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First thermometer & temperature scales
1638: Robert Fludd – air thermometer &scale
~1700: linseed oil thermometer by Newton
1701: red wine as temperature indicator by Rømer1701: red wine as temperature indicator by Rømer
1702: Guillaume Amontons:  Absolute zero temperature? 
1714: mercury and alcohol thermometer by Fahrenheit

D fi iti f t t lDefinition of temperature scales

Olaf Christensen Daniel Gabriel A d C l iSir Isaac Newton René Antoine 
Römer

(1644 – 1710)

Daniel Gabriel 
Fahrenheit

(1686 – 1736) 

Anders Celsius
(1701 – 1744) 

Sir Isaac Newton
(1643  – 1727) Ferchault de 

Réaumur
(1683 – 1757)



Linneaus thermometer

Carl von Linné 
(1707 – 1778)

R d th C l i lReversed the Celsius scale

1744: broken on delivery

Anders Celsius 

1744: broken on delivery
1745: botanical garden in Uppsala



Absolute Zero 

p V = N kB TIdeal gas law: p

V

William Thomson 
Lord Kelvin

1848: Kelvin postulates an 
absolute zero temperature 

V = 0 , T = 0

It is impossible by any procedure to reduce the temperature of

― Lord Kelvin
(1824 – 1907) T

−273.15 ◦C
It is impossible by any procedure to reduce the temperature of 

a system to zero in a finite number of operations.



The highest temperature 
you can see

Lightning:    

30 000 °C

Fuse soil or sand into glas



Noise ThermometerNoise Thermometer
or

Johnson – Nyquist noise
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V PSDV (ω) = 2kBTR

classical regime only
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PSDV : power spectral density

-- classical regime only --

O PSDV : power spectral density

of the voltage signal

kB : Boltzmann constantkB : Boltzmann constant

R : resistance



Cosmic background temperatureCosmic background temperature

T = 2.725 ± …. K 



Black body radiationBlack body radiation

Planck’s law [1901]: u(λ T ) =
8πhc 1

Planck s law [1901]: u(λ, T ) =
λ5 exp( hc

λ kBT
)− 1

u(λ, T ) : spectral energy density

λ : wavelength

h : Planck constant

c : speed of light

kB : Boltzmann constantB

Stefan – Boltzmann law:  

E ∝ T 4
Thermometer !

E ∝ T



The famous Laws
Equilibrium Principle -- minus first Law

An isolated, macroscopic system which is placed in an arbitrary
initial state within a finite fixed volume will attain a unique
state of equilibrium.

Second Law (Clausius)
For a non-quasi-static process occurring in a thermally isolated
system, the entropy change between two equilibrium states is
non-negative.

Second Law (Kelvin)
No work can be extracted from a closed equilibrium system
during a cyclic variation of a parameter by an external source.
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Entropy S – content of transformation
„Verwandlungswert“

dS = δQrev T ; δQirrev < δQrev
V TV2, T2

Γrev Γirrev
δQ

T
≤ 0irrev

C T
C = Γ e + Γi

V1, T1 Z
δQ

C = Γrev + Γirrev

,
S(V2, T2)− S(V1, T1) ≥

Z
Γirrev

δQ

TZ
δQrev

∂S

∂
≥ 0 NO !

S(V2, T2)− S(V1, T1) =
Z
Γrev

δQrev

T
∂t

≥ 0 O

−1
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MINUS FIRST LAW vs. SECOND LAW

-1st Law

2nd Law



SECOND LAW

Quote by Sir Arthur Stanley Eddington:

“If someone points out to you that your pet theory of the universe is in disagreement
with Maxwell’s equations – then so much the worse for Maxwell’s equations. If it is
found to be contradicted by observation – well, these experimentalists do bungle
things sometimes. But if your theory is found to be against the second law of
thermodynamics I can give you no hope; there is nothing for it but to collapse in
deepest humiliation.“

Freely translated into German:

Falls Ihnen jemand zeigt, dass Ihre Lieblingstheorie des Universums nicht mit den
Maxwellgleichungen übereinstimmt - Pech für die Maxwellgleichungen. Falls die
Beobachtungen ihr widersprechen - nun ja, diese Experimentatoren bauen manchmal
Mist. -- Aber wenn Ihre Theorie nicht mit dem zweiten Hauptsatz der Thermodynamik
übereinstimmt, dann kann ich Ihnen keine Hoffnung machen; ihr bleibt nichts übrig
als in tiefster Schande aufzugeben.



Thermodynamic Temperaturee ody a e pe a u e

δQrev = T dS ← thermodynamic entropy

S = S(E, V,N1, N2, ...;M,P, ...)

S(E ) ( ti ) & diff ti bl dS(E, ...): (continuous) & differentiable and

monotonic function of the internal energy Eµ
∂S

∂E

¶
=
1

T

µ
∂E

¶
... T



microcanonical ensemble
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Entropy in Stat. Mech. 
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DoS

IntDoS

D-Operator

Boltzmann (?) Gibbs (1902), Hertz (1910)
vs.

