Fokker-Planck operator
	E.	Dissipative tunneling at weak dissipation	319	\mathcal{L}^{+}	backward operator of a Fokker-Planck pro-
		1. Quantum escape at very weak friction	319	•	Cess
	-	2. Quantum turnover	320	j	total probability flux of the reaction coordi-
	Р.	Sundry topics on dissipative tunneling	321	_	nate
		1. Incoherent tunneling in weakly biased metasta-	221	h	Planck's constant
		ble wells 2. Coherent dissipative tunneling	321 322	ħ	$h(2\pi)^{-1}$
		3. Tunneling with fermionic dissipation	322	k_B	Boltzmann constant
Х.	Nu	merical Methods in Rate Theory	322	k	reaction rate
		periments	324	k^+	forward rate
	Α.	Classical activation regime	325	k^{-}	backward rate
	В.	Low-temperature quantum effects	327	$k_{\rm TST}$	transition-state rate
XII.	Co	nclusions and Outlook	327	k(E)	microcanonical transition-state rate, semi-
		edgments	330		classical cumulative reaction probability
Appe		A: Evaluation of the Gaussian Surface Integral in		k_S	spatial-diffusion-limited Smoluchowski rate
	-	. (4.77)	331		-
Appe		B: A Formal Relation between the MFPT and the	221	m_i	mass of <i>i</i> th degree of freedom
Pofor		ix-Over-Population Method	331 332	p(x,t)	probability density
Refer	ence	-5	552	$p_0(x)$	stationary nonequilibrium probability densi-
					ty for the reaction coordinate
LIST	OF	SYMBOLS		p_i	momentum degree of freedom
				\boldsymbol{q}_i	configurational degree of freedom
A (7	7)	temperature-dependent quantum rate pr	efac-	r(E)	quantum reflection coefficient
		tor		s(x)	density of sources and sinks
C(t)		correlation function		t(E)	quantum transmission coefficient
D		diffusion coefficient		$t_{\Omega}(x)$	mean first-passage time to leave the domain
E		energy function			Ω , with the starting point at x
\overline{E}_{b}			the	t _{MFPT}	constant part of the mean first-passage time
E_b activation energy (-barrier energy with the energy at the metastable state set equal to			· MFP1	to leave a metastable domain of attraction	
		zero)		$v = \dot{x}$	velocity of the reaction coordinate
$E^{(A)}$. +		reaction coordinate
Ľ	87		ai	x x x	
$E^{(S)}$		the stable state Hessian matrix of the energy function		x_0, x_a	location of well minimum or potential
14		around the saddle-point configuration		r .	minimum of state A, respectively
		around the saddle-point configuration		x_b	barrier location

 x_T β location of the transition state inversion temperature $(k_B T)^{-1}$

action variable of the reaction coordinate

J Jacobian

Ι

microscopic approach

 $H = \frac{1}{2}M\dot{q}^{2} + l(q)$ system

 $+\frac{1}{2}\sum_{\alpha}m_{\alpha}\dot{q}_{\alpha}^{2} + \sum_{\alpha}m_{\alpha}\omega_{\alpha}^{2}\dot{q}_{\alpha}^{2}$ (harmonic) bath

+ q Z Ca ga linear coupling $+q^2\sum_{\alpha}\frac{c_{\alpha}}{2m_{1}c_{1}^2}$

compensation of frequency shift

QE.

path integral approach to density matrix at temperature T trace out environment

QUANTUM NOISE

QUANTUM L.-EQ.

$\frac{|0\rangle_{S+B}}{4} \neq \frac{|0\rangle_{S}}{2}$ $\frac{|0\rangle_{B}}{4}$ $\frac{|0\rangle_{S+B}}{4} \neq \frac{|0\rangle_{S}}{2}$ $\frac{|0\rangle_{S+B}}{4} \neq \frac{|0\rangle_{S}}{2}$

$H_{s+n} = H_s + H_{s-n} + H_B$

 $=\frac{p^2}{2m}+V(x)+\sum_{\alpha}\left[\frac{p_{\alpha}^2}{2m_{\alpha}}+\frac{m_{\alpha}c_{\alpha}^2}{2}\left(q_{\mu}-\frac{c_{\alpha}}{m_{\alpha}c_{\alpha}^2}\right)\right]$

Ss #2" exp (- Hs)

 $S_{Total} = S_{s+B} = 2^{-1} e_{xp} \left(-\frac{H_{s+B}}{hT}\right)$

5 QLE $i_{x}\dot{o} = [O, H_{-}]$ $m\ddot{x} + m \int ds y(t-s) \dot{x}(s) + \frac{\partial V(x)}{\delta x}$ $= \eta(t) - m_{g}(t-0) \times (0)$ INITIAL SLIP $\gamma(t-s) = \frac{1}{m} \sum_{m,\omega^2} \frac{c_{\alpha}}{\cos(\omega_{\alpha}(t-s))}$ $= \gamma(s-t)$

 $m(t) = \sum_{n} \sum_{n} \left[q_n^{(0)} \cos(\alpha_n t) + \frac{\mu_n}{m_n \omega_n} \sin(\alpha_n t) \right]$

• $\frac{1}{2} < m(t) m(ss + m(ssm(t))) = C(t-s)$ $= C(\tau) = \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{c_n}{c_n} \coth\left(\frac{\pi c_n}{2\Lambda T}\right) \cosh(\frac{\pi}{2\Lambda T})$ $\xrightarrow{kT \gg have} kT \gamma(\tau)$

 $\hat{\mathbf{x}}(z) = \int e^{z} e^{-zt} dt$ $\delta(\omega) = \int (z = -i\omega)$ OHMIC DISSIPATION $J(\omega) = \chi \omega \exp(-\omega/\omega_e)$ cut-off frequency We >> Wo, Wh KONDO-PARAMETER, $= (2\pi \hbar / a^2) \propto \omega \exp(-\omega / \omega_c)$ a=29a: tunneling length

REMARKS

1.

