
Citation: Spiechowicz, J.; Marchenko,

I.G.; Hänggi, P.; Łuczka, J. Diffusion

Coefficient of a Brownian Particle in

Equilibrium and Nonequilibrium:

Einstein Model and Beyond. Entropy

2023, 25, 42. https://doi.org/

10.3390/e25010042

Academic Editor: Antonio M.

Scarfone

Received: 24 November 2022

Revised: 21 December 2022

Accepted: 21 December 2022

Published: 26 December 2022

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Review

Diffusion Coefficient of a Brownian Particle in Equilibrium and
Nonequilibrium: Einstein Model and Beyond
Jakub Spiechowicz 1 , Ivan G. Marchenko 1,2,3 , Peter Hänggi 4,5 and Jerzy Łuczka 1,*

1 Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
2 Kharkiv Institute of Physics and Technology, 61108 Kharkiv, Ukraine
3 School of Physics, Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
4 Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
5 Max-Planck Institute for Physics of Complex Systems, 01187 Dresden, Germany
* Correspondence: jerzy.luczka@us.edu.pl

Abstract: The diffusion of small particles is omnipresent in many processes occurring in nature. As
such, it is widely studied and exerted in almost all branches of sciences. It constitutes such a broad
and often rather complex subject of exploration that we opt here to narrow our survey to the case of
the diffusion coefficient for a Brownian particle that can be modeled in the framework of Langevin
dynamics. Our main focus centers on the temperature dependence of the diffusion coefficient for
several fundamental models of diverse physical systems. Starting out with diffusion in equilibrium
for which the Einstein theory holds, we consider a number of physical situations outside of free
Brownian motion and end by surveying nonequilibrium diffusion for a time-periodically driven
Brownian particle dwelling randomly in a periodic potential. For this latter situation the diffusion
coefficient exhibits an intriguingly non-monotonic dependence on temperature.

Keywords: diffusion coefficient; Brownian particle; temperature; Einstein relation; periodic potential

1. Introduction

In 1784, the Dutch-born British scientist Jan Ingenhousz (best known for his discovery of
photosynthesis) described the irregular movement of coal dust on the surface of alcohol [1]. He
was not the first who observed the erratic motion of particles, but he detected it for inorganic
matter. In 1827, the Scottish botanist Robert Brown described the continuous motion of both
organic and inorganic particles in a solution, concluding that the random movement is a
general property of matter immersed in the medium [2], and ever since, this phenomenon has
been best known as Brownian motion. However, he was not able to explain what he observed,
and therefore, Brownian motion did not attract the attention it deserved.

The first good explanation of Brownian movement was developed in 1877 by Joseph
Desaulx, who claimed that [3]: “all the Brownian motions of small masses of gas and of vapour in
suspension in liquids, as well as the motions with which viscous granulations and solid particles
are animated in the same circumstances, proceed necessarily from the molecular heat motions,
universally admitted, in gases and liquids, by the best authorized promoters of the mechanical
theory of heat”. The French physicist and chemist Louis Georges Gouy performed many
experiments on Brownian motion from 1888 onwards and found that the magnitude of the
motion depends essentially only on two parameters, namely on the size of the particle and
the environmental temperature [4]. This work immediately attracted considerable attention
of researchers and allowed Brownian motion to be promoted to the rank of one of the most
important problems in modern physics. In 1900, the Austrian geophysicist Felix Maria
Exner made quantitative studies of the dependence of Brownian motion on the particle size
and temperature [5]. He confirmed Gouy’s observation that the movement grows when
the size of particle is decreased or temperature is increased. At that time, all research was
only qualitative and the theory of Brownian motion was not yet established.
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The first correct theoretical description of the diffusion coefficient was provided by
William Sutherland in 1904 [6,7] and again in 1905 [8,9], i.e., the celebrated Sutherland–
Einstein relation. Salient further details were provided by both Albert Einstein in 1905 [9]
and by Marian Smoluchowski in 1906 [10]. While Albert Einstein followed the reasoning
analogous to William Sutherland for the diffusion coefficient, more importantly, however,
he also included pioneering probabilistic aspects, Marian Smoluchowski’s description was
similar in spirit to the use of a kinetic theory via introducing a random walk approach [10].
Einstein’s intention was not to explain Brownian motion because in their 1905 paper he
wrote [9]: “It is possible that the motions to be discussed here are identical with so-called Brownian
molecular motion; however, the data available to me on the latter are so imprecise that I could not form
a judgment on the question.” His main objective was to apply the molecular-kinetic theory of
heat in order to develop a quantitative theory for the diffusion of small spheres immersed
in a suspension and their irregular behavior. In turn, Smoluchowski started their paper by
citing Brown’s paper [10]. He introduced a most suitable method, nowadays known as the
random walk approach. In 1908, Paul Langevin proposed the third description of Brownian
motion based on the Newton equation but additionally complemented with a stochastic
force term [11]. This by now is the most widely used approach for various stochastic
phenomena. Einstein, Smoluchowski, and Langevin derived an expression for the mean
square displacement of the Brownian particle in terms of the corresponding diffusion
coefficient. Since that time, the Brownian machinery has started to be used in many areas
of science. These original papers opened up a new area of physics, namely the field of
statistical physics, when also complemented with underlying fluctuations. Smoluchowski
showed how the mathematical apparatus of random walks can be applied in physics, and
Langevin introduced stochastic equations for the description of those abundant stochastic
phenomena ocurring in nature. All three methods now constitute the foundation of modern
statistical physics for both equilibrium and nonequilibrium processes. A historical survey
of Brownian motion history is presented with interesting more details in the surveys in
References [12–14], which are warmly recommended to the interested readership.

In the years that follow up to present times, diffusion phenomena have been studied
in the macro- and micro-scale domains, both in the classical regime and in the full quantum
regime [15]. Clearly, the phenomenon of diffusion plays an important role not only in
physics but also in chemistry, biology, and engineering. Moreover, the theory of diffusion
processes is now commonly applied even in sociology, culture, and politics in the context of
the spread of ideas, concepts, symbols, knowledge, practices, values, materials, behaviors,
and so on [16]. The originators of the theory of Brownian diffusion described only one
class of processes, which nowadays are termed normal diffusion, i.e., when the spreading
of particles trajectories characterizing by the mean-square displacement grows as a linear
function of time. If this is not so, then diffusion is termed anomalous, and the corresponding
diffusion coefficient cannot be defined in the common way. In this paper, we consider
only normal diffusion for which the results by Sutherland and Einstein predict a linear
dependence on the environmental temperature for the diffusion coefficient. This feature
agrees with our intuition: if this temperature grows higher, then the spread of a cloud of
particles should increase as well. However, there are many systems that exhibit deviations
from this rule. The diffusion coefficient can show a non-linear function of temperature and,
very non-intuitively, even behave non-monotonically with respect to temperature, i.e., it
decreases when the temperature increases within some interval. In the next sections, we
want to present the simplest systems in which both non-linear and non-monotonic diffusive
properties can be observed. Therefore, we will limit our consideration to a one-dimensional
dynamics of the classical Brownian particle. Its extension to higher dimensions or even
quantum mechanics (being important for the very low-temperature-behavior) will be not
be addressed here.

The review is organized as follows. In Section 2, the Brownian motion theory of
Einstein [9] is briefly sketched. Moreover, the results published by Sutherland and Smolu-
chowski are recalled. In Section 3, we introduce the method of a stochastic equation for
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Brownian motion as pioneered by Langevin in their original paper. In Section 4, a general-
ized Langevin equation for a Brownian particle is presented. In Section 5, we apply the
Langevin approach and briefly rederive the diffusion coefficient for a free Brownian particle
when subjected to a constant bias force. Another example is given in Section 6, where we
analyze the diffusion coefficient of the particle moving in a spatially periodic potential.
Two regimes of the overdamped and underdamped dynamics are addressed. In Section 7,
the problem of diffusion in a tilted periodic potential is discussed. Section 8 is devoted to
the Brownian particle dynamics moving in a spatially periodic potential while subjected
additionally to time-periodic forcing. A discussion and a summary is presented in Section 9.
In Appendix A, we detail the scaling scheme for Brownian dynamics and the corresponding
dimensionless Langevin equations; our Appendix B contains a derivation of asymptotic
behaviors of the diffusion coefficient for the two regimes considered in Section 6. In order
to avoid confusion on various notations and symbols used in the original papers, we will
use contemporary notation.

