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We present a translation of Paul Langevin’s landmark paper. In it Langevin successfully applied
Newtonian dynamics to a Brownian particle and so invented an analytical approach to random
processes which has remained useful to this day. ©1997 American Association of Physics Teachers.
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I. LANGEVIN, EINSTEIN, AND MARKOV
PROCESSES

In 1908, three years after Albert Einstein initiated t
modern study of random processes with his ground brea
paper on Brownian motion,1 Paul Langevin~1872–1946!, a
French physicist and contemporary of Einstein, devise
very different but likewise successful description of Brow
ian motion.2 Both descriptions have since been generaliz
into mathematically distinct but physically equivalent too
for studying an important class of continuous random p
cesses.

Langevin’s work, like Einstein’s, remains current and
widely referenced and discussed.3 Yet, while Einstein’s pa-
per is readily available in English,4 Langevin’s is not. Here
we present a translation of this important primary source

Langevin’s approach to Brownian motion is, in his ow
words, ‘‘infinitely more simple’’ than Einstein’s. Indeed, h
paper is apparently more simple and for this reason is att
tive as an introduction to the subject. While Einstein, start
from reasonable hypotheses, derived and solved a partia
ferential equation~i.e., a Fokker–Planck equation! governing
the time evolution of the probability density of a Brownia
particle, Langevin applied Newton’s second law to a rep
sentative Brownian particle. In this way Langevin invent
the ‘‘F5ma’’ of stochastic physics now called the ‘‘Lange
vin equation.’’

Today it is clear that the apparent simplicity of Langevin
approach was purchased at the cost of forcing into existe
new mathematical objects with unusual properties. Wh
Langevin manipulated these objects~Gaussian white noise
and the stochastic differential equation! cautiously and intu-
itively, their formal properties have now been developed a
widely applied. Thus Langevin’s 1908 paper inspired n
mathematics as well as new physics.

The Langevin equation and the Fokker–Planck equa
both describe the physics of continuous, Markov~i.e.,
memoryless stochastic! processes. In fact, Einstein an
Langevin used their respective methods to derive the s
result: that the root-mean-squared displacement of a Bro
ian particle~imagine, say, a perfume particle in a still room!
increases with the square root of the time. Nonethel
Langevin’s analysis of Brownian motion was slightly mo
general and more correct than Einstein’s. In particu
Langevin introduced a stochastic force~his phrase is
‘‘complementary force’’! pushing the Brownian particle
around in velocity space, while Einstein worked complet
1079 Am. J. Phys.65 ~11!, November 1997
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in configuration space. This is to say, in modern termin
ogy, Langevin described the Brownian particle’s velocity
an Ornstein–Uhlenbeck process and its position as the
integral of its velocity, while Einstein described its positio
as a driftless Wiener process. The former is a cover
theory for the latter and reduces to it in a special ‘‘coar
graining’’ limit.5

II. LANGEVIN’S WORK AND LIFE

Langevin is, probably, best known for his still standa
theoretical model of para- and diamagnetism. During Wo
War I he did early work on sonar and he was an enthusia
advocate of the then new ideas in relativity. Einstein said
him ‘‘...It seems to me certain that he would have develop
the special theory of relativity if that had not been do
elsewhere, for he had clearly recognized the essen
points.’’6

Langevin loved teaching and excelled at it. A married m
with four children, he had an affair in 1911 with the recen
widowed Marie Curie which was publicized by scandal mo
gering newspapers. He subsequently challenged his chief
mentor, the editor Te´ry, to a duel. Although the challeng
was accepted and the combatants met on a sports field
shots were fired because Te´ry did not want, as he said, ‘‘to
deprive French science of a precious mind.’’7 In the prelude
to World War II Langevin became a vocal anti-fascist a
peace activist. Eventually he joined the French commu
party. He was arrested by the Nazis after their invasion
France in 1940, was briefly imprisoned by the Vichy gove
ment, and finally escaped to Switzerland. Thus, near the
of his life, he personally experienced, as it were, the chao
Brownian motion into which the whole of Europe wa
thrown. He died in 1946 and was buried with high hono
conferred by the French government.