QLE OPERATES IN FULL HILBERT SPACE OF SOB

 $\hat{g}(z) = \int e^{izt} g(t)dt = \frac{i}{2m} \sum_{\alpha} \frac{c_{\alpha}}{\alpha} \left[\frac{1}{z - c_{\alpha}} + \frac{1}{z + c_{\alpha}} \right]$ $\frac{1}{x+iot} = P(\frac{1}{x}) - i\pi S(x) \qquad \text{Im} \geq 0$ $Re_{g}^{2}(2 = \omega + iot) = \frac{\pi}{2m} \sum_{\alpha} \frac{c_{\alpha}}{m_{\alpha}\omega_{\alpha}^{2}} \left[d(\omega - \omega_{\alpha}) + d(\omega + \omega_{\alpha}) \right]$ $- C(\tau) = \frac{m}{\pi r} \int_{0}^{\infty} d\omega \operatorname{Re} \left\{ \omega + i0^{+} \right\} \cos(\omega \tau)$ $\times \operatorname{coth} \left(\frac{\pi \omega}{2kT} \right)$ 3 with $\mathfrak{J}(t) = \mathfrak{l}(t) - \mathfrak{m}_{\mathfrak{g}}(t) \times (0)$ $\hat{S}_{B} = 2^{-\prime} e_{xp} - \beta \left[\sum_{\alpha} \left(\frac{p_{\alpha}^{2}}{2m_{\alpha}} + \frac{m_{\alpha}^{2} v_{\alpha}^{2}}{2} \left(q_{\alpha} - \frac{c_{\alpha}}{2m_{\alpha}} \right) \right]$ → < ğ(t)> = 0 $\frac{2}{2} < \frac{3}{7} + \frac{3}{7} + \frac{3}{7} + \frac{3}{7} = C(\tau)$

 $\langle \times (0) \} (t) \neq 0$

 $\langle H_{int} \rangle_{p} \neq 0$

SYNOPSIS LINEAR RESPONSE THEORY & QUANTUM-FDT

 $\hat{H}(t) = \hat{H}_{o} - F(t)\hat{A}; s_{\rho} = Z \exp(-\beta \hat{H}_{o})$ $\langle \hat{B}(t) \rangle - \langle \hat{B}(t) \rangle = \langle \delta \hat{B}(t) \rangle = \int \chi(t-s) \mathcal{F}(s) ds$ $K \sqcup BO: \chi_{BA}(\tau) = \Theta(\tau) \stackrel{i}{\leftarrow} \langle [\hat{B}(\tau), \hat{A}(o)] \rangle_{BA}$ $= -\Theta(\tau) \hat{S} \langle \hat{A}(-i \pm \lambda) \hat{B}(\tau) \rangle d\lambda$ classical limit - OUT) B< BIT) A10)>

SYNOPSIS LINEAR RESPONSE THEORY & QUANTUM-FDT

 $\hat{H}(t) = \hat{H}_{o} - F(t)\hat{A}; s_{\rho} = Z \exp(-\beta \hat{H}_{o})$ $\langle \hat{B}(t) \rangle - \langle \hat{B}(t) \rangle_{3} = \langle \delta \hat{B}(t) \rangle = \int \chi(t-s) \mathcal{F}(s) ds$ $KUBO: \chi_{BA}(\tau) = \Theta(\tau) \frac{i}{\tau} \langle [\hat{B}(\tau), \hat{A}(\omega)] \rangle_{BA}$ $= -\Theta(\tau) \hat{S} \langle \hat{A}(-i \pm \lambda) \hat{B}(\tau) \rangle d\lambda$ classical limit - OUT) B< BIT) A10)> $\hat{B} = \hat{A} = \hat{q}$; $\mathcal{F}(t) = A \cos \Omega t$ $\langle J\hat{q}(t) \rangle = P_{1}e^{-i\mathcal{R}t} + P_{-1}e^{-i\mathcal{R}t}$ $P_{1-1} = \frac{A}{2} e^{\mp i \Omega t} \chi(\pm \Omega)$