2. Sutherland–Einstein Diffusion Analysis of Suspended Particles

Einstein, following the reasoning originally put forward by Sutherland in 1904/1905
(see below), applied the molecular-kinetic theory of heat and the Fick relation for the
particle flux to describe the diffusion of the solute in a solvent [6,8,9]. Sutherland and
Einstein assumed that the only force causing diffusion is given by the gradient of the
osmotic pressure p and at the dynamic equilibrium, this is related to the Stokes force F. If
the solute is not too dense, then as far as the osmotic pressure is concerned, it acts as an ideal
gas contained in a volume V∗, and for n moles, the relation pV∗ = nRT holds true. Doing
so, a representation of the osmotic pressure in terms of kinetic theory is obtained, reading

p =
RT
N

ρ, (1)

where R denotes the gas constant, T is the temperature, N is the actual number (Loschmidt
or Avogadro constant) of molecules contained in a gram-molecule, and ρ is the density of
solute molecules, i.e., the number of molecules per unit volume (denoted as ν by Einstein).
Hence, the osmotic pressure of a solution depends on the concentration ρ of dissolved
solute particles. If a concentration of solute varies in space, the diffusion flux J = ρv (v is
the particles velocity) is described by Fick’s law, i.e.,

J = ρv = −D
∂ρ

∂x
, (2)

where D is the diffusion coefficient of the suspended substance. He derived a condition for
the dynamic equilibrium, namely,

Fρ = −γvρ =
∂p
∂x

, (3)

where the Stokes force is given by F = −γv, wherein for the spherical particles of radius a
(denoted as P by Einstein), the Stokes friction γ is given by γ = 6πηa, with η denoting the
viscosity (labeled as k by Einstein). A differentiation of Equation (1) with respect to x yields

∂p
∂x

=
RT
N

∂ρ

∂x
. (4)

From Equations (2)–(4), it follows that [6,8,9]

D =
RT
N

1
6πηa

. (5)

In modern notation, this central result is recast differently, introducing the Boltzmann
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constant kB, the gas constant per molecule kB = R/N, and the friction coefficient γ = 6πηa,
transforms this diffusion coefficient into its appealing form, reading

D := D0 =
kBT

γ
. (6)

The diffusion coefficient typically depends on several parameters such as the temperature
and size of the particle. In 1877, J. Desaulx stated that [3]: “The Brownian motion is more
active in heated liquids than in those of a low temperature”. Next, L. G. Gouy wrote that motion
decreases with the viscosity of the fluid and identified the randomness with thermal
motion [4]. He also observed that the Brownian movements appear more swift for particles
of smaller size. F. M. Exner made similar conclusions on those properties of Brownian
motion [5]. All these observations are consistent with the result given by Equation (5).

In the second part of his paper, Einstein used probability theory to derive the diffusion
equation for the probability distribution of the suspended particles. There, two important
results are derived: (i) the diffusion coefficient is defined via the relation of the mean square
displacement by the second central moment (see the first equation on page 558 in [9]) and
(ii) the expression of the mean square displacement is given by the salient expression

〈x2〉 = 2Dt. (7)

This formula was indeed new, and it opened a new field in which statistical methods were
applied to model stochastic motion of particles. In two subsequent papers [17,18], Einstein
suggested a way to corroborate experimentally their theory. The French physicist Jean
Baptiste Perrin conducted a series of experiments that confirmed Einstein’s predictions [19]:
“I am going to summarize leaving no doubt of the rigorous exactitude of the formula proposed by
Einstein”. In 1926, Perrin was awarded the Nobel Prize for his works on Brownian motion.

Sutherland’s and Smoluchowski’s Approach

Einstein’s first paper on diffusion was from 11 May 1905. However, Sutherland
already in June 1904 communicated results for the diffusion coefficient at the meeting of
the Australian Association for the Advancement of Science, which took place at Dunedin, New
Zealand, (Reference [6]); see also the review article entitled “Correcting the error: Priority
and the Einstein papers on Brownain motion” by Boardman [7]. Sutherland’s 1904 results
were published again in March 1905 in Phil. Mag. [8], i.e., 2 months before Einstein’s 1905
paper received on May 11. His pioneering reasoning is detailed in Equations (2)–(5) therein.
Sutherland’s expression even presents a generalization over the Einstein formula by using
the more general result for the Stokes friction force F [6,8], i.e.,

F = −6πηav
1 + 2η/λa
1 + 3η/λa

(8)

with λ denoting the coefficient of sliding friction between the diffusing Brownian particle
and the solvent, originally denoted by Sutherland as β. Consequently, Sutherland’s more
general result for the diffusion coefficient reads explicitly

D =
RT
N

1
6πηa

1 + 3η/λa
1 + 2η/λa

. (9)

One observes that for λ → ∞, i.e., yielding zero slip between the Brownian particle and
the surface of the dilute solution molecules, this more general expression for the diffusion
coefficient D is reduced to the result by Einstein. This result applies to the case of a sizable
Brownian particle in the solute, undergoing Brownian trembling movements among those
much smaller molecules of the solvent. In the opposite limit of full slip (i.e., for λ → 0),
which would be realized for a gas-bubble-Brownian particle, the Stokes/Einstein factor of
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6 is changed to a smaller value of 4, cf. Equation (9). These two limiting results are detailed
in their Equation (4) in [8].

In September 1906, Marian Smoluchowski published a famous paper on Brownian
motion. He applied a quite different method, which is based on a random walk concept
and obtained the formula (see Equation (3) in § 21 in [10])

D =
32

243
〈mv2〉
πηa

. (10)

Using the equipartition theorem for the kinetic energy 〈mv2〉 = RT/N = kBT, one obtains
the form

D =
64
81

RT
N

1
6πηa

. (11)

For the case in three dimensions (as considered by Smoluchowski), the result should be
multiplied by a factor of 3 (i.e., 〈mv2〉 = 3kBT), yielding the prefactor, which is larger by
a factor of 64/27 than Einstein’s factor 1/6. He, however, realized later that for liquids,
their approach precisely recovers the 1/6 by Einstein; see the discussion in Reference [20].
This difference in factors is because Smoluchowski assumed a situation of diffusion in a
gas in three dimensions, where the size of the Brownian particles is much smaller than the
mean free path of the surrounding gas molecules. This is in distinct contrast to the situation
with a liquid solution made up of molecules possessing a much smaller mean free path
compared to the size of the suspended Brownian particle. The physical origin of the feature
for the two different numerical factors between Einstein’s and Smoluchowski’s expressions
is presumably not well known in the present-day community.

A great contribution was made by Smoluchowski, who for the first time introduced
the methodology nowadays known as the random walk approach. In his original paper,
however, he did not use this random walk terminology. This notion was first used in 1905,
one year before Smoluchowski’s paper, by K. Pearson [21].