Microcanonical thermostatistics
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II. MICROCANONICAL DISTRIBUTIONS AND
ENTROPY DEFINITIONS

A. Setup

We consider strictly isolated classical or quantum sys-
tems described by a Hamiltonian H(⇠;Z) where ⇠ de-
notes the microscopic states and Z = (Z1, . . .) com-
prises external control parameters. It will be assumed
throughout that the microscopic dynamics conserves the
energy E, that the energy is bounded from below, E � 0,
and that an ensemble of such systems is described by the
microcanonical density operator

⇢(⇠|E,Z) =
�(E �H)

!
, (1)

where the non-negative normalization constant is given
by the DoS

!(E,Z) = Tr[�(E �H)] � 0 (2)

For classical systems, the trace is defined as a phase-space
integral and for quantum system by a sum or integral
over the basis vectors of the underlying Hilbert space.
The energy derivative of the DoS will be denoted by

⌫(E,Z) = @!/@E, (3)

and the integrated DoS is defined as

⌦(E,Z) = Tr[⇥(E �H)], (4)

so that ! = @⌦/@E (with ⇥ denoting the unit-step func-
tion). We shall assume throughout that ! is continuous
and piecewise di↵erentiable, so that its partial derivatives
are well-defined except for a countable number of singu-
lar points. The expectation value of an observable F (⇠)
with respect to the microcanonical density operator ⇢ is
defined by

hF iE,Z = Tr[F⇢]. (5)

As a special case, the probability density of some observ-
able F (⇠) is given by

%F (f |E,Z) = h�(f � F )iE,Z . (6)

To avoid potential confusion, it may be worthwhile to
stress that, although we will compare di↵erent entropy
functions S(E,Z), all expectation value appearing below
will always be defined with respect to the standard mi-
crocanonical density operator ⇢, as defined in Eq. (1).
That is, expectation values h · iE,Z are always computed
by averaging over microstates that are confined to the
energy shell E.

We adopt units such that the Boltzmann constant
kB = 1. For a given entropy function S(E,Z), the mi-
crocanonical temperature T and the heat capacity C are

obtained according to the rules of thermodynamics by
partial di↵erentiation,

T (E,Z) ⌘
✓
@S

@E

◆�1

, C(E,Z) =

✓
@T

@E

◆�1

. (7)

It is important to point out that the primary thermody-
namic state variables of an isolated system are E and Z,
whereas the temperature T is a derived quantity that,
in general, does not uniquely characterize the thermo-
dynamic state of the system (see detailed discussion in
Sec. II C and Fig. 1 below).
To simplify notation, when writing formulas that con-

tain !,⌦, T , etc., we will not explicitly state the func-
tional dependence on Z anymore, while keeping in mind
that the Hamiltonian can contain several additional con-
trol parameters.

B. Microcanonical entropy candidates

We summarize the most commonly considered micro-
canonical entropy definitions and their related tempera-
tures. In Secs. III, IV and V, these candidates will be
tested as to whether they satisfy the zeroth, first and
second law of thermodynamics.

1. Gibbs entropy

The Gibbs entropy is defined by [1, 2]

SG(E) = ln⌦. (8a)

The associated Gibbs temperature

TG(E) =
⌦

!
(8b)

is always non-negative, TG � 0, and remains finite as
long as ! > 0.
For classical Hamiltonian systems with microstates

(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
straightforward to prove [3] that the Gibbs temperature
satisfies the equipartition theorem,

TG =

⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (9)

We will return to this equation later as it relates directly
to the notion of thermal equilibrium.

2. Boltzmann entropy

The perhaps most popular microcanonical entropy def-
inition is the Boltzmann entropy

SB(E) = ln (✏ !) , (10a)
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As a special case, the probability density of some observ-
able F (⇠) is given by
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To avoid potential confusion, it may be worthwhile to
stress that, although we will compare di↵erent entropy
functions S(E,Z), all expectation value appearing below
will always be defined with respect to the standard mi-
crocanonical density operator ⇢, as defined in Eq. (1).
That is, expectation values h · iE,Z are always computed
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We adopt units such that the Boltzmann constant
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It is important to point out that the primary thermody-
namic state variables of an isolated system are E and Z,
whereas the temperature T is a derived quantity that,
in general, does not uniquely characterize the thermo-
dynamic state of the system (see detailed discussion in
Sec. II C and Fig. 1 below).
To simplify notation, when writing formulas that con-

tain !,⌦, T , etc., we will not explicitly state the func-
tional dependence on Z anymore, while keeping in mind
that the Hamiltonian can contain several additional con-
trol parameters.

B. Microcanonical entropy candidates

We summarize the most commonly considered micro-
canonical entropy definitions and their related tempera-
tures. In Secs. III, IV and V, these candidates will be
tested as to whether they satisfy the zeroth, first and
second law of thermodynamics.
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The Gibbs entropy is defined by [1, 2]

SG(E) = ln⌦. (8a)

The associated Gibbs temperature
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is always non-negative, TG � 0, and remains finite as
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(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
straightforward to prove [3] that the Gibbs temperature
satisfies the equipartition theorem,
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We will return to this equation later as it relates directly
to the notion of thermal equilibrium.

2. Boltzmann entropy

The perhaps most popular microcanonical entropy def-
inition is the Boltzmann entropy

SB(E) = ln (✏ !) , (10a)
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3

FIG. 1: Non-uniqueness of microcanonical temperatures illustrated for the integrated DoS from Eq. (19). Left: DoS ! (blue)
and integrated DoS ⌦ (black). Center: Boltzmann entropy SB (blue) and Boltzmann temperature TB (red). Right: Gibbs
entropy SG (black) and Gibbs temperature TG (red). This example shows that, in general, neither the Boltzmann nor the
Gibbs temperature uniquely characterize the thermal state of an isolated system, as the same temperature value can correspond
to very di↵erent energy values. In particular, this means that the microcanonical temperatures of two isolated systems before
thermal coupling generally do not specify the direction of heat flow between the two systems after coupling. Assuming all other
external parameter are kept fixed when two initially isolated systems are brought into contact, the heat transfer between them
has to be computed by comparing the fixed energies E1 and E2 before coupling with the mean energies hE1i12 and hE2i12 after
coupling, where the averages h · i12 are taken with respect to the microcanonical distribution of the combined system at fixed
total energy E12 = E1 + E2 after the coupling.

where ✏ is a small energy constant required to make
the argument of the logarithm dimensionless. The fact
that the definition of SB requires an additional energy
constant ✏ is conceptually displeasing but bears no rele-
vance for physical quantities that are related to deriva-
tives of SB.