III. THE TEXT

Langevin’s note is divided into three untitled parts. H
analysis of Brownian motion proper begins in the first se
tence of part II with the phrase ‘‘...and, furthermore, that it
easy to give a demonstration...’’ and continues to the end
part II. This analysis is self-contained, constitutes the bulk
his paper, and will be of most interest to physicists tod
However, the careful reader may also note that Langev
characterization of his sources in parts I and III is proble
atic.
1079© 1997 American Association of Physics Teachers
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At issue is the correct form and quantitative verification
Dx

2: the mean-square displacement of a Brownian particle
part I Langevin refers to two papers of Einstein’s in whi
the latter derives the functional form ofDx

2 reported in
Langevin’s equation~1!. Langevin’s own analysis in part I
also generates Eq.~1!. This much is clear.

Smoluchowski, on the other hand, using yet differe
methods ‘‘...has obtained forDx

2 an expression of the sam
form as~1! but which differs from it by the coefficient 64
17.’’ Does Smoluchowski’s theory predict a value ofDx

2

larger by a factor of 64/27 or smaller by a factor of 27/
than that predicted by the Einstein/Langevin formula~1!? If
the translation is here slightly ambiguous, it only reflects
similar ambiguity in Langevin’s French. Yet the natur
reading is that Smoluchowski’s prediction is larger than E
stein’s and Langevin’s by a factor of 64/27. Indeed, an
spection of Smoluchowski’s paper confirms this interpre
tion. We mention this detail because it leads to the probl

In part III we find that the only experimental results ava
able to Langevin with which to compare theory are those
Svedberg, and these, apparently, ‘‘...differ from those giv
by formula ~1! only by approximately the ratio of 1 to 4.’
Again, the natural interpretation is that Svedberg’s meas
ments are consistent with a value ofDx

2 one-fourth the size of
that predicted by the Einstein/Langevin formula~1!. Such
divergences among theories and experiment are, perhaps
exceptional in a new field. However, Langevin goes on
say, in the second half of the sentence quoted above,
Svedberg’s experimental results are ‘‘...closer to the o
calculated with M. Smoluchowski’s formula.’’ How can th
be? Smoluchowski predicts a mean square displacemenDx

2

larger while Svedberg measures aDx
2 smaller than that of the

Einstein/Langevin formula~1!, yet Svedberg’s results ar
supposed to be closer to those predicted by Smoluchow
Evidently, Langevin misstates the case. In just what way
for what reason, we are unsure.
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If we must fault Langevin’s exposition, we admire h
physics. In the first place Langevin found that even if Smo
chowski’s method is sound his execution of it was mistak
Langevin corrected Smoluchowski’s calculation and fou
that it too leads to formula~1! without the suspicious facto
64/27. Langevin also discerned that Svedberg’s measurem
of Dx

2 was not direct and that the Brownian particles t
latter observed were probably too small to invoke Stoke
formula upon which formula~1! depended. Fortunately
Langevin had more confidence in his and Einstein’s w
motivated and well executed theories than in the suppo
convergence of flawed theory and flawed experiment.
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PHYSICS--On the Theory of Brownian Motion
A note from M. P. Langevin, presented by M. Mascart.
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I. The very great theoretical importance presented by
phenomena of Brownian motion has been brought to
attention by M. Gouy.~1! We are indebted to this physicis
for having clearly formulated the hypothesis which sees
this continual movement of particles suspended in a fluid
echo of molecular-thermal agitation, and for having dem
strated this experimentally, at least in a qualitative mann
by showing the perfect permanence of Brownian motion, a
its indifference to external forces when the latter do n
modify the temperature of the environment.

A quantitative verification of this theory has been ma
possible by M. Einstein~2!, who has recently given a formul
that allows one to predict, at the end of a given timet, the
mean squareDx

2 of displacementDx of a spherical particle in
a given directionx as the result of Brownian motion in
liquid as a function of the radiusa of the particle, of the
viscositym of the liquid, and of the absolute temperature
This formula is:

~1! Dx
25

RT

N

1

3pma
t

e
r

n
n
-
r,
d
t

.

where R is the perfect gas constant relative to one gr
molecule and N the number of molecules in one gra
molecule, a number well known today and around 831023.