QUANTUM-FDT

 $S_{BA}(\tau) = \frac{1}{2} < (\hat{B}(t) - \langle \hat{B} \rangle) (\hat{A}(0) - \langle \hat{A} \rangle)$ + $(\hat{A}(0) - \langle \hat{A} \rangle_{p}) (\hat{B}(\tau) - \langle \hat{B} \rangle_{p})$ $\chi_{BA}(\tau) = \chi'_{BA}(\tau) + i \chi''_{BA}(\tau)$ $\frac{1}{2} \begin{bmatrix} \chi_{BA}(+) + \chi_{AB}(-t) \end{bmatrix} - \frac{1}{2} \begin{bmatrix} \chi_{BA}(+) - \chi_{AB}(-t) \end{bmatrix}$ $\chi_{BA}(\omega) = \int_{\omega} \chi_{BA}(t) e^{i\omega t} dt$ $\chi''_{BA}(\omega) = \frac{1}{\pi} \tanh(\pi\omega p/2) S_{BA}(\omega)$ $S_{BA}(\omega) = \hbar \coth(\hbar\omega \beta/2) \chi_{BA}'(\omega)$ 2 X BA(C) (BSU) NOTE: $\chi''_{BA}(\omega) = \frac{1}{2} \left[\chi^*_{AB}(\omega) - \chi_{BA}(\omega) \right]$ $\neq Im \chi_{BA}(\omega)$; except $\lambda = \hat{B}$ $\hat{A} = \hat{B} = \hat{q} : S_{qq}(\Omega) = \hbar \cosh(\hbar \Re \beta 2) \operatorname{Im} \chi_{qq}(\mathcal{Q})$

 $S_{II}(\omega) = (\hbar \omega) \cosh\left(\frac{\hbar \omega}{2\hbar T}\right) Re 2(\omega)$

kT>>ta: SII(w) -> 2kT Re 2(w) TARMY 21T/R

JOHNSON-NYQUIST (1928)

- tw Re Z(w) ht << tw quantum-zero point fluct. S. (w=0) = 0 at w=0

1900-1951

J.B. Johnson

Thermal agitation of electricity in conductors.

Phys. Rev. (1928) 32 (July) 97-109

H. Nyquist

Thermal agitation of electric charge in conductors.

Phys. Rev. (1928) 32 (July) 110-113

L. Onsager

Reciprocal relation in irreversible process.

Phys. Rev. (1931) 32 (February) 405-426

H.B. Callen, T.A. Welton

Irreversibility and Generalized Noise.

Phys. Rev. (1951) 83 (1) 34-40

QUANTUM NOISE

NO QUANTUM EQ. PARTITION-TH.

S:= 14, (+)>< 42(+) ; u:=== Sdw - 500

 $i \hbar \hat{g} = [H_{0,g}] + \underbrace{\#} [\chi^{2}_{g}] - \underbrace{$(+)[\chi,g]} - \underbrace{\#} [\chi^{2}_{g}] - \underbrace{[\chi^{2}_{g}] - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}] - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}] - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}] - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}] - \underbrace{[\chi^{2}_{g}]} - \underbrace$

PIT FALLS

MARKOV MASTER EQ

 $\frac{d}{ds} = -\frac{1}{2}Ls - \Gamma_s + I(t)$

BLOCH-REDFIELD i.g. NO DET. BALANCE ROTATING WAVE APPROX.

(LINDBLAD; DAVIES-APPROX.)

- DET. BALANCE V O.K. BUT
- WRONG EHRENFEST EQ.
- NO FDT
- NO KMS-COND. < u(t) = < u(t + in p)

Schematic of stochastic resonance. The crosshatched oval represents a black-box system which receives two inputs: one weak and periodic, the other strong and random. The output is relatively regular with small fluctuations.

NOISE - ASSISTED SYNCHRONIZED HOPPING

Bistable Model

P. JUNG + P. H., PHYS. REV. A44 8032(91)

MORE NOISE -> MORE SIGNAL

P. JUNG + P. H., PHYS. REV. A44: 8032(91)

MORE NOISE -> MORE SIGNAL

S R

IN QUANTUM MECHANICS

QSR

LINEAR RESPONSE 2QSR

with
$$P_1 = \frac{A}{2} \chi_{gg}(\mathcal{R}) \equiv \frac{A}{2} \chi(\mathcal{R})$$

$$\gamma_{1} = 4\pi |P_{1}|^{2} = \pi A^{2} |\chi(\Omega)|^{2}$$

 $SNR = \frac{\pi A^2 |\chi(\Omega)|^2}{S_{qq}(\Omega; A=0)} = \frac{\pi A^2 |\chi(\Omega)|^2}{Im \chi(\Omega) \hbar \omega \hbar (\hbar \Omega \beta 2)}$

PROBLEM: QUANTUM X(S) S(S)

 $S_{gg}(t) = \frac{1}{2} < J_{q}(t) J_{q}(0) + J_{q}(0) J_{q}(t) >_{A}$ DIFFICULT

LINEAR RESPONSE 2QSR

with
$$P_1 = \frac{A}{2} \chi_{gg}(\mathcal{R}) \equiv \frac{A}{2} \chi(\mathcal{R})$$

$$\eta_1 = 4\pi |P_1|^2 = \pi A^2 |\chi(\Omega)|^2$$

 $SNR = \frac{\pi A^2 |\chi(\Omega)|^2}{S_{qq}(\Omega; A=0)} = \frac{\pi A^2 |\chi(\Omega)|^2}{Im \chi(\Omega) \hbar \omega \hbar (\hbar \Re \beta/2)}$

PROBLEM: QUANTUM X(I) S(I)

 $S_{qq}(t) = \frac{1}{2} < dq(t) dq(o) + dq(o) dq(t) > 3$

DIFFICULT

above-near crossover to thermal hopping AT LOW T

=0; $M \frac{d^2}{d\tau^2} q_B(\tau) = \frac{\partial U}{\partial q_B}$ $- M \frac{d^2}{d\tau^2} \dot{q}_{B}(\tau) + \left(\frac{\partial^2 N}{\partial q^2}\right) \dot{q}_{B}(\tau) = 0$

. . .