The associated Boltzmann temperature

TB(E) =
!

⌫
(11)

becomes negative when ! is a decreasing function of the
energy E, for ⌫ = @!/@E < 0 in this case. Boltzmann
temperature and Gibbs temperature are related by [2]

TB =
TG

1� C�1
G

, (12)

where CG = (@TG/@E)�1 is the Gibbs heat capacity
measured in units of kB. Thus, a small positive Gibbs
heat capacity 0 < CG(E) < 1 implies a negative Boltz-
mann temperature TB < 0 and vice versa.

Unlike the Gibbs temperature TG, the Boltzmann tem-
perature TB does not satisfy the equipartition theorem
for classical Hamiltonian systems,

TB 6=
⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (13)

3. Di↵erential Boltzmann entropy

The energy constant ✏ in Eq. (10a) is sometimes in-
terpreted as a small uncertainty in the system energy E.
Strictly speaking, this interpretation is mathematically
redundant since, according to the postulates of classi-
cal and quantum, systems can at least in principle be

prepared in well-defined energy eigenstates. However,
ignoring this fact for the moment, the uncertainty inter-
pretation suggest a modified microcanonical phase space
probability density [1]

⇢̃(⇠;E, ✏) =
⇥
�
E + ✏�H

�
⇥
�
H � E

�

⌦(E + ✏)� ⌦(E)
. (14)

The Shannon information entropy of this modified den-
sity operator is given by

SD(E, ✏) = �Tr [⇢̃ ln ⇢̃]

= ln [⌦(E + ✏)� ⌦(E)] .
(15a)

Eq. (14) was already discussed by Gibbs [1]. From SD,
one can recover the Boltzmann entropy by expanding the
argument of logarithm for ✏ ! 0,

SD ⇡ ln(✏ !) = SB. (15b)

Note that this is not a systematic Taylor-expansion of SD

itself, but rather of exp(SD). The associated temperature

TD(E, ✏) =
⌦(E + ✏)� ⌦(E)

!(E + ✏)� !(E)
(16a)

approaches for ✏ ! 0 the Boltzmann temperature

TD ⇡ !

⌫
= TB. (16b)

The explicit ✏-dependence in Eq. (16a) disqualifies SD

from being an generic entropy definition for any finite
✏ > 0. We therefore focus below only on the limit ✏ ! 0,
corresponding to Boltzmann entropy SB.
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defined by
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As a special case, the probability density of some observ-
able F (⇠) is given by
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To avoid potential confusion, it may be worthwhile to
stress that, although we will compare di↵erent entropy
functions S(E,Z), all expectation value appearing below
will always be defined with respect to the standard mi-
crocanonical density operator ⇢, as defined in Eq. (1).
That is, expectation values h · iE,Z are always computed
by averaging over microstates that are confined to the
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We adopt units such that the Boltzmann constant
kB = 1. For a given entropy function S(E,Z), the mi-
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It is important to point out that the primary thermody-
namic state variables of an isolated system are E and Z,
whereas the temperature T is a derived quantity that,
in general, does not uniquely characterize the thermo-
dynamic state of the system (see detailed discussion in
Sec. II C and Fig. 1 below).
To simplify notation, when writing formulas that con-
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tional dependence on Z anymore, while keeping in mind
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We summarize the most commonly considered micro-
canonical entropy definitions and their related tempera-
tures. In Secs. III, IV and V, these candidates will be
tested as to whether they satisfy the zeroth, first and
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SG(E) = ln⌦. (8a)

The associated Gibbs temperature
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is always non-negative, TG � 0, and remains finite as
long as ! > 0.
For classical Hamiltonian systems with microstates

(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
straightforward to prove [3] that the Gibbs temperature
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Density of states of the pendulum in reduced units (complete elliptic integrals of the first kind).
Fig. 1 in reference: M. Baeten and J. Naudts, Entropy, 13, 1186‐1199 (2011).
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Negative Absolute Temperature for
Motional Degrees of Freedom
S. Braun,1,2 J. P. Ronzheimer,1,2 M. Schreiber,1,2 S. S. Hodgman,1,2 T. Rom,1,2

I. Bloch,1,2 U. Schneider1,2*

Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probabilityPi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a
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sufficiently deep optical lattice are described by
the Bose-Hubbard Hamiltonian (12)

H ¼ −J ∑
〈i;j〉

b%
†
i b
%
j þ

U
2
∑
i
n%iðn%i − 1Þ þ V∑

i
r2i n% i ð2Þ

Here, J is the tunneling matrix element be-
tween neighboring lattice sites 〈i, j〉, and b%i and
b%
†
i are the annihilation and creation operator,
respectively, for a boson on site i,U is the on-site
interaction energy, n% i ¼ b%

†
i b
%
i is the local number

operator, and V º w2 describes the external har-
monic confinement, with ri denoting the posi-

tion of site i with respect to the trap center andw
the trap frequency.

