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prologue: the “standard” Landau-Zener problem

time-dependent two-level system
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Landau, Zener, Stiickelberg, Majorana (1932)



“standard” Landau-Zener problem

finite times: numerical & analytical

(parabolic cylinder functions)
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“standard” Landau-Zener problem

finite times: numerical t — oo: analytical

@ transition probability
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o large splitting A:
adiabatic following, P;_.|(co0) =1

Py(®)

Landau, Zener, Stiickelberg, Majorana (1932)

alternative: complete summation of a
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Landau-Zener transitions and quantum information

quantum information:
@ qubit: two-level system |1), |])

@ quantum gates: unitary operations

Landau-Zener transitions relevant for ...
v/ gate operations
v/ manipulation of qubits
v/ quantum state preparation

v adiabatic quantum computing
vo...
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TABLE 1. Key rates and CQED parameters for optical [2] and microwave [3] atomic systems using 3D cavities, compared against the
proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limit (npgp,; 2> 1). For the 1D
superconducting system, a full-wave (Z=X\) resonator, w./27=10 GHz, a relatively low @ of 10*, and coupling 8= Cg/C5=0.1 are assumed.
For the 3D microwave case, the mumber of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box
decay rate is unknown; a conservative value equal to the current experimental upper bound y=<1/(2 us) is assumed.

Parameter Symbol 3D optical 3D microwave 1D circuit
Resonance or transition frequency o, /2%, /27 350 THz 51 GHz 10 GHz
Vacuum Rabi frequency glm, glo, 220 MHz, 3 X 1077 47 kHz, 1 X107 100 MHz, 5X 1073
Transition dipole dleag ~1 1x10° 2x10*
Cavity lifetime 1/5,0 10 ns, 3 X 107 1 ms, 3x108 160 ns, 10*
Atom lifetime 1/y 61 ns 30 ms 2 us

Atom transit time Firansit =50 us 100 us o

Critical atom number No=2yx/g* 6x 1073 3Xx 1076 <6x 1073
Critical photon number mo=v12g> 3x 1074 3% 1078 <1x10°¢

Number of vacuum Rabi flops Bpani=2g/ (x+7) ~10 ~5 ~102




circuit QED

solid-state analogue of
a two-level atom

in an optical resonator
(cavity QED)

Cooper-pair box = charge qubit
resonator = (LC) oscillator
tuneable parameters:

gate voltage Vg
magnetic flux ey



circuit QED
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Blais et al. (2004)
Wallraff et al. (2004)

e resonator as LC oscillator: H = hQb'b
e Cooper-pair box (CPB):
charging energy
Cg Vg
2e

He = 4Ec(N - Np)?, Ny=
Josephson energy:

Hy= —% cos (2”""”“(”);(|N><N+1|+|N+1><N|)

e CPB-oscillator coupling: Hin = y(b' + h)N

Ec> Ejand Ny < Ng <Ny +1
-> charge qubit: effective two-state system |Np), [Ny + 1)



the qubit

“computational basis” in charge-degeneracy point Ng = Ny + 1/2::

Iy = |No) +|No + 1) 0y = INo) — | No + 1)
V2 V2
so that
t
H= %UZ+Y(19T +b)o+hQb b
typical parameter values:

e maximal Josephson energy Ej max/fi = Vtmax/ fi: 10'9Hz,
minimal switching time: 1us

e oscillator frequency Q: 108-10° Hz
e coupling strength y/27%: 105107 Hz; y/27hQ ~ 1073-1072
e [compare atom in cavity: y/27hQ < 107



Sweep a qubit to entangle states and to gauge its environment

coupling to a single quantum oscillator

Saito, Wubs, Kohler, Hinggi, Kayanuma, Europhys. Lett. 76, 22 (2006)



qubit coupled to a single quantum oscillator

adiabatic energies: o H(p) = %to'z +yo (b +b)+hQb'b
v 2
I1,0) o diabatic states: |1, n), ||, n)
1.3 @ initial state: |1, 0)
A n (diabatic ground state)
11,0y =" @ coupling o(b" + b)

time selection rule: |1,2¢ + 1) and
[|,2¢) never populated




qubit coupled to a single quantum oscillator

adiabatic energies: o H(p) = %to'z +yo (b +b)+hQb'b
v 2
1,0 o diabatic states: |1, n), ||, n)
1.3 @ initial state: |1, 0)
A n (diabatic ground state)
11,00 =" forbidden e coupling o (b + b)

time selection rule: |1,2¢ + 1) and
[|,2¢) never populated




dynamics: numerical solution
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e all |1, n+#0) finally unpopulated