3. Langevin Equation

The Langevin description of diffusion of the Brownian particle of mass m in fluid is
based on the following Newton Equation [11],

m
d2x
dt2 = −γ

dx
dt

+ X, (12)

where originally in their paper, the friction coefficient was written as γ = 6πµa. He wrote,
“About the complementary force X, we know that it is indifferently positive and negative and that its
magnitude is such that it maintains the agitation of the particle, which the viscous resistance would
stop without it”. Today, the force X is called thermal white noise and models the influence
of the environment (thermostat) of temperature T on the Brownian particle. Starting from
this stochastic equation, Langevin derived an equation for x2, namely,

m
2

d2x2

dt2 = mv2 − 1
2

γ
dx2

dt
+ xX, (13)

where v = ẋ = dx/dt is the velocity of the Brownian particle. In the next step, one can
perform the average of both sides of this equation and then apply the energy equipartition
theorem 〈mv2/2〉 = RT/2N and note that 〈xX〉 = 〈x〉〈X〉 = 0. The emerging result reads

m
dz
dt

= −γz + 2
RT
N

, z =
d
dt
〈x2〉. (14)

The solution of this linear differential equations reads

z(t) =
d
dt
〈x2〉 = 2

RT
γN

+ C0e−t/τ0 , τ0 =
m
γ

, (15)
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where C0 is the integration constant and τ0 is the relaxation time of the particle velocity.
Integration over time gives the mean square of displacement

〈x2〉 − 〈x2
0〉 = 2

RT
γN

t + C1

(
1− e−(γ/m)t

)
(16)

which for long times t� m/γ yields the relation

〈x2〉 − 〈x2
0〉 ∼ 2

RT
γN

t = 2Dt. (17)

Comparison of this equation with Equation (5) allows one to obtain the diffusion coefficient
D, which has the same form as Einstein’s result in Equation (4), i.e., D = D0 = kBT/γ.

One must note that in the starting Langevin Equation (12), the Brownian particle is
characterized by its mass m, which also appears in the full solution (16). However, in the
long time limit, neither the mean square displacement (17) nor the diffusion coefficient D0
depends on the Brownian particle mass m.

4. Generalized Langevin Equation

In modern statistical physics, generalizations of the Langevin equation are one of the
most important methods for the analysis of equilibrium and non-equilibrium phenomena.
For a classical particle moving in a potential U(x) and subjected to the deterministic or
stochastic force F(t), it takes the form

mẍ(t) +
∫ t

0
Γ(t− s)ẋ(s)ds = −U′(x(t)) + F(t) + µ(t), (18)

being known as the Generalized Langevin Equation (GLE) [13,15,22–24]. The dot and prime
denote differentiation with respect to the time and the particle coordinates, respectively.
This GLE is an integro-differential equation possessing the random noise term, and an
integral term, which describes the memory effects associated with the interaction of the
Brownian particle with the environment (thermostat) of temperature T. The memory
function Γ(t) decays for a long time and mimics the dissipation mechanism. The random
term µ(t) models the thermal equilibrium fluctuations, and according to the fluctuation-
dissipation theorem, it satisfies the relations [22–24]

〈µ(t)〉 = 0, 〈µ(t)µ(s)〉 = kBT Γ(t− s). (19)

In a general case, the noise µ(t) is correlated with a non-zero correlation time τc, and
therefore, it is often called colored noise [24,25]. As an example, we can mention one of the
simplest memory functions

Γ(t) =
γ

τc
e−|t|/τc . (20)

From Equation (19), it follows that under such a choice, µ(t) is exponentially correlated
and modeled by the Ornstein–Uhlenbeck process. When the correlation time τc tends to
zero, the noise correlation function is

〈µ(t)µ(s)〉 = 2γkBT δ(t− s) (21)

and Equation (18) reduces to the stochastic differential equation reading

mẍ + γẋ = −U′(x) + F(t) +
√

2γkBTξ(t), (22)

where we introduced the rescaled Gaussian thermal noise ξ(t) with characteristics

〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = δ(t− s). (23)
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The form (22) with the prefactor
√

2γkBT is more convenient because it explicitly realizes
the fluctuation-dissipation theorem [22,26–28]: If there is no dissipation, i.e., γ = 0, there
are no fluctuations and the noise term vanishes in the same way.

The diffusion process is nowadays characterized by the coordinate variance

〈∆x2(t)〉 = 〈[x(t)− 〈x(t)〉]2〉 = 〈x2(t)〉 − 〈x(t)〉2 = 2Dt, (24)

which defines normal diffusion as well as its coefficient. If the variance is not a linear
function of time, the diffusion is termed anomalous. In many cases the relation (24) is
fulfilled in the long time regime, where a normal diffusion regime is observed. In the
sections that follow, we consider such situations.

5. Diffusion under a Constant Force

We start with the simplest case of a Brownian motion when U(x) = 0 and the Brownian
particle is subjected solely to a constant force F(t) = F0. Then Equation (22) reduces to the form

mẍ + γẋ = F0 +
√

2γkBTξ(t). (25)

It is still a linear stochastic differential equation which can be solved by standard methods.
Another approach is based on the corresponding Fokker-Planck equation which is also
tractable analytically. The third method is the simplest and is based on the transformation
of Equation (25). Let

y(t) = x(t)− F0t
γ

(26)

The new process y(t) is determined by the Langevin equation

mÿ + γẏ =
√

2γkBT ξ(t), (27)

which has a similar form as the original Langevin Equation (12). Therefore, at the long
times we find that

〈[x(t)− 〈x(t)〉]2〉 = 2
kBT

γ
t = 2D0t , (28)

and the diffusion coefficient D := D0 has the same form as the Einstein one. In the above
expression the term 〈x(t)〉 = F0t/γ is necessary because in contrast to the case (12) the
longtime limit is non-zero and consequently the average velocity of the particle is finite.

6. Diffusion in Spatially Periodic Potentials

As a next example of a diffusion process we consider the stochastic dynamics of an inertial
Brownian particle of mass m moving in a spatially periodic potential U(x) = U(x + L) of
period L. This setup is described by the following dimensional Langevin dynamics

mẍ + γẋ = −U′(x) +
√

2γkBT ξ(t). (29)

This class of systems is the most important as it models the stochastic particle transport
of a plentiful number of relevant practical applications in various fields of science and
technology. Equation (29) describes pendulums [29], super-ionic conductors [30], stochastic
dynamics in Josephson junctions [27,31,32], dipoles rotating in external fields [33], phase-
locked loops [34], dislocations in solid state physics [35], solitons described by the Sine-
Gordon Equation [36], the Frenkel-Kontorova lattices [37], dynamics of adatoms [38], charge
density waves [39] and cold atoms in optical lattices [40], to name but a few.

In a periodic potential, the particle performs a random walk between the local minima
of the potential. The conservative force F(x) = −U′(x) attempts to pull it down towards
the minimum, while thermal fluctuations randomly agitate the particle for its escape to
the left or to the right direction. Eventually, this system reaches its stationary equilibrium
state. Consequently, according to the second law of thermodynamics, the averaged velocity
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vanishes identically, independently of the form or symmetry of the potential U(x). In the
long time regime, the mean square displacement obeys the relation (24) and diffusion is
normal. The analytical expression for the diffusion coefficient is not known in a general
case; however, there are two limiting regimes for which it has been derived.

6.1. Overdamped Dynamics

The first limiting regime corresponds to the Smoluchowski (i.e., overdamped) dynam-
ics for which the inertial effects can be neglected. Formally, the mass is zero, m = 0, and
the Langevin equation then reads

γẋ = −U′(x) +
√

2γkBT ξ(t). (30)

In this case, the problem has been solved by Lifson and Jackson [41], who obtained the
diffusion coefficient in a closed form, reading

D =
D0

E[e−U/kBT ]E[eU/kBT ]
, (31)

where D0 is the Einstein diffusion coefficient (4) and E indicates the average over the spatial
period L of the potential, namely, for any function G(x)

E[G] =
1
L

∫ L

0
G(x)dx. (32)

From Equation (31), it follows that in a periodic potential the diffusion coefficient is always
smaller than the free diffusion constant, D ≤ D0. An interesting feature is that the diffusion
coefficient D remains unchanged if the potential is reversed in sign, U(x)→ −U(x). The
above formula has been rederived by other authors, e.g., in Reference [42].