In Fig. 1B, we show how lower and upper
bounds can be realized for the three terms in the
Hubbard Hamiltonian. The restriction to a single
band naturally provides lower and upper bounds
for the kinetic energy Ekin, but the interaction
term Eint presents a challenge: Because in prin-
ciple all bosons could occupy the same lattice
site, the interaction energy can diverge in the
thermodynamic limit. For repulsive interactions
(U > 0), the interaction energy is only bounded

from below but not from above, thereby limiting
the system to positive temperatures; in contrast,
for attractive interactions (U < 0), only an upper
bound for the interaction energy is established,
rendering positive temperature ensembles unsta-
ble. The situation is different for the Fermi-Hubbard
model, where the Pauli principle enforces an up-
per limit on the interaction energy per atom of
U/2 and thereby allows negative temperatures
even in the repulsive case (13, 14). Similarly, a
trapping potential V > 0 only provides a lower
bound for the potential energy Epot, whereas an

Fig. 1. Negative absolute temperature in optical lattices. (A) Sketch of entropy
as a function of energy in a canonical ensemble possessing both lower (Emin) and
upper (Emax) energy bounds. (Insets) Sample occupation distributions of single-
particle states for positive, infinite, and negative temperature, assuming a weakly
interacting ensemble. (B) Energy bounds of the three terms of the 2D Bose-
Hubbard Hamiltonian: kinetic (Ekin), interaction (Eint), and potential (Epot) energy.
(C) Measured momentum distributions (TOF images) for positive (left) and neg-
ative (right) temperature states. Both images are averages of about 20 shots;
both optical densities (OD) are individually scaled. The contour plots below show
the tight-binding dispersion relation; momenta with large occupation are high-
lighted. The white square in the center indicates the first Brillouin zone.

Fig. 2. Experimental sequence and TOF images. (A) Top to bottom: lattice
depth, horizontal trap frequency, and scattering length as a function of
time. Blue indicates the sequence for positive, red for negative temper-
ature of the final state. (B) TOF images of the atomic cloud at various times
t in the sequence. Blue borders indicate positive, red negative temper-

atures. The initial picture in a shallow lattice at t = 6.8 ms is taken once for
a scattering length of a = 309(5) a0 (top) as in the sequence, and once for
a = 33(1) a0 (bottom; OD rescaled by a factor of 0.25), comparable to the
final images. All images are averages of about 20 individual shots. See
also Fig. 1C.
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Negative Absolute Temperature for
Motional Degrees of Freedom
S. Braun,1,2 J. P. Ronzheimer,1,2 M. Schreiber,1,2 S. S. Hodgman,1,2 T. Rom,1,2

I. Bloch,1,2 U. Schneider1,2*

Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probabilityPi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a

1Fakultät für Physik, Ludwig-Maximilians-Universität München,
Schellingstraße 4, 80799Munich, Germany.2Max-Planck-Institut
für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching,
Germany.

*To whom correspondence should be addressed. E-mail:
ulrich.schneider@lmu.de.

4 JANUARY 2013 VOL 339 SCIENCE www.sciencemag.org52

REPORTS

 o
n

 J
a

n
u

a
ry

 3
, 

2
0

1
3

w
w

w
.s

c
ie

n
c
e

m
a

g
.o

rg
D

o
w

n
lo

a
d

e
d

 f
ro

m
 

✓ Carnot efficiencies >1

✓ Dark Energy

hanggi
Hervorheben

hanggi
Hervorheben

hanggi
Hervorheben

hanggi
Hervorheben

hanggi
Hervorheben

hanggi
Hervorheben



Recent Experiments

● fit to 1-particle level occupation
 negative temperature

● Carnot efficiencies η > 1

● T < 0 & p < 0  model for dark energy
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‘Non-uniqueness’ of temperature

Temperature does NOT determine direction heat flow.
Energy is primary control parameter of MCE.

4

4. Inverse Gibbs entropy

If the total number of microstates is finite,
⌦1 ⌘ ⌦(1) < 1, as for example in spin models with
upper energy bound, then one can also define a comple-
mentary Gibbs entropy

SC(E) = ln [⌦1 � ⌦(E)] . (17a)

The complementary Gibbs temperature

TC(E) = �⌦1 � ⌦

!
. (17b)

is always negative. In a universe where ⌦1 < 1 holds
for all systems, the complementary Gibbs entropy pro-
vides an alternative thermodynamic description that,
roughly speaking, mirrors the thermodynamics based on
the Gibbs entropy. However, while many (if not all) phys-
ical systems are known to have a finite groundstate en-
ergy, we are not aware of any experimental evidence for
the existence of strict upper energy bounds.

5. Penrose entropy

Another entropy definition proposed by Penrose
reads [5]

SP(E) = ln⌦(E) + ln[⌦1 � ⌦(E)]� ln⌦1. (18a)

For systems with ⌦1 = 1, the Penrose entropy becomes
identical to the Gibbs entropy, assuming a sensible defi-
nition of limE!1 SP, but SP di↵ers from SG for systems
with bounded spectrum. The Penrose temperature

TP(E) =
1

!


1

⌦
� 1

⌦1 � ⌦

��1

(18b)

interpolates between TG and TC if ⌦1 < 1, and is equal
to TG otherwise. The definition (18a) leads to peculiar
ambiguities for systems that are physically equivalent on
the energy interval [0, E1] but di↵er for E > E1 (Fig. 2).
Moreover, the example in Sec. XXX below demonstrates
that, similar to the Boltzmann entropy, the Penrose en-
tropy violates the classical equipartition theorem.

6. Piecewise entropies

Finally, we still mention that one may also define en-
tropies that have di↵erent analytic behaviors on di↵er-
ent energy intervals (e.g, a piecewise combination of the
Gibbs entropy for some energy interval and the com-
plementary Gibbs entropy for a di↵erent energy range).
However, such constructions su↵er from deficiencies due
to the non-analyticities at the interval boundaries, result-
ing in artificial phase transitions.

FIG. 2: Left: DoS ! of two systems A (black) and B (or-
ange) that are physically equivalent over the energy interval
[0, ⇡✏], but di↵er for E > ⇡✏. The orange curve corresponds
to Eq. (19). Right: Even though systems A and B are phys-
ically equivalent on the energy interval [0, ⇡✏], the Penrose
entropy (solid lines) assigns qualitatively di↵erent tempera-
tures (dashed lines) to them. The diagram also illustrates
that the Penrose temperature TP cannot uniquely character-
ize the thermal state of an isolated system, as di↵erent energy
values E can have the same Penrose temperature.

