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The diffusion equation (1855)
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Emergence of normal diffusion
Einstein (1905)

Postulates:
0)
i) ∃ time interval τ < ∞, so that the
particle’s motion during the two 
consequent intervals is independent
ii) The displacements s during 
subsequent τ-intervals are identically
distributed. 
For unbiased diffusion:
iii) The second moment of s exists
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Essentially, a 
Random Walk Model
(1880, 1900, 1905×2)



”Can any of you readers refer me to a work wherein I should find a 
solution of the following problem, or failing the knowledge of any 
existing solution provide me with an original one? I should be extremely 
grateful for the aid in the matter. A man starts from the point O and 
walks l yards in a straight line; he then turns through any angle whatever 
and walks another l yards in a second straight line. He repeats this 
process n times. Inquire the probability that after n stretches he is at a 
distance between r and r + δr from his starting point O”. 

K. Peasron, 1905

”Can any of you readers refer me to a work wherein I should find a 
solution of the following problem, or failing the knowledge of any 
existing solution provide me with an original one? I should be extremely 
grateful for the aid in the matter. A man starts from the point O and 
walks l yards in a straight line; he then turns through any angle whatever 
and walks another l yards in a second straight line. He repeats this 
process n times. Inquire the probability that after n stretches he is at a 
distance between r and r + δr from his starting point O”. 

K. Peasron, 1905
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R Fernandez et al. 2004 Lévy walk patterns in the  foraging 
movements of spider monkeys (Ateles geoffroyi); Behav. Ecol. 
Sociol. 55 223–230

The Zoo of Superdiffusion



An old story: In disordered solids…

The sum of slopes
is always 2

H. Scher and E. Montroll, 1975 



Explanation: Multple trapping and CTRW
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Diffusion anomalies for 0 < α < 1: the mean waiting time diverges!
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more subdiffusion…

J.W. Kirchner, X. Feng & C. Neal, Nature 403, 524 (2000), 
M. Dentz, A. Cortis, H. Scher, B. Berkowitz, Adv. Water Res. 27, 155 (2004)

K Ritchie et al., Biophys. J. 88 2266 (2005)



Experiments on protein relaxation

H. Yang, G. Luo, P. Karnchanaphanurach, 
T.-M. Louie, I. Rech, S. Cova,  L. Xun, 
X. Sunney Xie, Science 302, 262 (2003)



• Anomalous is normal
• Happy families are all alike; every 

unhappy family is unhappy in its own way:
Possible sources of anomalous subdiffusion:

1. CTRW with power-law waiting times as arising from 
random potential models (energetic disorder) 

2. Diffusion on fractal structures, e.g. on the percolation 
cluster (geometrical disorder)

3. Temporal correlations due to slow modes.

The three cases correspond to different models and are 
described using different theoretical instruments.

SM:  i)

M:   ii)

NM: i) + iii)



An old story: In disordered solids…
Mean field model for a rugged potential landscape (trap model)

The sum of slopes
is always 2

H. Scher and E. Montroll, 1975 





The Subordination

PDF of the particle’s
position after n steps

(say, a Gaussian)

Probability to make
exactly n steps up to

the time t
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Short way to the result:
• Independent steps  => 
•Steps follow inhomogeneously in the physical time t.
•The number of steps up to the time t may be calculated using  the 
renewal approach:
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Nonstationarity
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•Anomalous diffusion at long times
•Normal diffusion at short times



E.g.: Death of linear response
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Fractional subdiffusion (CTRW)
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A master equation: probability balance
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Memory function
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•Jump probability per unit time at time t:
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Generalized master equation
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Aging and death of linear response
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I.M. Sokolov and J. Klafter, 
Phys. Rev. Lett. 97, 140602 (2006) 

Exp.: “Experimental quenching of harmonic stimuli …” by P.Allegrini et al.
Numerics: M.-C. Néel, A. Zoia and M. Joelson, “Mass transport subject to time-dependent flow with 
nonuniform sorption in porous media”, PRE 80, 056301 (2009)





We argue that this theory is a universal property, which is not 
confined to physical processes such as turbulent or excitable 
media, and that it holds true in all possible conditions, and for all 
possible systems, including complex networks, thereby 
establishing a bridge between statistical physics and all the
fields of research in complexity.



Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane
receptors as studied by single particle tracking (nanovid microscopy). Effects of
Calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 
2021-2040 (1993).

Kenich, S., Ritchie, K., Kajikawa, E., Fujiwara, T. & Kusumi, A. Rapid hop
diffusion of a G0protein-coupled receptor in the plasma membrane as revealed by
single-molecule techniques. Biophys. J. 88, 3659-3680 (2005).

Golding, I. & Cox, E.C. Physical nature of bacterial cytoplasm. Phys. Rev. Let.
96:098102-1 – 09102-4 (2006).

Seisenberger, G., Ried, M.U. Endreß, T., Büning, H., Hallek, M. & Bräuchle, C.
Real-time single-molecule imaging of the infection pathway of an adeno
-associated virus. Sience. 294, 1929-1932 (2001)

Single molecule tracking

Ham’s schon mal eins g’sehn?
(Have you ever seen one?)