@ selection rule for odd n only
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qubit + oscillator: perturbation series

series for (1, n|U(oco, —o0) |1, 0) with perturbation Hj, = yo (b +b)

@ Generalization of method by
Kayanuma (1984)

@ no contribution to
(1, nlU(oco, —00)[1,0)

e only contribution: repeated jumps
between |1,0) and ||, 1)

Volkov & Ostrovsky ('05); Dobrescu & Sinitsyn ('06); Saito et al. (06)



no-go theorem

consequences:
@ no-go theorem for ¢ — oo
1,4) . ;
@ perturbation series for Pj_.;
lisc2 consists of only the states
11,0 [1,0) and ||, 1)
= no-go theorem for series

1,3 - same perturbation series as
allowed 11,1y for standard LZ problem
11,0 =" forbidden

with A/2 — y

time P

Pt (00) =1—6Xp(— ZZZ )

Saito, Wubs, SK, Hdnggi, Kayanuma, EPL 76, 22 (2006)



no-go theorem

consequences:

Q@ “no-go-up theorem” for t — oo

11,4y @ perturbation series for P;_.(co0)
vlm) involves only |1,0) and ||, 1)
=-> same series as for standard
o LZ problem

A 11,3)
allowed I1,1) 5
11,0y = forbidden 2y

Pi_(00) = exp - = )

time

© beyond RWA, but...
independent of frequency Q



quantum state preparation: single-photon generation

M
vlm

1,0)

11,3
allowed I1,1)
11,0y =" forbidden

time

20 T - —

energy

° Y<K hQ

o slow sweep (v < y?/h)
21,00~ [, 1)
single-photon generation
P =1

o slow sweep + cavity decay

=> “single-photon-cycle”

K. Saito, M. Wubs, S. Kohler, P. Hénggi, Y. Kayanuma, Europhys. Lett. 76, 22 (2006)



quantum state preparation: entanglement generation

C — y/hQ=0.01

0.75 — y/hQ =0.05
~ — y/hQ=0.1
= U8 — y/hQ =05

0.25

1 2 5 10 20 50 100
hvly?

e general sweep >
Y(o0) = a()[1,0) + f(WI ], 1)

e controllable qubit-oscillator
entanglement in circuit QED

o Piy=IpwF=12>
qubit-oscillator Bell state

M. Wubs, S. Kohler, P. Hianggi, Physica E 40, 187 (2007)



LZ sweeps in a qubit ...

...coupled to two quantum oscillators
< >< <

t
H(®) = hQb! by +yo (bl + by) + %az +y01(b} + B) + h(Q+ 50) B by

Wubs et al., Physica E 40, 187 (2007)



two transmission lines

s Lorl : . s
R. Gross et al., WMI Garching

adiabatic energies:

I1,0,0)
@ diabatic states:

Am,n 11, m, n2), 11, n1, nz)
'1,0 o el .
A owed e e initial state: |1,0,0)

forbidden

time



transition probability

%9 no-go theorem:

e forbidden: many-photon states

10,0~ allowed ' @ only contribution: jumps between
e oscillator ground state and
single-photon states

=> spin-flip probability

Pi_j(o0)=1-exp| -

2m(y? +Y§))
hv




application: quantum state preparation

for 8i < Ql = QZ: W’ﬁnal) = a(U)H)O»O) +ﬁ(v)(|l’ 1’O> + H)O) 1>)

m: o1
,1,0
11,0,0) ~=7 allowed

forbidden

time

o slow switching, v < g%/h: a(v) = 0

-> oscillator-oscillator entanglement

e intermediate v: a(v) = f(v) = \/lg

= W state

Wubs, Kohler, Hanggi, Physica E 40, 187 (2007)



Sweep a qubit to entangle states and to gauge its environment

coupling to a quantum heat bath

Caldeira-Leggett model: coupling to bath of harmonic oscillators

H = Hgystem (1) +X2Yv(a$ +ay) + Zhwvaiav
v v

M. Wubs, K. Saito, S. Kohler, P. Hénggi, Y. Kayanuma, PRL 97, 200404 (2006)
K. Saito, M. Wubs, S. Kohler, Y. Kayanuma, P. Hianggi, PRB 75, 214308 (2007)



coupling to a quantum heat bath

vt A
H=-—0,+-0x
~ 2 2
o — +(0,c0s0 +0ysind) Y v, (@ +a,)
/\ “ * ; ! v

+Zhwva$a\,
v

@ cosf # 0: displaced oscillator ground states

=> diabatic states |{, ;) and ||, n_), note: generally |n,) # |n_)

2
- reorganization energy Ey = ) Lz
v 4hw,y

e effective coupling strength S=)_ y?
4

@ zero temperature: initially in ground state of system-plus-bath



generalization to many oscillators

e.g.: two oscillators

no-go-up theorem:

(initial state: |1,0,0,...))