 $\Theta = \hbar/kT$

$$q_{B}(\tau + \Theta) = q_{B}(\tau)$$

QUANTUM SR

DRIVEN QUANTUM TUNNELING

M. GRIFONI, P.H. PHYS. REP. <u>304</u>: 229–358(98)

FREE COPY

http://www.physik.uni-augsburg. de/theo1/hanggi/

Third Law of thermodynamics

Walter Hermann NERNST (1864 - 1941)

Third Law

Harmonic oscillator

Dissipative systems Harmonic oscillator Free Brownian particle

"mein Wärmesatz" (during his lecture August 15, 1905)

$$\frac{\Delta H - \Delta G}{T} = \Delta S \longrightarrow 0 \quad \text{as} \quad T \longrightarrow 0$$

<□> <□> <□>

Famous exceptions to the Third Law

classical ideal gas

$$S = N [c_V \ln(T) + k_B \ln(V/N) + \sigma]$$

Moreover:

classical statistical mechanics: *n*-vector model with *n*-dimensional vectors > 1 violates third law. (e.g. planar Heisenberg (n = 2) or the n = 3 Heisenberg model)

Third Law

Harmonic oscillator

Dissipative systems Harmonic oscillator Free Brownian particle

Quantum Brownian motion and the Third Law of thermodynamics

Peter Hänggi, Michele Campisi, Gert-Ludwig Ingold, and Peter Talkner Uni Augsburg

Acta Phys. Pol. B **37**, 1537 (2006) New J. Phys. **10**, 115008 (2008) Phys. Rev. E **79**, 061105 (2009) J. Phys. A (Fast Track) **42**, 392002 (2009)

... and Planck's version

Max PLANCK (1858 - 1947)

Third Law

Harmonic oscillator

Dissipative systems Harmonic oscillator Free Brownian particl

The entropy s = S/N per particle approaches at T = 0 a constant $(s_0 = k_B \ln g(N)/N)$ value that possibly depends on the chemical composition of the system. This limiting value can generally be set to zero.

> <□> <□> <□> <□></

"for his contributions in the field of chemical thermodynamics, particularly concerning the behaviour of substances at extremely

low temperatures"

A bit of thermodynamics

The problem

What is the specific heat of a damped system?

Ouantum Brownian motion and the 3rd law

Two approaches Microscopic model

Route I

Route II

specific heat density of states

Specific heat from the partition function Route II density of states ρ Brownian motion and the 3rd law Specific heat and dissipation canonical partition function $\mathcal{Z} = \frac{\text{Tr}_{S+B}(e^{-\beta H})}{\text{Tr}_{B}(e^{-\beta H_{B}})}$ Two approaches Microscopic model Route I Route II specific heat density of states internal energy U entropy S specific heat C^Z

Thermodynamic argument:

$$\mathcal{Z} = \frac{\mathrm{Tr}_{\mathrm{S+B}}(\mathrm{e}^{-\beta H})}{\mathrm{Tr}_{\mathrm{B}}(\mathrm{e}^{-\beta H_{\mathrm{B}}})} \longrightarrow F_{\mathrm{S}} = F - F_{\mathrm{B}}^{0}$$

- *F* total system free energy
- $F_{\rm B}$ bare bath free energy

With this form of free energy the three laws of thermodynamics are fulfilled.

G. W. Ford, J. T. Lewis, R. F. O'Connell, Phys. Rev. Lett. 55, 2273 (1985)
P. Hänggi, G.-L. Ingold, P. Talkner, New J. Phys. 10, 115008 (2008)
G.-L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 061105 (2009)

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches

Microscopic model

Route I

Route II

specific heat density of states

Conclusions

The role of quantum dissipation

energy of damped harmonic oscillator

$$E = \langle H_{\rm S} \rangle = \frac{\langle p^2 \rangle}{2M} + \frac{M}{2} \omega_0^2 \langle q^2 \rangle$$

expectation value of system operator

$$\langle O_{\rm S} \rangle = \frac{\operatorname{Tr} \left[O_{\rm S} \exp(-\beta H) \right]}{\operatorname{Tr} \left[\exp(-\beta H) \right]}$$

Third Law

Harmonic oscillator

Dissipative systems

Harmonic oscillator

<□> <□> <□> <□> <□></

An important difference

Route I

$$E \doteq E_{\rm S} = \langle H_{\rm S} \rangle = \frac{\text{Tr}_{\rm S+B}(H_{\rm S}e^{-\beta H})}{\text{Tr}_{\rm S+B}(e^{-\beta H})}$$

$$\mathcal{Z} = \frac{\mathrm{Tr}_{\mathrm{S+B}}(\mathrm{e}^{-\beta H})}{\mathrm{Tr}_{\mathrm{B}}(\mathrm{e}^{-\beta H_{\mathrm{B}}})} \qquad U = -\frac{\partial \ln \mathcal{Z}}{\partial \beta}$$

$$\Rightarrow U = \langle H \rangle - \langle H_{\rm B} \rangle_{\rm B}$$
$$= E_{\rm S} + \left[\langle H_{\rm SB} \rangle + \overline{\langle H_{\rm B} \rangle - \langle H_{\rm B} \rangle_{\rm B}} \right]$$

For finite coupling *E* and *U* differ!