As an example, let us choose the generic periodic potential

U(x) = −d0 cos(x). (33)

In this case, the diffusion coefficient takes the result

D = D1 =
D0

I2
0 (d0/kBT)

=
kBT/γ

I2
0 (d0/kBT)

, (34)

where I0(x) is the modified Bessel function of the first kind [43]. Let us apply the asymptotic
behavior I0(x) ≈ exp(x)/

√
2πx, valid for large values of x. Then for low temperatures

kBT � d0, the diffusion coefficient D can be approximated by the expression

D = 2π
d0

γ
e−2d0/kBT → 0 for T → 0. (35)

This shows how D approaches zero when temperature tends to zero. It should be contrasted
with the linear decrease in the Einstein diffusion coefficient D0 ∝ T. In the opposite limit of
high temperature, when kBT � d0, it approaches Einstein’s one, D → D0. In Figure 1, we
depict the dependence of D given in Equation (34) vs. temperature T.
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Figure 1. Temperature dependence of the diffusion coefficient is depicted for three cases: the Einstein
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form (6) for a free Brownian particle, in the overdamped (34) and underdamped (47) regimes for the
Brownian particle moving in the periodic potential U(x) = −d0 cos(x). In the left panel, the approach
to zero temperature is displayed, while in the right one, the high temperature region is visualized.
The dimensionless diffusion coefficient is D̃ = γD/d0, and the dimensionless temperature reads
θ = kBT/d0.

6.2. Underdamped Dynamics

The second limiting regime corresponds to the underdamped dynamics. It is conve-
nient to work with scaling defined in Equation (A4) in Appendix A for which the Langevin
Equation (29) assumes the dimensionless form [44]

ẍ + Γẋ = −V′(x) +
√

2Γθ ξ(t). (36)

Details and all dimensional and dimensionless quantities are defined in Equations (A4)–(A8).
In this scaling, the dimensionless mass equals M = 1, the spatial period of the potential
V(x) = V(x + 2π) is L = 2π, and the rescaled temperature is θ = kBT/∆U, where
∆U is half of the potential barrier of the dimensional potential U(x) = U(x + L). The
underdamped regime corresponds to the case when the dimensionless friction coefficient
Γ� 1; see Chapter 11.4 in [45]. Then, the energy

v2

2
+ V(x) = E (37)

is a slowly varying function of time. The next step is to change the phase space of the
system (x, v)→ (x, E) with

v(x, E) = +
√

2(E−V(x)) (38)

and analyze the problem in the (x, E)-variables. The calculation of the diffusion coefficient
is a non-trivial task. However, a systematic and rigorous method has been presented in
Reference [44]. The result reads

D∗ =
8π2θ

ΓZθ

∫ ∞

E0

e−E/θ

S(E)
dE, (39)

where D∗ is the dimensionless diffusion coefficient, E0 is the maximum of the potential,
E0 = max[V(x)], the partition function is

Zθ =
√

2πθ
∫ 2π

0
e−V(x)/θdx (40)

and

S(E) =
∫ x2(E)

x1(E)
v(x, E)dx. (41)

Two values x1(E) and x2(E) > x1(E) are determined from the equations

V(xi) = E, i = 1, 2, for E < E0 (42)

x1(E) = −π, x2(E) = π, for E > E0. (43)

Let us stress that the formula in Equation (39) is exact in the limit Γ→ 0 and also is valid
for all periodic potentials and temperatures. In a particular case of the potential

U(x) = −d0 cos(x), i.e. V(x) = − cos(x) (44)
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the dimensionless diffusion coefficient D∗ takes the appealing form

D∗ =
√

πθ

2Γ I0(1/θ)

∫ ∞

1

e−E/θ

√
E + 1 E(

√
2/(E + 1))

dE, (45)

where

E(k) =
∫ π/2

0

√
1− k2 sin2 ϕ dϕ, 0 ≤ k ≤ 1, (46)

is the complete elliptic integral of the second kind [43]. In dimensional form, i.e., for the
process defined by the dimensional Equation (29), the diffusion coefficient D reads

D = D2 = D0

√
πd0/kBT

2I0(d0/kBT)

∫ ∞

1

e−d0E/kBT
√

E + 1 E(
√

2/(E + 1))
dE, (47)

where D0 = kBT/γ is the Einstein diffusion coefficient. Let us note that also this diffusion
coefficient does not depend on the Brownian particle mass m.

The integral cannot be calculated analytically in a closed form. However, two regimes
of low and high temperatures can be evaluated; see Appendix B. In the low temperature
limit, kBT � d0, the asymptotic expression for D reads [44–46]

D ∼ kBT
γ

e−2d0/kBT → 0 for T → 0. (48)

In the high-temperature limit, kBT � d0, the diffusion coefficient tends toward the Einstein’
one,

D → D0 =
kBT

γ
. (49)

This result appears to be obvious because at very high temperatures, thermal noise sur-
passes the conservative force stemming from the periodic potential, and the latter can in
principle be neglected. Consequently, the particle moves essentially freely.

A comparison of D = D2 in Equation (47) with the Einstein D0 and the overdamped
diffusion coefficient D = D1 in Equation (34) is presented in Figure 1. We observe that
diffusion in the periodic potential is always slower compared with the free particle dynam-
ics. In addition, in the underdamped regime, it proceeds slower than for the overdamped
situation, i.e., D2 < D1 < D0. In the limit of low temperature, D2 in (47) approaches
zero much faster than in the overdamped regime. Both D1 and D2 are non-linear but are
monotonically increasing functions of the temperature T. It should be contrasted with the
Einstein model for which D is a linear function of T.

7. Diffusion in Tilted Spatially Periodic Potentials

The next generalization of the model is represented by the Langevin equation of the
form

mẍ + γẋ = −U′(x) + F +
√

2γkBTξ(t), (50)

where now the constant force F acts additionally to the periodic force F(x) = −U′(x). The
effective potential

U (x) = U(x)− Fx (51)

is known as the washboard potential or the tilted periodic potential. It is an example of
a nonequilibrium system possessing a stationary state in which transport is generated by
thermal fluctuations. Similarly to the previous section, there are two limiting regimes,
overdamped and full inertial dynamics, that need to be treated separately.
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7.1. Overdamped Dynamics

The mass m of the Brownian particle formally set to the vanishing value m = 0 yields,
for the dynamics the following overdamped Langevin equation,

γẋ = −U′(x) + F +
√

2γkBTξ(t). (52)

This is one of the simplest systems that can render a non-monotonic temperature depen-
dence for the diffusion coefficient D; i.e., there are parameter regimes in which D decreases
when temperature is increased. Such behavior is counter-intuitive, and it clearly also
contradicts the Einstein relation for the diffusion coefficient D0 = kBT/γ, which displays a
strictly monotonically (linearly) increasing function of the environment temperature T.

In 2001, two groups presented equivalent formulas for the diffusion coefficient [47–49].
In Reference [47], the diffusive motion of an overdamped particle in a stylized biased
periodic potential was analyzed. At a sufficiently strong but subcritical static force, an
optimized diffusion with respect to temperature was observed. In References [48,49], a
more compact formula for the diffusion coefficient was derived. Their pertinent result reads

D = D0
E[I2

+ I−]

(E[I+])3 , (53)

where D0 is the Einstein free-diffusion coefficient, E[·] indicates the average over the spatial
period L of the potential as defined in Equation (32), and the functions I±(x) are given by
the relation

I±(x) :=
∫ L

0
e{±U(x)∓U(x∓y)−yF}/kBT dy. (54)

In Reference [48], the authors reported that for weak thermal noise and near the critical tilt
F = Fc (where the deterministic running solutions set in), the diffusion coefficient becomes
gigantically enhanced versus the free diffusion D � D0. This phenomenon was coined as
giant diffusion. In such a case the dynamics given by Equation (52) can be divided into two
processes, (i) the particle relaxation towards the minimum of the potential U(x), as well as
(ii) thermal noise driven escape from the latter position. The first process is robust with
respect to temperature variation, but the escape time is very sensitive to changes of this
parameter. This dichotomy lays at the root of the giant diffusion phenomenon. Moreover,
in this regime the diffusion coefficient displays a non-monotonic temperature dependence.