Ernst Mach



•In most experiments on subdiffusion, say in disordered 
semiconductors, the ensemble average is implied by the 
multiparticle nature of the problem.

•In single particle tracking experiments moving time average is 
a typical procedure used to obtain the diffusion coefficient.

Normal diffusion:
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Normal diffusion is an ergodic process: The ensemble average 
gives the same result as a time-moving average

for a single long trajectory.



•Although the discrimination between normal diffusion 
and subdiffusion according to 

and 

seems simple, in practice, however, the situation is quite 
involved. 
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•The question of what is the “correct” averaging procedure in 
the anomalous case has seldom been discussed. 



Single particle trajectories calculated from a CTRW with 2/3~)( −ttψ

Model simulations

A. Lubelski, I.M.S, J. Klafter, PRL 100, 250602 (2008)



Ensemble-averaged 
moving time-averaged behavior

Ensemble-averaged behavior

moving time-averaged behavior
in a single realization

8.1~)( −ttψSome numerical results for the case



The distribution p(K) of diffusion coefficients obtained from time 
averaged single trajectories for the case of T=2·106,  and t=500. 

Nonergodicity mimicks inhomogeneity…

8.1~)( −ttψ

Y. He, S. Burov, R. Metzler and E. Barkai, PRL 101, 058101 (2008)
A. Lubelski, I.M.Sokolov and J. Klafter, PRL 100, 250602 (2008)



Seisenberger, G., Ried, M.U. Endreß, T., Büning, H., Hallek, M. & Bräuchle, C., Real-time single-molecule imaging of the 
infection pathway of an adeno-associated virus. Sience. 294, 1929-1932 (2001)



Explanation of the result for
ens

2 )(
T

tx

αAttn ≅
ens

)(

[ ] [ ]
ens1ens2

2

ens

2
12 )()()()( tntnatxtx −=−

ens
tnatx )()( 22 =

•Interchanging the sequence of averaging

[ ] [ ]∫∫ −+=−+=
TT

T
dtttt

T
Aadttnttn

T
atx

0

2

0
ensens

2

ens

2 '')'(')'()'(1)( αα

tATatx
T

12

ens

2 )( −= αTt <<•For one gets:

•Prediction: time dependent mean diffusion coefficient

2/)( 12
eff

−= αATaTK



Numerical check for the prediction

Advice for experimentalists: 
Check for the time-dependence of diffusion coefficient!



Numerics/Experiments
Absence of nonergodicity, and the subdiffusive behavior of the 
moving time averages  is a witness against a whatever trap model 
of anomalous diffusion.

T.Neusius, I. Daidone, I.M. Sokolov,
J.C. Smith, PRL 100, 188103 (2008)

MR121 GSGSW peptide

T.Neusius, I.M. Sokolov, J.C. Smith, PRE 80, 011109 (2009)



The fractal dimension of the 
main valley in the peptide’s 
potential landscape 
is around  .7≈fd

)1010( 32 ÷=d

Realistic rugged 
potential landscape
in d = 3.





Universal fluctiuations

I.M. Sokolov, E. Heinsalu, P. Hänggi and I. Goychuk
Universal fluctuations in subdiffusive transport
EPL 86 (2009) 30009

M. Esposito, K. Lindenberg and I.M. Sokolov
On the relation between event-based and time-based current statistics,
Europhys. Lett. 89, 10008 (2010)



“normal” motion

Two different means
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both converge to a sharp and the same limit for t→∞ or L →∞
(a property called self-averaging).
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“anomalous” motion (TOF)

(stolen from Haus and Kehr)



Fixed-time and TOF setups
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Fixed-time velocity
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Universal fluctuations

Scaled velocity 0/ vv=αξ

Distribution of scaled velocity:
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TOF setup

L fixed ⇒ number of steps n fixed
Note: mean
velocity cannot 
be defined as 

since
diverges!!! *
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the same as in the fixed time setup.



Same for periodic potential

FxxVxV −= )2cos()( 0 π

)(Fvv αξ =

Dimensionless velocity is defined as

with

[ ][ ]∫ ∫
+

−−

−−
= λ λ

α
α

β

λβλ

0
)()(exp

)]exp(1[
)( x

x
yUxUdydx

FK
Fv

as following from the solution of FFPE 



10-4

10-3

10-2

10-1

100

101

 0  1  2  3  4

p(
v α

 )

vα

F=1

F=0.9F=0.8

FT
TOF

Eq. (5)
Eq. (10)

2.0=α

10-4

10-3

10-2

10-1

100

101

102

 0  0.2  0.4  0.6  0.8  1

p(
v α

 )

vα

F=1F=0.9F=0.8

Eq. (5)
Eq. (10)

FT
TOF

8.0=α

[ ])1/(1)1/()2/1( )(exp)()( α
α

αα
αα ξαξαξ −−− −= BAp

Large ξ - asymptotics



Event-driven statistics 
(analog TOF)

Time-driven statistics 
(analog fixed-time)
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Conclusions

• Anomalous is normal
• Happy families are all alike; every 

unhappy family is unhappy in its own way
• In subdiffusive systems governed by 

CTRW only ensemble averages attain 
sharp values, the time averages show 
universal fluctuations! 

• If you want to get mean velocity or current, 
average velocity or current
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