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches

Microscopic model

Route I

Route II

specific heat density of states

Conclusions

<□> <⊡> つ<</td>

Entropy of the damped harmonic oscillator

$$S = k_{\rm B} \left[1 - \ln(\hbar\beta\omega_0) + \frac{\hbar\beta\gamma}{2\pi} + g(\lambda_+) + g(\lambda_-) \right]$$

with $g(z) = \ln[\Gamma(1+z)] - z\psi(1+z)$

leading low-temperature behavior

$$S = \frac{\pi}{3} \frac{\gamma}{\omega_0} \frac{k_{\rm B}^2 T}{\hbar \omega_0} + O(T^3)$$

hird Law

Harmonic oscillator

Dissipative systems

Harmonic oscillator

The concept of a partition function...

... for dissipative quantum systems

$$Z = \frac{\text{Tr}\left[\exp(-\beta H)\right]}{\text{Tr}_{B}\left[\exp(-\beta H_{B})\right]}$$

harmonic oscillator

$$Z = \frac{1}{\hbar\beta\omega_0} \prod_{n=1}^{\infty} \frac{v_n^2}{v_n^2 + v_n \hat{\gamma}(v_n) + \omega_0^2} \quad \text{with} \quad v_n = \frac{2\pi}{\hbar\beta} n$$

$$\langle E \rangle_Z = -\frac{\partial}{\partial \beta} \ln(Z)$$

= $\frac{1}{\beta} \left[1 + \sum_{n=1}^{\infty} \frac{2\omega_0^2 + v_n \hat{\gamma}(v_n) - v_n^2 \hat{\gamma}'(v_n)}{v_n^2 + v_n \hat{\gamma}(v_n) + \omega_0^2} \right]$

Third Law

Harmonic oscillator

Dissipative systems

Harmonic oscillator

ロ 「」 う へ で

The fundamental relation

$$\langle E \rangle_{Z} = -\frac{\partial}{\partial \beta} \ln(Z) = \frac{1}{\beta} \left[1 + \sum_{n=1}^{\infty} \frac{2\omega_{0}^{2} + v_{n}\hat{\gamma}(v_{n}) - v_{n}^{2}\hat{\gamma}'(v_{n})}{v_{n}^{2} + v_{n}\hat{\gamma}(v_{n}) + \omega_{0}^{2}} \right]$$
$$\stackrel{?}{=} \frac{1}{\beta} \left[1 + \sum_{n=1}^{\infty} \frac{2\omega_{0}^{2} + v_{n}\hat{\gamma}(v_{n})}{v_{n}^{2} + v_{n}\hat{\gamma}(v_{n}) + \omega_{0}^{2}} \right] = \langle E \rangle$$

in general: NO

$$\begin{split} \langle E \rangle_{Z} &= \langle H \rangle - \langle H_{\rm B} \rangle_{\rm B} \\ &= \langle E \rangle + [\langle H_{\rm SB} \rangle + \langle H_{\rm B} \rangle - \langle H_{\rm B} \rangle_{\rm B}] \\ & \downarrow^{\parallel}_{\langle H_{\rm S} \rangle} \\ & \neq \langle H_{\rm S} \rangle \end{split}$$

hird Law

Harmonic oscillator

Dissipative systems

Harmonic oscillator

 \mathbf{S}_{vN} = - k Tr ($\rho_s \ln \rho_s$) \geq S (T)

Temperature dependence of the ratio $|\delta Q/dS_v|$ (in bits) with the heat defined by $\delta Q = TdS(T)$ for quasi-static variations of the oscillator frequency $d\omega_0$. The system-bath-couplings are chosen to be $\gamma = m\omega_0^2/\Gamma = 0.1$ (dark line) and $\gamma = m\omega_0^2/\Gamma = 0.5$ (gray line). At low T deviations from the Landauer bound $kT \ln 2$ (dashed line) occur.

 $|\delta Q/dS_{vN}| \ge k T \ln 2$

?

?

Drude model

damping kernel

$$\gamma(t) = \gamma \omega_{\rm D} {\rm e}^{-\omega_{\rm D} t}$$

Quantum Langevin equation

$$M\frac{\mathrm{d}^2}{\mathrm{d}t^2}q + M\gamma\omega_{\mathrm{D}}\int_{t_0}^t \mathrm{d}s\mathrm{e}^{-\omega_{\mathrm{D}}(t-s)}\frac{\mathrm{d}}{\mathrm{d}s}q = \xi(t)$$

equivalent equations of motion

$$\dot{q} = v$$
$$\dot{v} = z$$
$$\dot{z} = -\omega_{\rm D} z - \gamma \omega_{\rm D} v$$

oscillations occur for $\omega_{\rm D} < 4\gamma$

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches

Microscopic model

Route I

Route II

specific heat density of states

Conclusions

<□> <□> <□></□>

Model for a damped free particle

Hamiltonian

$$H = H_{\rm S} + H_{\rm B} + H_{\rm SB}$$

= $\frac{p^2}{2M} + \sum_{n=1}^{\infty} \left(\frac{p_n^2}{2m_n} + \frac{m_n}{2} \omega_n^2 x_n^2 \right) + \sum_{n=1}^{\infty} \left(-c_n x_n q + \frac{c_n^2}{2m_n \omega_n^2} q^2 \right)$

translational invariance: $c_n = m_n \omega_n^2$

$$= \frac{p^2}{2M} + \sum_{n=1}^{\infty} \left(\frac{p_n^2}{2m_n} + \frac{m_n}{2} \omega_n^2 (x_n - q)^2 \right)$$