Later, with Reference [50] the authors studied the same system but with a spatially
dependent friction and reported that, in some parameter regimes, an increase in temper-
ature is accompanied by a decrease in the diffusion coefficient, a fact which physically
appears rather counter-intuitive. A similar effect was predicted analytically for a tilted
periodic piecewise potential with one and two maxima per period [51,52]. The giant dif-
fusion phenomenon was experimentally verified in 2006 in a setup consisting of a single
colloidal sphere circulating around a periodically modulated optical vortex trap [53]. A
tilted periodic potential was generated also by means of rotating optical tweezers arranged
on a circle [54]. In [55], the authors showed that the presence of weak disorder may further
boost a pronounced enhancement over the free thermal diffusion within a small interval
of tilt values by orders of magnitude. Further experimental manifestation for the giant
diffusion effect includes transport in a tilted two-layer colloidal system [56] and single-
molecule study on F-1-ATPase [57]. By using the general Kubo formalism the authors
of Reference [58] analytically calculated the full temporal behavior of dispersion of par-
ticles diffusing in a tilted periodic potential. A tight-binding approach to overdamped
Brownian motion in a biased periodic potential was developed in [59] as well. Recently,
a closely related phenomenon of colossal diffusion, drastically surpassing the previously
researched situation known as giant diffusion, has been predicted for the overdamped
Brownian particle dwelling in the periodic potential and exposed to active nonequilibrium
noise [60,61].
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7.2. Full Inertial Dynamics

In the overdamped regime, the deterministic dynamics of the system displays only
a creeping motion; i.e., if the tilted potential exhibits minima, the particle is pinned in
one of the potential wells (locked solution), or when the static bias is large enough and
the minima cease to exist, the particle slides down the potential (running solution). This
picture is significantly changed when the full inertial dynamics governed by Equation (50)
is considered. If the tilted potential exhibits minima, then, due to the finite momentum
of the particle, it is possible that the particles can overcome the potential barrier if the
damping is sufficiently small [45,62]. Such coexistence of the locked and running solutions
for the deterministic dynamics is termed bistability [45,63].

The dependence of diffusion in a tilted periodic potential on temperature in the
underdamped regime was considered in Reference [64] for crystalline surfaces under static
external forcing. These authors found that the maximal diffusion coefficient Dmax for a
biased system grows when temperature is decreased in a power-law manner Dmax ∝ T−3.5,
and the force range of diffusion enhancement shrinks to zero when temperature decreases
to zero. In Reference [65] it has been shown that Dmax ∝ T2/3 exp (ε/kBT) with a drop in
temperature in a certain interval of the static bias. Depending on the damping strength,
diffusion either tends to zero or increases. Next, in Reference [66], the authors considered
the problem by converting dynamics to the velocity space with an effective double-well
potential. An approximate expression for the diffusion coefficient was derived for this
simplified model. Later, in Reference [67], a counterpart of the giant diffusion effect was
predicted in the underdamped regime. The authors used a two-state theory to determine
for all values of the friction coefficient γ the range of the force f ∈ [ fgd,−, fgd,+], in which
the diffusion coefficient increases exponentially to infinity as the temperature decreases
towards zero. They indicated that outside of this interval, the diffusion D possesses a
pronounced maximum as a function of temperature, and it diminishes exponentially to
zero for T → 0. The width of the region of giant enhancement of diffusion was found to
be a non-monotonic function of the friction coefficient γ, exhibiting a distinct maximum.
In Reference [68], it has been found that the force interval of the temperature abnormal
behavior decreases linearly with an increase of γ , whereas the diffusion coefficient in
this range increases linearly with γ. An analytical expression have been obtained for the
diffusion coefficient in the low-temperature limit.

The non-monotonic behavior of the diffusion coefficient was also detected under the
additional presence of nonequilibrium Ornstein–Uhlenbeck noise [69]. In Reference [70,71],
the authors revisited the problem and constructed a phase diagram for the occurrence of
a non-monotonic dependence of the diffusion coefficient on temperature, which extends
the original parameter region related to the giant diffusion phenomenon. The weak noise
limit of diffusion in this system was re-investigated in Reference [72], where, in contrast
to previous results on this topic, it was shown that in the parameter regime where the
bistability of solutions is observed, the lifetime of ballistic diffusion diverges to infinity
when the temperature approaches zero; i.e., an everlasting ballistic diffusion emerges.
Consequently, the diffusion coefficient does not reach its stationary constant value. Recently,
a new platform in the form of the rotational motion of a nano-dumbbell driven by an
elliptically polarized light beam [73] was proposed to study this limit experimentally.

From the above discussion, it follows that diffusive motion in a tilted periodic potential
is much more complex than it might seem at first glance. In some regimes, diffusion is
normal, and the diffusion coefficient assumes finite values. In some parameter regions,
the time of transient anomalous diffusion approaches infinity, and consequently the dif-
fusion coefficient cannot be defined. In Figure 2, we present an exemplary temperature
dependence of the diffusion coefficient in the regime in which diffusion is normal. In the
overdamped case, we use the dimensionless Langevin Equation (A12), while for the full
inertial dynamics Equation (A5) is applied. In the overdamped regime there is a tempera-
ture interval where the diffusion coefficient is greater than the Einstein value D > D0. For
higher temperature, D < D0 and it approaches D0 from below as temperature increases.
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For the full inertial dynamics, the diffusion coefficient can assume values much greater
than in the overdamped limit. In the regime of velocity, the bistability D first decreases as
temperature grows, reaches a minimum, and then tends to the Einstein’s value D0. The
simplified explanation of this behavior is the following [71,72]. There are two contributions
to D: (i) the spread of trajectories between the running and locked solutions and (ii) the
spread of trajectories inside both states. At very low temperatures, the first contribution is
dominant, and therefore D is large. If the temperature increases, the lifetimes in both states
becomes shorter and shorter, and the particle jumps more frequently between both states.
Consequently, the contribution (i) is smaller and D decreases. The minimum of D occurs
when the stationary probability for the particle to reside in the locked state is minimal. The
impact of further increases in temperature is similar to that of the Einstein mechanism, i.e.,
growing thermal fluctuations cause an increase in D.

The clear distinction between overdamped and inertial regimes is observed when
temperature drops to zero. In such a case, the diffusion coefficient in the overdamped limit
always tends to zero, whereas for the inertial dynamics, the diffusion is ballistic; i.e., its
coefficient is not defined, provided that the given parameter regime exhibits the velocity
bistability—for details, see Reference [72].
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Figure 2. Diffusion in the tilted periodic potential U (x) = − sin(x)− Fx. Left panel: The diffusion
coefficient D̃ versus temperature θ is shown for different bias values in the overdamped regime; c.f.
Equation (A12). Right panel: the same characteristics depicted for the full inertial dynamics with
Γ = 0.4; c.f. Equation (A5).