C. Non-uniqueness of microcanonical temperatures

It is often assumed that temperature tells us in which
direction heat will flow when two bodies are placed in
thermal contact. Although this view may be acceptable
in the case of ‘normal’ systems that possess a monotoni-
cally increasing DoS !, one can easily show that, in gen-
eral, neither the Gibbs temperature nor the Boltzmann
temperature nor any of the other suggested alternatives
are capable of specifying uniquely the direction of heat
flow when two isolated systems become coupled. This is
simply due to the fact that the microcanonical tempera-
ture does not always uniquely characterize the state of an
isolated system before it is coupled to another. To illus-
trate this explicitly, consider as a simple generic example
a system with integrated DoS

⌦(E) = exp


E

2✏
� 1

4
sin

✓
2E

✏

◆�
+

E

2✏
, (19)

where ✏ is some energy scale. The associated DoS is
non-negative and non-monotonic, ! ⌘ @⌦/@E � 0 for
all E � 0. As evident from Fig. 1, neither Gibbs
nor Boltzmann temperature provide a unique thermody-
namic characterization in this case, as the same temper-
ature value can correspond to vastly di↵erent energy val-
ues. It is not di�cult to see that qualitatively similar re-
sults are obtained for all continuous functions ! � 0 that
exhibit at least one local maximum and one local mini-
mum on (E,1). This ambiguity reflects the fact that the
essential control parameter (thermodynamic state vari-
able) of an isolated system is the energy E and not the
temperature.
More generally, this means that microcanonical tem-

peratures do not specify the heat flow between two
initially isolated systems [6] and, therefore, naive
temperature-based heat-flow arguments [7] cannot be



Thermodynamic Entropy

●

● W and Q not state functions
 differentials δW and δQ not total

● but                   total differential

if                                      !

d S =
δQ
T

d E = δQ + δW

1
T
=(∂ f [Ω (E ,Z)]∂E )

Z



Mech. Adiabatic Processes

d E = δQ + δW = T d S −∑n
pnd Zn

d E = ∑n ⟨ ∂H∂Zn ⟩ρ d Zn

pi = T ( ∂S∂Z i)E ,Zn≠ j



Mech. Adiab. = Thermod. Adiab.

d E = δQ + δW = T d S −∑n
pnd Zn

pi = T ( ∂S∂Z i)E ,Zn≠ j

d S = 0

d E = ∑n ⟨ ∂H∂Zn ⟩ρ d Zn



First Law
d E = δQ +δW = T d S −∑n

pn d Zn

⇒ pi = T ( ∂S
∂ Zi)E , Z n≠ j

= −〈∂ H
∂ Zi 〉ρ

⇒ S (E ,…) = f [Ω(E ,…)]
!

f (⋅)= k B ln (⋅)                        from additional constraints
 (e.g. gas thermometer)

!
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First law

Gibbs

see also Campisi, Physica A 2007

Boltzmann

7

This proves that the mean Boltzmann temperature does
not satisfy the zeroth law.

Instead, the first line in Eq. (31), combined with
Eq. (21c), suggests that the Boltzmann temperature sat-
isfies the following relation for the inverse temperature

⌧
1

TBA

�

E

=

⌧
1

TBB

�

E

=
1

TB(E)
. (32)

It should be stressed, however, that Eq. (32) is not equiv-
alent to Eq. (28) and therefore also disagrees with the
zeroth law as stated in Eq. (26).

It is sometimes argued that the Boltzmann tempera-
ture characterizes the most probable energy state E⇤

i of
a subsystem i and that the corresponding temperature
values TBi(E

⇤
i ) coincides with the temperature of the

compound system TB(E). To investigate this statement,
consider i = A and recall that the probability ⇡A(EA|E)
of finding the first subsystem A at energy EA becomes
maximal either at a non-analytic point (e.g., a bound-
ary value of the allowed energy range), or at a value E⇤

A
satisfying

0 =
@⇡A(EA|E)

@EA

����
EA=E⇤

A

. (33)

Inserting ⇡A(EA|E) from Eq. (23b), one thus finds

TBA(E
⇤
A) = TBB(E � E⇤

A). (34)

Note, however, that in general

TB(E) 6= TBA(E
⇤
A) = TBB(E � E⇤

A), (35)

with the values TBi(E
⇤
i ) depending on the specific decom-

position into subsystems. This shows that the Boltzmann
temperature TB is in general not equal to the ‘most prob-
able’ Boltzmann temperature TBi(E

⇤
i ) of an arbitrarily

chosen subsystem.

3. Other temperatures

It is straightforward to verify through analogous calcu-
lations that, similar to the Boltzmann temperature, the
temperatures derived from the other entropy candidates
in Sec. II B violate the CTA condition (25) and, therefore,
also the zeroth law (26).

In summary, only the Gibbs temperature satisfies the
zeroth law of thermodynamics.

IV. FIRST LAW

The first law of thermodynamics is the statement of
energy conservation. That is, any change in the inter-
nal energy dE of an isolated system is caused by heat
transfer �Q from or into the system and external work
�A performed on or by the system,

dE = �Q+ �A

= T dS �
X

n

pndZn, (36)

where the pn are the generalized pressure variables.
Specifically, pure work �A corresponds to an adiabatic
variation of the parameters Z = (Z1, . . .) of the Hamil-
tonian H(⇠;Z). Heat transfer �Q = TdS comprises all
other forms of energy exchange (controlled injection or
release of photons, etc.). Subsystems within the isolated
system can permanently exchange heat although the to-
tal energy remains conserved in such internal energy re-
distribution processes.
The formal di↵erential relation (36) is trivially satisfied

for all the entropy definitions listed in Sec. II B, but addi-
tional constraints arise from the fact that the generalized
pressure variables pn should agree with the correspond-
ing microcanonical expectation values. This requirement
leads to the consistency relation [2]

pj = T

✓
@S

@Zj

◆

E,Zn 6=Zj

!
= �

⌧
@H

@Zj

�

E

, (37)

which can be derived from the Hamiltonian or Heisenberg
equations of motion (see Supplementary Information of
Ref. [2]). Subscripts on the lhs. of Eq. (37) indicate
quantities that are kept constant during di↵erentiation.
Equation (37) is physically relevant as it ensures that
abstract thermodynamic observables agree with the sta-
tistical averages.
As discussed in Ref. [2], any function of ⌦(E) satisfies