Quantum Langevin equation

$$M\frac{\mathrm{d}^2}{\mathrm{d}t^2}q + M\int_{t_0}^t \mathrm{d}s\gamma(t-s)\frac{\mathrm{d}}{\mathrm{d}s}q = \xi(t)$$

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches

Microscopic model

Route I

Route II

specific heat density of states

Conclusions

Damping kernel and noise

damping kernel

$$\gamma(t) = \frac{1}{M} \sum_{n=1}^{\infty} \frac{c_n^2}{m_n \omega_n^2} \cos(\omega_n t)$$
$$= \frac{1}{M} \sum_{n=1}^{\infty} m_n \omega_n^2 \cos(\omega_n t)$$

noise operator

$$\xi(t) = -M\gamma(t-t_0)q(t_0) + \sum_{n=1}^{\infty} \left[c_n x_n(t_0) \cos\left(\omega_n(t-t_0)\right) + \frac{c_n}{m_n \omega_n} p_n(t_0) \sin\left(\omega_n(t-t_0)\right) \right]$$

= $-M\gamma(t-t_0)q(t_0) + \sum_{n=1}^{\infty} \left[m_n \omega_n^2 x_n(t_0) \cos\left(\omega_n(t-t_0)\right) + \omega_n p_n(t_0) \sin\left(\omega_n(t-t_0)\right) \right]$

CONSCIENCE OF

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches Microscopic model

Route I

Route II

specific heat density of states

Conclusions

▶ return

A gas of free Brownian particles

energy

$$E = \frac{\langle p^2 \rangle}{2M} = \frac{1}{2\beta} \left[1 + 2\sum_{n=1}^{\infty} \frac{\hat{\gamma}(v_n)}{v_n + \hat{\gamma}(v_n)} \right]$$

specific heat

$$C^{E} = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{\hat{\gamma}^{2}(v_{n}) + v_{n}^{2}\hat{\gamma}'(v_{n})}{(v_{n} + \hat{\gamma}(v_{n}))^{2}}$$

Third Law

Harmonic oscillator

Dissipative systems Harmonic oscillator Free Brownian particle

▶ return

<□> <一○> くつ> のへへ

Specific heat of a damped free particle

- $T \rightarrow \infty$: classical value $k_{\rm B}/2$ damping constant γ sets the temperature scale
- coupling to the environment ensures 3rd law
- · less damping makes the system more classical

Specific heat from system energy

$$\frac{C^E}{k_{\rm B}} = \frac{x_1 x_2}{x_1 - x_2} \left[x_2 \psi'(x_2) - x_1 \psi'(x_1) \right] - \frac{1}{2}$$

with

$$x_{1,2} = \frac{\hbar\beta\omega_{\rm D}}{4\pi} \left(1 \pm \sqrt{1 - \frac{4\gamma}{\omega_{\rm D}}}\right)$$

high-temperature expansion

$$\frac{C^E}{k_{\rm B}} = \frac{1}{2} - \frac{\hbar^2 \gamma \omega_{\rm D}}{24(k_{\rm B}T)^2} + \mathcal{O}(T^{-3})$$

low-temperature expansion

$$\frac{C^E}{k_{\rm B}} = \frac{\pi}{3} \frac{k_{\rm B}T}{\hbar\gamma} - \frac{4\pi^3}{15} \left(\frac{k_{\rm B}T}{\hbar\gamma}\right)^3 \left(1 - 2\frac{\gamma}{\omega_{\rm D}}\right) + \mathcal{O}(T^5)$$

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches Microscopic model

Route I

Route II

specific heat density of states

Conclusions

<□> <□> <□></□>

Partition function and internal energy

undamped case

$$Z_0 = \frac{L}{\hbar} \left(\frac{2\pi m}{\beta}\right)^{1/2}$$

with damping

$$Z = Z_0 \prod_{n=1}^{\infty} \frac{v_n}{v_n + \hat{\gamma}(v_n)}$$

internal energy

compare with energy l

$$U = \frac{1}{2\beta} \left[1 + 2\sum_{n=1}^{\infty} \frac{\hat{\gamma}(v_n) - v_n \hat{\gamma}^{\dagger}(v_n)}{v_n + \hat{\gamma}(v_n)} \right]$$
$$= \frac{\hbar\omega_{\rm D}}{2\pi} \psi \left(\frac{\hbar\beta\omega_{\rm D}}{2\pi} \right) - \frac{x_+}{\beta} \psi(x_+) - \frac{x_-}{\beta} \psi(x_-) - \frac{1}{2\beta}$$

hird Law

Harmonic oscillator

Dissipative systems Harmonic oscillator Free Brownian particle

Specific heat from partition function

$$\frac{C^Z}{k_{\rm B}} = x_1^2 \psi'(x_1) + x_2^2 \psi'(x_2) - \left(\frac{\hbar\beta\omega_{\rm D}}{2\pi}\right)^2 \psi'\left(\frac{\hbar\beta\omega_{\rm D}}{2\pi}\right) - \frac{1}{2}$$