8. Diffusion in Time-Periodic-Driven Spatially Periodic Systems

As the last generic setup, we consider a Brownian particle moving in a spatially
periodic potential U(x) and simultaneously being subjected to an external, unbiased, time-
periodic forcing a cos (ωt) of angular frequency ω and amplitude strength a. The respective
inertial Langevin dynamics assume the form

mẍ + γẋ = −U′(x) + a cos (ωt) +
√

2γkBT ξ(t). (55)

The rich deterministic physics contained in this model has become evident in recent decades
with numerous studies. In particular, with time-periodic driving, this class of systems
comprises operational regimes that are deterministically chaotic. The sensitive dependence
on initial conditions and the abundance of unstable periodic attractors are the most salient
characteristics of chaotic behavior [74]. The combination of these features, possibly assisted
with additional noise agitation, makes this system one of the most flexible setups enabling
the emergence of different peculiar behavior. Depending on the parameter values, its
deterministic counterpart (i.e., when thermal noise term is set to zero) displays periodic,
quasi-periodic, and chaotic motion. However, the price for this variety is the absence
of any analytical solutions for this class of models. Moreover, in contrast to previous
examples, in this case, the long-time state of the system is (i) in nonequilibrium and also (ii)
non-stationary.
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8.1. Symmetric Systems

When the potential is reflection-symmetric, i.e., there exists a shift x0 such that
U(x0 + x) = U(x0 − x), the mean long-time particle velocity vanishes identically, since all
terms in the right hand side of Equation (55) are symmetric and of zero-mean.

The first study of inertial Brownian motion of a time-periodically driven Brownian
particle in a periodic potential is that of Jung and Hänggi in 1991 [75]. Therein, upon using
full Floquet theory of the underlying Fokker–Planck operator, the authors addressed the
topic of time-dependent driven-escape rates. These latter knowingly also determine the
diffusion coefficient [75,76]. The diffusion coefficient of overdamped Brownian particle
driven by an adiabatic slow time-periodic force and moving in a sinusoidal periodic
potential has been studied by Gang et al. in Reference [77]. The authors found that the
diffusion in the overdamped regime may exceed the free thermal diffusion for optimal
parameter matching. Moreover, it can display a non-monotonic temperature dependence.
Using a stylized piecewise linear periodic potential, the feature of oscillations of the diffusion
coefficient as a function of (stepwise) time-periodic driving was reported in Reference [78].

With the work [79], the authors studied the coherence of the transport of an over-
damped Brownian dwelling in a sinusoidal potential and driven by an unbiased temporally
asymmetric time-periodic force. This system exhibits giant coherence of transport measured
by the Peclet number in the regime of a parameter space where unidirectional currents
in the deterministic case are observed. The transport coherence, as well as the diffusion
coefficient, can render the non-monotonic temperature dependence. Oscillations of the
diffusion strength for a periodically driven particle suggest the potential for an efficient
scheme in separating matter at the submicron scale. This has been investigated in the
literature in Reference [80]. The non-monotonic diffusion as a function of temperature
has similarly been found also for a two-dimensional system consisting of an overdamped
particle moving on a square lattice potential in the presence of externally applied AC
driving [81]. For sufficiently small temperatures, the diffusion along a given axis can
become arbitrarily large, whereas for a suitably chosen second axis, it tends to vanish, thus
providing a tool for a enormous enhancement and control.

Numerical studies of the diffusion coefficient in the full inertial regime has been
considered in 2012 with Reference [82]. The authors detected an increase in diffusion when
the temperature of the system is lowered and reported that for appropriate parameter
regimes, it can be orders of magnitude greater than the free thermal diffusion. Likewise,
with Reference [83], the authors reported a situation in which the diffusion coefficient
decreases with increasing temperature within a finite temperature window as well. A
simplified stochastic model was there formulated in terms of a three-state Markovian
process, which allowed us to explain the mechanism ruling out this counterintuitive effect.
It is rooted in the deterministic dynamics consisting of a few unstable periodic orbits
embedded into a chaotic attractor together with thermal noise-induced transitions upon
varying temperature. The impact of an external time-periodic driving on the emergence
of non-monotonic temperature dependence of diffusion has been addressed in [84]. The
authors found that at any fixed driving frequency, diffusion is an increasing function of
temperature, provided that the temperature is sufficiently low. Recently, the problem of
diffusion has been revisited again [85]. The authors revealed further parameter domains
in which diffusion is normal in the long time limit and exhibits intriguing giant damped
quasiperiodic oscillations as a function of the external driving amplitude. As the mechanism
behind this effect, they identified the corresponding oscillations of difference in the number
of locked and running trajectories, which carries the leading contribution to the diffusion
coefficient. Experimental realizations of an driven inertial Brownian particle in a periodic
potential involve cold atoms in optical lattices [86], or also colloidal particles placed in light
fields [87], to mention a few.

In Figure 3, we display a distinctive non-monotonic dependence of the diffusion
coefficient on temperature. The rough explanation of this behavior is the following [83].
In the presented parameter region for a deterministic system, there is a locked solution
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and many unstable periodic orbits (running states), which move in pairs in the opposite
direction. Thermally induced transitions between various states change the populations
of certain regions in phase space. When the probability pr of staying in the running states
decreases with temperature and at the same time the probability pl being in the locked state
increases, then the diffusion coefficient D decreases. If the difference pr − pl is maximal,
then D attains its maximum; when it decreases, D diminishes as well and approaches a
minimum when pr = pl . At sufficiently high temperature, the population of various orbits
is almost homogeneous, and as temperature continues to rise, this causes a monotonic
increase in the diffusion coefficient D.
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Figure 3. Brownian motion in the symmetric potential V(x) = sin(2πx) and driven by the time-
periodic force A cos(Ωt). The dimensionless diffusion coefficient D̃ versus temperature θ is visualized.
The parameters in Equation (A10) are M = 0.9, A = 8.699997, Ω = 0.2754226, f = 0.

8.2. Ratchet Systems

For ratchet systems, the reflection symmetry of the spatially periodic potential is
broken, implying that U(x0 + x) 6= U(x0 − x) for all shifts x0. In such a case, the breaking
of the detailed balance symmetry induced by the driving a cos (ωt), takes the system out of
equilibrium, is sufficient to generate a directed transport even in the absence of any biased
external forces of deterministic or stochastic nature [88,89].

Despite many years of intense and beneficial research in ratchet physics, an analysis
of thr diffusion anomalies in such systems has been addressed only very recently [90];
those authors studied the dynamics of an inertial Brownian particle in an asymmetric
periodic potential while driven by external harmonic driving. They discovered a diversity
of unusual diffusive effects, including various regimes of transient anomalous diffusion and
also diffusion suppressed by thermal noise in which a normal diffusion coefficient exhibits
non-monotonic dependence on temperature. The former has been analyzed in detail in a
series of subsequent papers [91–93], and the mechanism of the latter phenomenon has been
explained in Reference [94]. The latter effect originates from the temperature dependence of
transitions between regions in the phase space dynamics of the particle. Several examples of
experimental realizations of a driven ratchet setup are cold atoms in optical lattices [95], the
Josephson phase difference in SQUIDs [96], and nanofluidic rocking Brownian motors [97].

As an example, let us consider the stochastic dynamics of an inertial Brownian particle
in a ratchet potential of the form [94]

V(x) = − sin x− 1
4

sin 2x. (56)

The system dynamics is modeled by Equation (A10) from Appendix A. In the parameter
regime M = 6, A = 1.899, Ω = 0.403 and f = 0, the deterministic counterpart of the
setup, i.e., for θ = 0, is non-chaotic and possesses three attractors with velocities v+ ≈
0.4, v0 ≈ 0, v− ≈ −0.4. There are three corresponding classes of trajectories: x(t) ∼ 0.4t,
x(t) ∼ 0, and x(t) ∼ −0.4t. When thermal fluctuations agitate the stochastic system,
the dynamics destabilizes the attractors and generates random transitions among them.
Since the symmetry of the potential is broken, the directed transport emerges in the long



Entropy 2023, 25, 42 16 of 25

time limit with the positive averaged velocity 〈v〉 ≈ 0.4. If temperature grows, the jumps
between different types of solutions occur more frequently; then, the mean time to destroy
the deterministic structure of attractors becomes shorter and 〈v〉 starts to decrease.