Eq. (37), implying that the Gibbs entropy, the comple-
mentary Gibbs entropy and the Penrose entropy are ther-
mostatistically consistent with respect to this specific cri-
terion. By contrast, the Boltzmann entropy SB = ln(✏!)
violates Eq. (37) for finite systems of arbitrary size [2].

V. SECOND LAW

The second law of thermodynamics governs the in-
crease of entropy under rather general conditions. Un-
fortunately, this law is sometimes stated in ambiguous
form, and several authors appear to prefer di↵erent non-
equivalent versions. Fortunately, in the case of isolated
systems, it is relatively straightforward to identify a
meaningful minimal version of the second law – originally
proposed by Planck – that imposes a testable constraint
on the microcanonical entropy candidates. However, be-
fore focussing on Planck’s formulation, let us briefly ad-
dress two other rather popular versions that are not ap-
propriate when dealing with isolated systems.
The perhaps simplest form of the second law states

that the entropy of an isolated system never decreases.
For isolated systems described by the MCE, this state-
ment is meaningless for the entropy of an isolated equi-
librium system at fixed energy is constant, regardless of
the chosen entropy definition.
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This proves that the mean Boltzmann temperature does
not satisfy the zeroth law.

Instead, the first line in Eq. (31), combined with
Eq. (21c), suggests that the Boltzmann temperature sat-
isfies the following relation for the inverse temperature

⌧
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TBA
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E

=

⌧
1

TBB

�

E

=
1

TB(E)
. (32)

It should be stressed, however, that Eq. (32) is not equiv-
alent to Eq. (28) and therefore also disagrees with the
zeroth law as stated in Eq. (26).

It is sometimes argued that the Boltzmann tempera-
ture characterizes the most probable energy state E⇤

i of
a subsystem i and that the corresponding temperature
values TBi(E

⇤
i ) coincides with the temperature of the

compound system TB(E). To investigate this statement,
consider i = A and recall that the probability ⇡A(EA|E)
of finding the first subsystem A at energy EA becomes
maximal either at a non-analytic point (e.g., a bound-
ary value of the allowed energy range), or at a value E⇤

A
satisfying

0 =
@⇡A(EA|E)

@EA

����
EA=E⇤

A

. (33)

Inserting ⇡A(EA|E) from Eq. (23b), one thus finds

TBA(E
⇤
A) = TBB(E � E⇤

A). (34)

Note, however, that in general

TB(E) 6= TBA(E
⇤
A) = TBB(E � E⇤

A), (35)

with the values TBi(E
⇤
i ) depending on the specific decom-

position into subsystems. This shows that the Boltzmann
temperature TB is in general not equal to the ‘most prob-
able’ Boltzmann temperature TBi(E

⇤
i ) of an arbitrarily

chosen subsystem.

3. Other temperatures

It is straightforward to verify through analogous calcu-
lations that, similar to the Boltzmann temperature, the
temperatures derived from the other entropy candidates
in Sec. II B violate the CTA condition (25) and, therefore,
also the zeroth law (26).

In summary, only the Gibbs temperature satisfies the
zeroth law of thermodynamics.

IV. FIRST LAW

The first law of thermodynamics is the statement of
energy conservation. That is, any change in the inter-
nal energy dE of an isolated system is caused by heat
transfer �Q from or into the system and external work
�A performed on or by the system,

dE = �Q+ �A

= T dS �
X

n

pndZn, (36)

where the pn are the generalized pressure variables.
Specifically, pure work �A corresponds to an adiabatic
variation of the parameters Z = (Z1, . . .) of the Hamil-
tonian H(⇠;Z). Heat transfer �Q = TdS comprises all
other forms of energy exchange (controlled injection or
release of photons, etc.). Subsystems within the isolated
system can permanently exchange heat although the to-
tal energy remains conserved in such internal energy re-
distribution processes.
The formal di↵erential relation (36) is trivially satisfied

for all the entropy definitions listed in Sec. II B, but addi-
tional constraints arise from the fact that the generalized
pressure variables pn should agree with the correspond-
ing microcanonical expectation values. This requirement
leads to the consistency relation [2]

pj = T

✓
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@Zj
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E,Zn 6=Zj

!
= �

⌧
@H

@Zj

�

E

, (37)

which can be derived from the Hamiltonian or Heisenberg
equations of motion (see Supplementary Information of
Ref. [2]). Subscripts on the lhs. of Eq. (37) indicate
quantities that are kept constant during di↵erentiation.
Equation (37) is physically relevant as it ensures that
abstract thermodynamic observables agree with the sta-
tistical averages.
As discussed in Ref. [2], any function of ⌦(E) satisfies

Eq. (37), implying that the Gibbs entropy, the comple-
mentary Gibbs entropy and the Penrose entropy are ther-
mostatistically consistent with respect to this specific cri-
terion. By contrast, the Boltzmann entropy SB = ln(✏!)
violates Eq. (37) for finite systems of arbitrary size [2].