with

$$x_{1,2} = \frac{\hbar\beta\omega_{\rm D}}{4\pi} \left(1 \pm \sqrt{1 - \frac{4\gamma}{\omega_{\rm D}}}\right)$$

high-temperature expansion

$$\frac{C^Z}{k_{\rm B}} = \frac{1}{2} - \frac{\hbar^2 \gamma \omega_{\rm D}}{12(k_{\rm B}T)^2} + \mathcal{O}(T^{-3})$$

low-temperature expansion

$$\frac{C^Z}{k_{\rm B}} = \frac{\pi}{3} \frac{k_{\rm B} T}{\hbar \gamma} \left(1 - \frac{\gamma}{\omega_{\rm D}} \right) - \frac{4\pi^3}{15} \left(\frac{k_{\rm B} T}{\hbar \gamma} \right)^3 \left[1 - 3\frac{\gamma}{\omega_{\rm D}} - \left(\frac{\gamma}{\omega_{\rm D}} \right)^3 \right] + \mathcal{O}(T^5)$$

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches Microscopic model

Route I

Route II

specific heat density of states

Conclusions

▶ return

Specific heat of a damped free particle

The specific heat can be negative ??

<□> <□> <□></□>

Origin of a negative density of states

a simple model:

- system
- one single bath oscillator with frequency ω
- → total system with eigenenergies E_n and degeneracies g_n

$$Z = \frac{\mathrm{Tr}_{\mathrm{S+osc}}(\mathrm{e}^{-\beta H})}{\mathrm{Tr}_{\mathrm{osc}}(\mathrm{e}^{-\beta H_{\mathrm{osc}}})} = \sum_{n} g_{n} \mathrm{e}^{-\beta E_{n}} \left(\mathrm{e}^{\hbar\beta\omega/2} - \mathrm{e}^{-\hbar\beta\omega/2} \right)$$

$$\rho(E) = \sum_n g_n \delta(E - E_n + \hbar \omega/2) - \sum_n g_n \delta(E - E_n - \hbar \omega/2)$$

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches Microscopic model

Route I

Route II

specific heat density of states

Conclusions

▶ return

↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 ↓□
 <li

Density of states of a damped free particle

A CONSCIENT

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches Microscopic model

Route I

Route II

specific heat

density of states

Conclusions

Strong coupling: Example

System: Two-level atom; "bath": Harmonic oscillator

$$H = \frac{\epsilon}{2}\sigma_z + \Omega\left(a^{\dagger}a + \frac{1}{2}\right) + \chi\sigma_z\left(a^{\dagger}a + \frac{1}{2}\right)$$
$$H^* = \frac{\epsilon^*}{2}\sigma_z + \gamma$$
$$\epsilon^* = \epsilon + \chi + \frac{2}{\beta}\operatorname{artanh}\left(\frac{e^{-\beta\Omega}\sinh(\beta\chi)}{1 - e^{-\beta\Omega}\cosh(\beta\chi)}\right)$$
$$\gamma = \frac{1}{2\beta}\ln\left(\frac{1 - 2e^{-\beta\Omega}\cosh(\beta\chi) + e^{-2\beta\Omega}}{(1 - e^{-\beta\Omega})^2}\right)$$

$$Z_{S} = \operatorname{Tr} e^{-\beta H^{*}} \quad F_{S} = -k_{b}T \ln Z_{S}$$
$$S_{S} = -\frac{\partial F_{S}}{\partial T} \quad C_{S} = T\frac{\partial S_{S}}{\partial T}$$

M. Campisi, P. Talkner, P. Hänggi, J. Phys. A: Math. Theor. 42 392002 (2009)

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

Strong coupling: Example

System: Two-level atom; "bath": Harmonic oscillator

$$H = \frac{\epsilon}{2}\sigma_z + \Omega\left(a^{\dagger}a + \frac{1}{2}\right) + \chi\sigma_z\left(a^{\dagger}a + \frac{1}{2}\right)$$
$$H^* = \frac{\epsilon^*}{2}\sigma_z + \gamma$$
$$\epsilon^* = \epsilon + \chi + \frac{2}{\beta}\operatorname{artanh}\left(\frac{e^{-\beta\Omega}\sinh(\beta\chi)}{1 - e^{-\beta\Omega}\cosh(\beta\chi)}\right)$$
$$\gamma = \frac{1}{2\beta}\ln\left(\frac{1 - 2e^{-\beta\Omega}\cosh(\beta\chi) + e^{-2\beta\Omega}}{(1 - e^{-\beta\Omega})^2}\right)$$

$$Z_{S} = \operatorname{Tr} e^{-\beta H^{*}} \quad F_{S} = -k_{b}T \ln Z_{S}$$
$$S_{S} = -\frac{\partial F_{S}}{\partial T} \quad C_{S} = T\frac{\partial S_{S}}{\partial T}$$