In Figure 4, we display the dependence of the diffusion coefficient D on temperature
θ ∝ T. D behaves there in a non-monotonic manner, similarly as in Figure 3. For low
temperatures, D initially increases, passes through its local maximum for θ ≈ 0.0045, and
next starts to decrease, reaching its minimum for θ ≈ 0.76. At larger temperatures, D
monotonically increases and becomes strictly proportional to θ. The analysis presented
in Reference [94] evidences that for such multistable velocity dynamics, there are three
contributions to the spread of trajectories of the particle and consequently to the diffusion
coefficient D. A first one, which is the leading one, stems from the spread associated with
the relative distance between the locked V0 and the running {V−, V+} trajectories. The
second and third parts correspond to a thermally driven spread of trajectories, following
the locked and running solutions, respectively. At the maximum of D, the averaged velocity
〈v〉 is also large, and the first contribution dominates. If the temperature increases, this
contribution becomes reduced because 〈v〉 also decreases, and at the minimum of D, the
particle frequently jumps between three states with 〈v〉 ≈ 0. At a high temperature limit,
the population of these three classes of trajectories is homogeneous, thus leading to the
Einstein-type behavior of the corresponding diffusion coefficient.
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Figure 4. Diffusion in the ratchet potential (56) and driven by the time-periodic force A cos(Ωt). The
dimensionless diffusion coefficient D̃ versus thermal noise intensity θ is depicted. Parameters in
Equation (A10) are M = 6, A = 1.899, Ω = 0.403, f = 0.

9. Discussion and Sundry Topics

In this review, we have discussed the rich behavior of the diffusion coefficient of a
Brownian particle dynamics in equilibrium and nonequilibrium states. We started with the
spreading of a free Brownian particle for which we presented in detail the approaches by
Albert Einstein as well as by his contemporaries, i.e., William Sutherland, Marian Smolu-
chowski, and Paul Langevin, who all performed pioneering work for this most central and
salient physical phenomenon. We then demonstrated in a step-by-step manner how the
increase in model complexity affects these original theories of normal diffusion. In doing so,
we first considered the impact of a nonlinear spatially periodic potential for the diffusion
of Brownian particles. It turned out that in equilibrium, the diffusion coefficient is always
reduced compared to the free particle; however, it is still an increasing function of tempera-
ture for the system. This behavior is changed significantly when the particle is additionally
subjected to a constant bias, which in turn drives the stochastic dynamics out of equilibrium
towards a nonequilibrium stationary state. Such a setup can exhibit a nonmonotonic tem-
perature dependence of the diffusion coefficient, which clearly contradicts the conventional
theory. This effect also emerges when the Brownian particle moves in a periodic potential
and is driven by an unbiased time-periodic force, which takes it away from thermal equi-
librium into a nonequilibrium and time-dependent state. Given the apparent simplicity of
underlying dynamics formulated in terms of an overdamped or also fully inertial Langevin
equation for a single Brownian particle, we find that these models are minimal for the
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emergence of an intriguing non-monotonic temperature dependence in various regimes of
diffusion. This non-monotonicity of D vs. T not only is a theoretical prediction but has been
detected in many systems. Probably the first experimental manifestation was the diffusion
of nickel atoms in austenitic chromium–nickel steels at high-speed deformation [98]. Ten
years later, others observed this non-monotonic temperature dependence of the diffusion
of helium in a 3He− 4He solid mixture [99]. It was also shown that grains of titanium can
grow more intensively when temperature decreases [100]. Diffusion along grain boundaries
in Al-based alloys can exhibit a remarkable nonmonotonic dependence on the annealing
temperature [101]. Notably, such peculiar diffusive behavior has been detected not only
in solid-state experiments but also for soft-matter setups such as liquid crystals [102] and
coupled protein diffusion in the cell [103], and also for hydroxide ion diffusion in anion
exchange membranes [104]. There exist other examples in which this counter-intuitive
feature has been identified, such as diffusion in quantum disordered systems [105] and
spreading of quantum excitations [106] or spins [107].

In writing this review, we focused on the diffusion of Brownian particles in equilib-
rium and nonequilibrium states. To keep the article as simple as possible and accessible to
a broad range of readers, we limited ourselves to a one-dimensional dynamics described
by the Langevin stochastic differential equation. We considered the temperature depen-
dence of the diffusion coefficient for a Brownian particle moving freely or dwelling in a
periodic potential. Closely related topics of ongoing research are not reviewed here. We
did not cover diffusion on surfaces [108,109], confined geometries [110,111], or disordered
media [112–114]. Moreover, we restricted ourselves to normal diffusive behavior, mean-
ing that the mean-square displacement of the particle is a linearly increasing function
of the elapsed time. The deviation from this rule, known as anomalous diffusion [115],
is another field of ever active research. Subdiffusion [116–118] emerges when the mean
square displacement of the particle scales with time slower than for normal diffusion,
whereas superdiffusion [119] occurs if the particle spreading is faster than in the linear
case. Anomalous diffusion is routinely detected in the crowded world of biological cells,
where stochastic models are applied to model intracellular transport far from thermal
equilibrium [120–122]. Experimental progress in high-energy physics and astrophysics
has stimulated the unification of relativistic and stochastic concepts and has led to the
development of the theory of relativistic Brownian motion [123]. We did not cover the
diffusion of active particles [124–126], also known as self-propelled Brownian particles,
which are capable of taking energy from their environment and converting it into directed
motion. Diffusion in more complex systems such as hot hadronic matter [127], quark–
gluon plasma [128], solids, polymers, gels, glasses, and supercooled melts [129,130] lies
beyond the limited scope of the current work. It is no different for diffusion on com-
plex networks [131,132] or in brain tissues [133], nor diffusion of innovations in service
organizations [134].

As the last comment, we want to note that the Einstein free-diffusion coefficient given
in Equation (6) constitutes a particular manifestation of the so-called Einstein relation

D = µ̃kBT, (57)

where µ̃ = limF→0 〈v〉/F is the mobility of the particle in the linear response regime, i.e.,
the ratio of its average velocity 〈v〉 to the applied constant force F. For a free Brownian
particle, one can easily find that µ̃ = 1/γ and Equation (57) reduces to the expression (6).
The Einstein relation links the diffusion coefficient D, a property of the unperturbed system,
and the mobility µ̃, which measures the system response to a small perturbation. It is a
consequence and one of the examples of the fluctuation-dissipation theorem [22,26–28],
which is valid for systems in thermal equilibrium with a perturbation applied in the
linear response regime. On one hand, the calculation of the mobility µ̃ as a function
of system parameters is not an easy task in general. As an example, we mention the
many-aspect issue of diffusion of non-spherical molecules near confining surfaces in which
hydrodynamic interactions with boundaries introduce an additional, anisotropic drag
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acting on molecules, and the diffusion coefficients of arbitrarily shaped bodies become
complicated functions of their position and orientation relative to surfaces [135]. Another
example concerns inertial effects with strong implications for biophysics and molecular
biology [136,137]. On the other hand, there are attempts to generalize the Einstein relation
beyond equilibrium [138–143] and for complex setups such as disordered systems [144],
aging colloidal glasses [145], supercooled liquids [146], and nanoparticle diffusion in
polymers [147], to mention only a few.

To conclude, this review serves as a bridge between history and the state of the art
of the diffusion coefficient of a Brownian particles both in and out of equilibrium. We
demonstrated that more than 100 years after pioneering works by Sutherland, Einstein,
Smoluchowski, and Langevin, the founding fathers of modern statistical physics, it is still
in the spotlight of physics attracting even researchers coming from other sciences. As our
exploration of the microworld is not completed yet, and with nanotechnology nowadays it
paradoxically accelerates, we are sure that diffusion will continue to play a leading role in
our understanding of microscopic reality and “there is a plenty of room” to be discovered in
this field of research.
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Appendix A. Scaling Scenarios

The most general Langevin equation considered in this paper has the dimensional
form,

mẍ + γẋ = −U′(x) + a cos(ωt) + F +
√

2γkBT ξ(t), (A1)

where the periodic potential U(x) = U(x + L) has the period L, and the potential barrier is
2∆U = Umax −Umin is the difference between the maximal Umax and minimal Umin value
of U(x). Thermal equilibrium fluctuations are modeled as δ-correlated Gaussian white
noise whose statistical characteristics read

〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = δ(t− s). (A2)

The noise prefactor 2γkBT satisfies the fluctuation-dissipation theorem, which ensures the
canonical Gibbs statistics when the system is in the equilibrium state.