V. SECOND LAW

The second law of thermodynamics governs the in-
crease of entropy under rather general conditions. Un-
fortunately, this law is sometimes stated in ambiguous
form, and several authors appear to prefer di↵erent non-
equivalent versions. Fortunately, in the case of isolated
systems, it is relatively straightforward to identify a
meaningful minimal version of the second law – originally
proposed by Planck – that imposes a testable constraint
on the microcanonical entropy candidates. However, be-
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a hotter body. As evident from the simple yet generic ex-
ample in Sec. II C, the microcanonical temperature T (E)
can be a non-monotonic or even oscillating function of en-
ergy and, therefore, temperature di↵erences do not suf-
fice to specify the direction of heat flow when two initially
isolated systems are brought into thermal contact with
each other.

The deficiencies of the above formulations can be over-
come by resorting to Planck’s version of the second law.
Planck postulated that the sum of entropies of all bod-
ies taking part in some process never decreases. This
formulation is useful as it allows one to test the various
microcanonical entropy definitions. More precisely, if A
and B are two isolated systems with fixed energy values
EA and EB and fixed entropies SA(EA) and SB(EB),
then their entropy after coupling, SAB(EA + EB) must
be larger than the sum of their original entropies,

SAB(EA + EB) � SA(EA) + SB(EB). (38)

We next analyze whether the inequality (38) is fulfilled
by the microcanonical entropy candidates in Sec. II B

A. Gibbs entropy

To verify Eq. (38) for the Gibbs entropy SG = ln⌦, we
have to compare the phase volume of the compound sys-
tems after coupling, ⌦(EA+EB), with the phase volumes
⌦A(EA) and ⌦B(EB) of the subsystems before coupling.
Starting from Eq. (21d), we find

⌦(EA + EB)

=

Z EA+EB

0
dE0 ⌦A(E

0)!B(EA + EB � E0)

=

Z EA+EB

0
dE0

Z E0

0
dE00!A(E

00)!B(EA + EB � E0)

�
Z EA+EB

EA

dE0
Z EA

0
dE00!A(E

00)!B(EA + EB � E0)

=

Z EA

0
dE00!A(E

00)

Z EB

0
dE000!B(E

000)

= ⌦A(EA) ⌦B(EB).
(39)

This result implies that the Gibbs entropy of the com-
pound system is always larger than the sum of the Gibbs
entropies of the subsystems before they were brought into
thermal contact:

SGAB(EA + EB) � SGA(EA) + SGB(EB). (40)

Thus, the Gibbs entropy satisfies Planck’s version of the
second law.

B. Boltzmann entropy

To verify Eq. (38) for the Boltzmann entropy SG =
ln(✏!), we have to compare the ✏-scaled DOS of the com-

pound systems after coupling, ✏!(EA + EB), with the
product of the ✏-scaled DOS ✏!A(EA) and ✏!B(EB) be-
fore the coupling. But, according to Eq. (21b), we have

✏!(EA+EB) = ✏

Z EA+EB

0
dE0!A(E

0)!B(EA+EB�E0),

(41)
which can be larger or smaller than ✏2!A(EA)!B(EB).
Thus, there is no strict relation between Boltzmann en-
tropy of the compound system and the Boltzmann en-
tropies of the subsystems before contact. That is, the
Boltzmann entropy violates the Planck version of the sec-
ond law for certain systems, as we will show in Sec. VIC
with an example.

One might try to ‘rescue’ the Boltzmann entropy from
failing the Planck’s second law by assuming that ✏ may
always be chosen ‘su�ciently’ (i.e., infinitesimally) small,
so that the entropy ordering is governed by the powers
of ✏. Perhaps, a more appealing solution is provided by
the modified definition (15a) of the Boltzmann entropy
that is based on the Shannon entropy. This Shannon
entropy does satisfy Planck’s version of the second law
(but fails the zeroth and first law).

[Comment (Stefan): I guess we should also

show explicitly that the Shannon version of the

Boltzmann entropy satisfies the Second Law]

VI. EXAMPLES

discuss only on the level of prototypical DOS. DOS
prototypes suggested for examples

• normal system: simple power-law DOS (like classi-
cal ideal gas)

• anormal system: upside-down parabola (i.e.
quadratic) DOS with lower and upper bound

• system with extra bump: any of the above, but
with additional large and sharp (delta-like) peak at
the energy of your choice (moving the peak around
influences the energy distribution between systems
in contatc without necessarily changing entropies
or temperatures of systems before contact)

• possible further examples could include simple clas-
sical systems with finite ⌦(1)

The DOS of the normal system:

!(E) =
⌦0

✏0

(
(E/✏0)

↵�1
, 0 < E

0 , otherwise.
(42)

The DOS of the anormal system:

!̂
�
E
�
=

6⌦1
E+

8
<

:

E (E+ � E)

E2
+

, 0 < E < E+

0 , otherwise.
(43)
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II. MICROCANONICAL DISTRIBUTIONS AND
ENTROPY DEFINITIONS

A. Setup

We consider strictly isolated classical or quantum sys-
tems described by a Hamiltonian H(⇠;Z) where ⇠ de-
notes the microscopic states and Z = (Z1, . . .) com-
prises external control parameters. It will be assumed
throughout that the microscopic dynamics conserves the
energy E, that the energy is bounded from below, E � 0,
and that an ensemble of such systems is described by the
microcanonical density operator

⇢(⇠|E,Z) =
�(E �H)

!
, (1)

where the non-negative normalization constant is given
by the DoS

!(E,Z) = Tr[�(E �H)] � 0 (2)

For classical systems, the trace is defined as a phase-space
integral and for quantum system by a sum or integral
over the basis vectors of the underlying Hilbert space.
The energy derivative of the DoS will be denoted by

⌫(E,Z) = @!/@E, (3)

and the integrated DoS is defined as

⌦(E,Z) = Tr[⇥(E �H)], (4)

so that ! = @⌦/@E (with ⇥ denoting the unit-step func-
tion). We shall assume throughout that ! is continuous
and piecewise di↵erentiable, so that its partial derivatives
are well-defined except for a countable number of singu-
lar points. The expectation value of an observable F (⇠)
with respect to the microcanonical density operator ⇢ is
defined by

hF iE,Z = Tr[F⇢]. (5)

As a special case, the probability density of some observ-
able F (⇠) is given by

%F (f |E,Z) = h�(f � F )iE,Z . (6)

To avoid potential confusion, it may be worthwhile to
stress that, although we will compare di↵erent entropy
functions S(E,Z), all expectation value appearing below
will always be defined with respect to the standard mi-
crocanonical density operator ⇢, as defined in Eq. (1).
That is, expectation values h · iE,Z are always computed
by averaging over microstates that are confined to the
energy shell E.