@ no contribution: many-photon

states

o only contribution: jumps
between oscillator ground state
and single-photon states

PTHT(OO) = exp(—

21Y, Y2
hv

)

M. Wubs, S. Kohler, P. Hinggi, Physica E 40, 187 (2007)



quantum heat bath

more general qubit-bath coupling:
vt A . 1 ¥
H= EO'Z + Eax + (0,c080 + 0,sin0O) Z%(av +a,) + Zhwvavaw
v v

o, “longitudinal coupling” & 6=0

oy “transverse coupling” < 0=mn/2

. s P L hfood J@)!
reorganization ener = == o J(w)/w
& 8y %0 > hw, 41 Jo
h? [
e integrated spectral density S :Zy% = f dw J(w)
v 0

@ zero temperature: initially in ground state of system plus bath



dissipative Landau-Zener transitions

@ no-go-up theorem => bath ends in ground state if qubit ends |1)
e for 0 < P;_.|(00) < 1=> qubit-bath entanglement
e transition probability

W2

/1
P;_1(00) = exp(—

o ), w? = (A-Ey sin9c059)2 +Ssin®0

‘ exact solution for a dissipative quantum system ‘

M. Wubs, K. Saito, S. Kohler, P. Hénggi, Y. Kayanuma, PRL 97, 200404 (2006)

1 T

N T ] e dependence on

0.75 P

B . o e reorganization energy Ey
= 5 F — 0= i .
p — 9=ns8 e total coupling strength S
025 | —0=n/4 .
— 9=31/8 e vary A = determine Ey, S
@ . . . , N .
9 8 a4 68 8 ...unless8 =0, sinf =0



Sweep a qubit to entangle states and to gauge its environment

in the presence of a spin bath

...and beyond

~ . A~
- A

Saito, Wubs, Kohler, Kayanuma, Hénggi, PRB 75, 214308 (2007)



spin bath

general coupling to a spin bath

vt

H:—Eaz+20x+ > U,ZYVT +y ) B’

i=x,Y,2 vV i=x),2
@ no-go theorem = exact spin-flip probability

special case:

@ yX =y, =0 corresponds to 6 =0

_ i_1i
Hqubit—env =0 Z YvTlz
v

= W? = A?, i.e.| Landau-Zener probability bath-independent




universality

2 when is the LZ probability bath-independent ?

generalized phase noise:

vt A
H(n) = —EUZ+ Eax+az%+Henv

for arbitrary environment Hepy and bath operator &

2

PT_,T:eXp(—%) forT=0

=> spin-flip probability bath-independent provided that

o Hgpy has a unique ground state
e the bath couples to o only




application: adiabatic quantum computing

adiabatic quantum computing:
e result encoded in ground state of a Hamiltonian H

e reach ground state by adiabatic time-evolution with
H (1) with H(ty) = H;
=> requires ideal adiabatic following

@ problem: LZ transitions at avoided crossings

\/ [1), error with probability P;_.+

~
5’4
~
’f

I //\ |1y, adiabatic following

‘ influence of heat bath ? ‘




application: adiabatic quantum computing

Py =

2

TW
exp(— 2hv

) with W? = (A — Eysin6 cos(?)2 + Ssin%0

@ W > A: bath supports adiabatic following

@ W < A: bath increases error probability

bath with ohmic spectral density: J(w) « we % > S = fhw.E,

error probability: P;_;

1-1073

5-107*

I Ey=0.1A — wc=A
— w:=3A
— w=10A

coupling angle 6

at zero temperature:
@ 0 =0,7: LZ probability
bath-independent

e low cutoff frequency
-> non-adiabatic transitions



temperature dependence

“general belief”: thermal excitations support |1) — [1)

Ohmic phase noise, weak coupling Ao & Rammer, PRL89
classical noise Kayanuma, PRB’98
spin bath Wan & Amin, J.Quant.Inf. 09

= AQC error expected to increase with temperature

@ non-monotonic T dependence

weak coupling: g =0.04Q: v/ adiabatic following improves for
0.8 o larger dampingy
’ —y:l'O’ZQ o kgT ~hQ
307 —y=10"Q X ...butnot for kg T > hQ)
= —y=0
& ! = AQC error may decrease with kT
0.6 . . e cf. non-monotonic y-dependence at
0 0.5 1 15

temperature kg T [1Q] finite kT
Nalbach & Thorwart, PRL (2009), Le Hur et al.