M. Smoluchowski~3! has attempted to approach the sam
problem with a method that is more direct than those used
M. Einstein in the two successive demonstrations he
given of his formula, and he has obtained forDx

2 an expres-
sion of the same form as~1! but which differs from it by the
coefficient 64/27

II. I have been able to determine, first of all, that a corre
application of the method of M. Smoluchowski leads one
recover the formula of M. Einsteinprecisely, and, further-
more, that it is easy to give a demonstration that is infinit
more simple by means of a method that is entirely differe

The point of departure is still the same: The theorem of
equipartition of the kinetic energy between the various
grees of freedom of a system in thermal equilibrium requi
that a particle suspended in any kind of liquid possesses

the directionx, an average kinetic energy
RT

2N equal to that of

a gas molecule of any sort, in a given direction, at the sa
1080D. S. Lemons and A. Gythiel
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temperature. Ifj5
dx

dt is the speed, at a given instant, of th

particle in the direction that is considered, one therefore
for the average extended to a large number of identical
ticles of massm

~2! mj25
RT

N
.

A particle such as the one we are considering, large r
tive to the average distance between the molecules of
liquid, and moving with respect to the latter at the speedj,
experiences a viscous resistance equal to26pmaj accord-
ing to Stokes’ formula. In actual fact, this value is only
mean, and by reason of the irregularity of the impacts of
surrounding molecules, the action of the fluid on the parti
oscillates around the preceding value, to the effect that
equation of the motion in the directionx is

~3! m
d2x

dt2
526pma

dx

dt
1X.

About the complementary force X, we know that it is ind
ferently positive and negative and that its magnitude is s
that it maintains the agitation of the particle, which the v
cous resistance would stop without it.

Equation~3!, multiplied by x, may be written as:

~4!
m

2

d2x2

dt2
2mj2523pma

dx2

dt
1Xx.

If we consider a large number of identical particles, a
take the mean of the equations~4! written for each one of
them, the average value of the termXx is evidently null by
reason of the irregularity of the complementary forcesX. It

turns out that, by settingz5
dx2

dt ,

m

2

dz

dt
13pmaz5

RT

N
.

The general solution

z5
RT

N

1

3pma
1Ce2

6pma
m t

enters aconstant regimein which it assumes the consta
value of the first term at the end of a time of orderm/6pma
or approximately 1028 seconds for the particles for whic
Brownian motion is observable.

One therefore has, at a constant rate of agitation,

dx2

dt
5

RT

N

1

3pma
;
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hence, for a time intervalt,

x22x0
25

RT

N

1

3pma
t.

The displacementDx of a particle is given by

x5x01Dx ,

and, since these displacements are indifferently positive
negative,

Dx
25x22x0

25
RT

N

1

3pma
t;

thence the formula~1!.

III. A first attempt at experimental verification has just be
made by M. T. Svedberg~4!, the results of which differ from
those given by formula~1! only by about the ratio 1 to 4 and
are closer to the ones calculated with M. Smoluchowsk
formula.

The two new demonstrations of M. Einstein’s formul
one of which I obtained by following the direction begun b
M. Smoluchowski, definitely rule out, it seems to me, t
modification suggested by the latter.

Furthermore, the fact that M. Svedberg does not actu
measure the quantityDx

2 that appears in the formula and th
uncertainty of the real diameter of the ultramicroscopic gr
ules he observed call for new measurements. These, pr
ably, should be made on microscopic granules whose dim
sions are easier to measure precisely and for which
application of the Stokes formula, which neglects the effe
of the inertia of the liquid, is certainly more legitimate.

FOOTNOTES

@translators note: In the original, footnote numbering star
anew on each page; here, in order to avoid confusion, n
bering is sequential throughout the paper.#
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2. A. Einstein, Ann. d. Physik, 4e série, t. XVII, 1905, p.
549; Ann. d. Physik, 4e série, t. XIX, 1906, p. 371.

3. M. von Smoluchowski, Ann. d. Physik, 4e série, t. XXI,
1906, p. 756.

4. T. Svedberg, Studien zer Lehre von den kolloı¨den Lö-
sungen. Upsala, 1907.
DEFINING THE DYNE

A parrot-like learning of stereotyped phrases is apt to produce calamitous results, as was the
case with what I once read in an examination paper as the definition of a ‘‘dyne’’: ‘‘A dyne is that
force which, when placed one centimeter away from a magnetic pole of exactly similar strength,
repels it with the force of one dyne.’’

W. F. G. Swann, ‘‘The Teaching of Physics,’’ Am. J. Phys.19~3!, 182–187~1951!.
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