M. Campisi, P. Talkner, P. Hänggi, J. Phys. A: Math. Theor. 42 392002 (2009)

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

Entropy and specific heat

Peter Hänggi, Michele Campisi, and Peter Talkner

Conclusions

- specific heat depends on friction strength
- finite damping restores third Law for the free Brownian particle

$$C \propto \frac{k_{\rm B}T}{\hbar\gamma}$$

1

 dependence on prescription *H*_{SB} part of "S" and/or part of "B" *exception*: strict ohmic damping

References:

Acta Phys. Pol. B **37**, 1537 (2006) http://th-www.if.uj.edu.pl/acta/vol37/pdf/v37p1537.pdf New J. Phys. **10**, 115008 (2008) Phys. Rev. E **79**, 061105 (2009) J. Phys. A (Fast Track) **42**, 392002 (2009) Phys. Rev. E **80**, 041113 (2009)

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches Microscopic model

Route I

Route II

specific heat density of states

Conclusions

Low temperature behaviour of the specific heat

Route II

Free damped particle

$$\frac{C^Z}{k_{\rm B}} = \frac{\pi}{3} \frac{1 + \hat{\gamma}'(0)}{\hat{\gamma}(0)} \frac{k_{\rm B}T}{\hbar} + \mathcal{O}(T^3)$$

Damped harmonic oscillator

$$\frac{C^{Z}}{k_{\rm B}} = \frac{\pi}{3} \frac{\hat{\gamma}(0)}{\omega_{0}^{2}} \frac{k_{\rm B}T}{\hbar} + O(T^{3})$$

for the damped harmonic oscillator the specific heat is always positive

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches Microscopic model

Route I

Route II

specific heat

density of states

Conclusions

<□> <⊡> </⊡>

HOMEPAGE "HANGGI"

GO TO : FEATURE ARTICLES

• Quantum Dissipation and Quantum Transport

http://www.physik.uni-augsburg.de/ theo1/hanggi/Quantum.html

- BATH SPECTRUM
- . NOISE INPUT

Quantum Dissipation: A Primer

P. Hänggi

Institut für Physik Universität Augsburg

NOISE-INDUCED ESCAPE

rate = $F(y) = \frac{\omega_0}{2\pi} \exp(-\delta U/D)$ RMP 62: 251(90)

Reaction-rate theory: fifty years after Kramers

Peter Hänggi

Lehrstuhl für Theoretische Physik, University of Augsburg, D-8900 Augsburg, Federal Republic of Germany

Peter Talkner*

Department of Physics, University of Basel, CH-4056 Basel, Switzerland

Michal Borkovec

Institut für Lebensmittelwissenschaft, ETH-Zentrum, CH-8092 Zürich, Switzerland

The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

CONTENTS

List of Symbols			252	
I.	Int	ntroduction		
II.	Roadway To Rate Calculations			
	А.	Separation of time scales	257	
	В.	Equation of motion for the reaction coordinate	257	
	C.	Theoretical concepts for rate calculations	258	
		1. The flux-over-population method	258	
		2. Method of reactive flux	259	
		3. Method of lowest eigenvalue, mean first-passage		
		time, and the like	261	
III.	Classical Transition-State Theory			
	Α.	Simple transition-state theory	262	
	В.	Canonical multidimensional transition-state theory	263	
		1. Multidimensional transition-state rate for a col-		
		lection of N vibrational bath modes	264	
		2. Atom-transfer reaction	264	
		3. Dissociation reaction	264	
		4. Recombination reaction	265	
	C.	Model case: particle coupled bilinearly to a bath of		
		harmonic oscillators	266	
		1. The model	266	
		2. Normal-mode analysis	266	
		3. The rate of escape	267	
IV.	Kramers Rate Theory			
	А.	The model	268	
	В.	Stationary flux and rate of escape	270	
	C.	Energy of injected particles	272	

*Present address: Paul Scherrer Institut, CH-5232 Villigen, Switzerland.

	D.	Energy-diffusion-limited rate	273
	E.	Spatial-diffusion-limited rate: the Smoluchowski	
		limit	274
	F.	Spatial-diffusion-limited rate in many dimensions	
		and fields	275
		1. The model	275
		2. Stationary current-carrying probability density	276
		3. The rate of nucleation	277
	G.	Regime of validity for Kramers' rate theory	278
V.	Uni	molecular Rate Theory	279
	А.	Strong collision limit	281
	В.	Weak collision limit	282
	C.	Between strong and weak collisions	284
	D.	Beyond simple unimolecular rate theory	285
VI.	Tu	nover between Weak and Strong Friction	286
	Α.	Interpolation formulas	286
	В.	Turnover theory: a normal-mode approach	287
	C.	Peculiarities of Kramers' theory with memory fric-	
		tion	289
VII.	Mean-First-Passage-Time Approach		290
	Α.	The mean first-passage time and the rate	290
	В.	The general Markovian case	290
	C.	Mean first-passage time for a one-dimensional Smo-	
		luchowski equation	291
		1. The transition rate in a double-well potential	291
		2. Transition rates and effective diffusion in period-	
		ic potentials	292
		3. Transition rates in random potentials	293
		4. Diffusion in spherically symmetric potentials	294
	D.	Mean first-passage times for Fokker-Planck process-	
		es in many dimensions	295
	E.	Sundry topics from contemporary mean-first-	
		passage-time theory	297
		1. Escape over a quartic $(-\mathbf{x}^4)$ barrier	297

251 Copyright ©1990 The American Physical Society