PRA (2010), R.S. Whitney et al. PRL (2011)



Landau-Zener tunneling in qubit-oscillator settings

@ exact LZ transition probability for ground state

@ quantumn state preparation in circuit QED

e single-photon generation
o Bell states, W states

dissipative LZ transitions at =0

e adiabatic quantum computing
e spin bath

qubit-oscillator-bath at finite T
e non-monotonic temperature dependence

SFB'631

SFB 484,



Landau-Zener tunneling...

so far: T T

coupling to a dissipative oscillator

Zueco, Hanggi, SK, New J. Phys. 10, 115012 (2008)




effective spectral density

J(@)

~ o diagonalize
PN - — — oscillator-bath
~N Hamiltonian

Weutoff
3 => qubit plus
~ :ég bath with peaked
rK : — spectral density
7N - exact solution
Q for P atT=0

? oscillator dynamics

? finite temperatures



Bloch-Redfield master equation

@ bath elimination

=> master equation for qubit + oscillator

d

i
3P = 3 Hawbic (0 + Hose, p1 + ZLiss [P]

@ note: Z4iss depends on qubit+oscillator dynamics

1 T T
s test case:
1}
SIUCTE 1 @ zero temperature
£ o 1=0.00402 G e
EIN [P . e weak g-osc coupling: g =0.04Q
. o 9 .
o v=00407 v/ reliable for y < 0.1Q
0 0.05 0.1 0.15 (error < 1%)

damping y [Q]
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This talk based on:
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K. Saito, M. Wubs, S. Kohler, Y. Kayanuma, P. Hianggi, PRB 75, 214308 (2007)
M. Wubs, S. Kohler, P. Hénggi, Physica E (in press); cond-mat/0703425



temperature dependence

thermally occupied initial state |1, 1)
@ narrowly avoided crossings

e weak damping and weak coupling




temperature dependence

thermally occupied initial state |1, 1)
@ narrowly avoided crossings

e weak damping and weak coupling

Viiviivii
T S =S Y

n=0

time time time

@ |1,1) has additional path to ||)

@ 7n =1 mostrelevant for kg T ~ hQ)

= P;_ larger at intermediate temperatures



no-go theorem

three-level Landau-Zener problem

>>2
.><

S~
=

time

@ upper level finally never populated = “no-go theorem”
Brundobler & Elser (1993)
Shytov (2004); Volkov & Ostrovsky (2005)

@ here:

e generalization to (infinitely) many states
e corollary: “no-go theorem” for perturbation series



application to nanomagnets

o molecular Feg cluster, spin S=10
H=—DS;+E(S;— S) + guoS- H(®)

o determination of the very small
splittings by LZ transitions
Wernsdorfer & Sessoli, Science (1999)

o implicit assumption:
individual LZ transition probabilities
independent of dephasing
Leuenberger & Loss, PRB (2000)

HoH; K]



application to nanomagnets

HoH; K]

molecular Feg cluster, spin S=10
H=—DS;+E(S;— S) + guoS- H(®)

determination of the very small
splittings by LZ transitions
Wernsdorfer & Sessoli, Science (1999)

implicit assumption:

individual LZ transition probabilities
independent of dephasing
Leuenberger & Loss, PRB (2000)

proof for T = 0 (K): this talk (8 = 0)



no-go theorem: hints on a derivation

@ perturbation series in qubit-oscillator coupling:
terms of the structure

(e.0] (o.0] o0 v
f dtlf dt, dt3...exp [iZ(Athﬁ—(Iﬁg—tﬁ,_l))]
-0 151 1] l 2n

where A, = +1 (from b' and b)

@ substitution to time differences

oo oo
f dtlf drodrs...
—00 0

2k
o first integral provides §(v)_1,+Q)_ Ay)
7 =1
2k
o sinceall7, 20> ) A,=1=0
7

e all terms with “<” have vanishing prefactors = A, = (—1)¢



Sweep a qubit to entangle states and to gauge its environment

@ What is a Landau-Zener transition?

o Experiment: circuit QED

@ Qubit coupled to a quantum oscillator

o Dissipative Landau-Zener transitions



no-go theorem

o three-level Landau-Zener problem

\ . / e upper level finally never populated

/ => “no-go theorem”
y = Brundobler & Elser (1993)
= \S. Shytov (2004); Volkov & Ostrovsky
. (2005); Dobrescu & Sinitsyn (2006)

e generalization to infinitely many levels

series for (1, n|U(oco, —o0)|1,0) with perturbation Hj, = yax(lfr + D)
.............................................. I1,4)

e no contribution

e only contribution: repeated jumps
between |1,0) and ||, 1)
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