Because only relations between scales of length, time, and energy are relevant for the
observed physical phenomena, not their absolute values, we transform the above equation
into its dimensionless form. This can be achieved in several ways. We introduce two
examples of scaling, which we exploit to present the results of other papers. In the first
dimensionless scaling scheme, the rescaled dimensionless mass of the Brownian particle
is fixed to unity. This is convenient if one wants to analyze the influence of the friction
coefficient, particularly when it is small and the underdamped regime is addressed. In the
second scaling, the rescaled dimensionless friction coefficient is fixed to one. This scenario
is preferred if one wants to analyze the effects of particle inertia, in particular when inertial
effects are small and the overdamped regime is approached.
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There are at least four characteristic time scales in the system described by Equation (A1),
namely

τ0 =
m
γ

, τ1 =
L

2π

√
m

∆U
, τ2 =

(
L

2π

)2 γ

∆U
, τ3 =

2π

ω
. (A3)

The time τ0 is a relaxation time of the velocity of the free Brownian particle (when all terms
on the r.h.s. of Equation (A1) except for ξ(t) are zero), τ1 is proportional to the inverse
of frequency of small oscillations in the potential well of U(x) (for a conservative system
with γ = a = F = T = 0), and in turn, τ2 is the relaxation of the overdamped particle
towards the minimum of the potential U(x). The last scale τ3 is a period of the external
time-periodic force. Thermal fluctuations are modeled here approximately as white noise,
so its correlation time is zero and there is no characteristic time scale associated with it.
However, in real systems, it is non-zero but usually much, much smaller than the other
time scales.

Appendix A.1. Scaling with Particle Mass Fixed

When one wants to study effects related to the friction γ, one can use the following
scaling

x̂ =
2π

L
x, t̂ =

t
τ1

, τ1 =
L

2π

√
m

∆U
, (A4)

where the characteristic time τ1 is proportional to the inverse of frequency of small oscilla-
tions in the potential well of U(x). Under such a procedure, Equation (A1) is transformed
to the form

¨̂x + Γ ˙̂x = −V′(x̂) + A cos (Ω̂t̂) + f +
√

2Γθ ξ̂(t̂). (A5)

In this scaling the dimensionless mass of the particle, M = 1. The remaining dimensionless
parameters read

Γ =
τ1

τ0
, τ0 =

m
γ

, A =
L

2π∆U
a, f =

L
2π∆U

F, Ω̂ = τ1ω. (A6)

The dimensionless potential and thermal noise are

V(x̂) = V(x̂ + 2π) =
1

∆U
U
(

L
2π

x̂
)

, ξ̂(t̂) =
L

2π∆U
ξ(τ1 t̂). (A7)

Rescaled thermal noise is statistically equivalent to ξ(t), meaning that it is a stationary
Gaussian stochastic process with the same statistical properties as ξ(t); i.e., 〈ξ̂(t̂)〉 = 0 and
〈ξ̂(t̂)ξ̂(ŝ)〉 = δ(t̂− ŝ). The rescaled temperature θ is the ratio of thermal energy kBT to half
of the barrier height, and the particle needs to overcome the original potential well, namely

θ =
kBT
∆U

. (A8)

Appendix A.2. Scaling with Friction Fixed

In the second method of scaling, we define

x̃ =
2πx

L
, t̃ =

t
τ2

, τ2 =

(
L

2π

)2 γ

∆U
(A9)

and then, the dimensionless form of the Langevin dynamics (A1) is

M ¨̃x + ˙̃x = −V′(x̃) + A cos(Ωt̃) + f +
√

2θ ξ̃(t̃). (A10)



Entropy 2023, 25, 42 20 of 25

In this scaling, the dimensionless friction is Γ = 1 and other dimensionless quantities are

M =
τ0

τ2
, Ω = τ2ω, ξ̃(t̃) =

L
∆U

ξ(τ2 t̃). (A11)

The remaining quantities A, f , and θ are the same as in the previous scaling. The over-
damped regime corresponds to the limit M = τ0/τ2 → 0, yielding

˙̃x = −V′(x̃) + A cos (Ωt̃) + f +
√

2θ ξ̃(t̃) . (A12)

In the literature, the authors often use various scaling schemes. For example, when dealing
with spatially periodic systems of period L, the rescaled dimensionless potential is of
the period L = 2π (which seems to be natural) or L = 1, or yet another. The following
rule holds true: if the dimensional periodic potential U(x) is of period L and the particle
coordinate is scaled as x → x/L, then the period of the rescaled potential is L = 1. If it is
scaled as x → 2πx/L, then the period of the rescaled potential is L → 2π. Generally, if
x → l0x/L, then the period is L → l0. If the reader wants to recalculate the parameters
from one scaling presented here to another, one has to change L/2π → L/l0, where l0 is
the period of the rescaled periodic potential V(x) in Equations (A4)–(A12).

Appendix B. Rigorous Bounds and Asymptotic Temperature Behaviour

We derive lower and upper bounds on the diffusion coefficient in the underdamped
regime for a Brownian particle moving in the periodic potential; see Equation (47). For
x ∈ [0, 1] the complete elliptic integral of the second kind E(x) is bounded by two values,

1 ≤ E(x) ≤ π

2
. (A13)

Hence
2
π
≤ 1

E(x)
≤ 1. (A14)

Then, for any β > 0, it follows that

2
π

∫ ∞

1

e−βEdE√
E + 1

≤
∫ ∞

1

e−βEdE√
E + 1 E(

√
2/(E + 1))

≤
∫ ∞

1

e−βEdE√
E + 1

, β > 0. (A15)

By changing the integration variable E = y2 − 1, we can convert the integral to the form
defining the complementary error function erfc(x) yielding

W =
∫ ∞

1

e−βEdE√
E + 1

=

√
π

β
eβ erfc(

√
2β). (A16)

This allows us to evaluate the lower and upper bounds for the diffusion coefficient (47),
namely

D0
eβ

I0(β)
erfc(

√
2β) ≤ D ≤ π

2
D0

eβ

I0(β)
erfc(

√
2β), β =

d0

kBT
. (A17)

We want to stress that this relation is valid for any temperature T. The following inequalities
hold true:

ex
√

2πx

√
1− e−2x < I0(x) <

ex
√

4x

√
1− e−2x, (A18)(

1− 1
2x2

)
e−x2

√
πx

< erfc(x) <
e−x2

√
πx

. (A19)

The inequality (A18) is proven in Reference[148]. The upper bound for erfc(x) can be
obtained from its representation by a continued fraction and truncation at the second
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term [149]. Its lower bound is proven in Reference [150]. We apply them to Equation (A17)
to obtain the bounds√

2
π

D0e−2β

√
1− e−2β

(
1− 1

4β

)
< D <

π

2
D0e−2β

√
1− e−2β

. (A20)

In the limiting case of low temperatures β → ∞, the diffusion coefficient asymptotically
behaves as

D ∼ d0

γβ
e−2β, (A21)

which is in accordance with results obtained in References [44–46].
The high temperature limit can be evaluated from (A17). Indeed, for β→ 0, it leads to

the relation
D0 ≤ D ≤ π

2
D0. (A22)

We conclude that
D → D0 =

kBT
γ

, (A23)

i.e., the diffusion coefficient D approaches the Sutherland–Einstein diffusion coefficient for
a free Brownian particle.
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