We adopt units such that the Boltzmann constant
kB = 1. For a given entropy function S(E,Z), the mi-
crocanonical temperature T and the heat capacity C are

obtained according to the rules of thermodynamics by
partial di↵erentiation,

T (E,Z) ⌘
✓
@S

@E

◆�1

, C(E,Z) =

✓
@T

@E

◆�1

. (7)

It is important to point out that the primary thermody-
namic state variables of an isolated system are E and Z,
whereas the temperature T is a derived quantity that,
in general, does not uniquely characterize the thermo-
dynamic state of the system (see detailed discussion in
Sec. II C and Fig. 1 below).
To simplify notation, when writing formulas that con-

tain !,⌦, T , etc., we will not explicitly state the func-
tional dependence on Z anymore, while keeping in mind
that the Hamiltonian can contain several additional con-
trol parameters.

B. Microcanonical entropy candidates

We summarize the most commonly considered micro-
canonical entropy definitions and their related tempera-
tures. In Secs. III, IV and V, these candidates will be
tested as to whether they satisfy the zeroth, first and
second law of thermodynamics.

1. Gibbs entropy

The Gibbs entropy is defined by [1, 2]

SG(E) = ln⌦. (8a)

The associated Gibbs temperature

TG(E) =
⌦

!
(8b)

is always non-negative, TG � 0, and remains finite as
long as ! > 0.
For classical Hamiltonian systems with microstates

(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
straightforward to prove [3] that the Gibbs temperature
satisfies the equipartition theorem,

TG =

⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (9)

We will return to this equation later as it relates directly
to the notion of thermal equilibrium.

2. Boltzmann entropy

The perhaps most popular microcanonical entropy def-
inition is the Boltzmann entropy

SB(E) = ln (✏ !) , (10a)
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long as ! > 0.
For classical Hamiltonian systems with microstates

(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
straightforward to prove [3] that the Gibbs temperature
satisfies the equipartition theorem,

TG =

⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (9)

We will return to this equation later as it relates directly
to the notion of thermal equilibrium.

2. Boltzmann entropy

The perhaps most popular microcanonical entropy def-
inition is the Boltzmann entropy

SB(E) = ln (✏ !) , (10a)
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a hotter body. As evident from the simple yet generic ex-
ample in Sec. II C, the microcanonical temperature T (E)
can be a non-monotonic or even oscillating function of en-
ergy and, therefore, temperature di↵erences do not suf-
fice to specify the direction of heat flow when two initially
isolated systems are brought into thermal contact with
each other.

The deficiencies of the above formulations can be over-
come by resorting to Planck’s version of the second law.
Planck postulated that the sum of entropies of all bod-
ies taking part in some process never decreases. This
formulation is useful as it allows one to test the various
microcanonical entropy definitions. More precisely, if A
and B are two isolated systems with fixed energy values
EA and EB and fixed entropies SA(EA) and SB(EB),
then their entropy after coupling, SAB(EA + EB) must
be larger than the sum of their original entropies,

SAB(EA + EB) � SA(EA) + SB(EB). (38)

We next analyze whether the inequality (38) is fulfilled
by the microcanonical entropy candidates in Sec. II B

A. Gibbs entropy

To verify Eq. (38) for the Gibbs entropy SG = ln⌦, we
have to compare the phase volume of the compound sys-
tems after coupling, ⌦(EA+EB), with the phase volumes
⌦A(EA) and ⌦B(EB) of the subsystems before coupling.
Starting from Eq. (21d), we find

⌦(EA + EB)

=

Z EA+EB

0
dE0 ⌦A(E

0)!B(EA + EB � E0)

=

Z EA+EB

0
dE0

Z E0

0
dE00!A(E

00)!B(EA + EB � E0)

�
Z EA+EB

EA

dE0
Z EA

0
dE00!A(E

00)!B(EA + EB � E0)

=

Z EA

0
dE00!A(E

00)

Z EB

0
dE000!B(E

000)

= ⌦A(EA) ⌦B(EB).
(39)

This result implies that the Gibbs entropy of the com-
pound system is always larger than the sum of the Gibbs
entropies of the subsystems before they were brought into
thermal contact:

SGAB(EA + EB) � SGA(EA) + SGB(EB). (40)

Thus, the Gibbs entropy satisfies Planck’s version of the
second law.

B. Boltzmann entropy

To verify Eq. (38) for the Boltzmann entropy SG =
ln(✏!), we have to compare the ✏-scaled DOS of the com-

pound systems after coupling, ✏!(EA + EB), with the
product of the ✏-scaled DOS ✏!A(EA) and ✏!B(EB) be-
fore the coupling. But, according to Eq. (21b), we have

✏!(EA+EB) = ✏

Z EA+EB

0
dE0!A(E

0)!B(EA+EB�E0),

(41)
which can be larger or smaller than ✏2!A(EA)!B(EB).
Thus, there is no strict relation between Boltzmann en-
tropy of the compound system and the Boltzmann en-
tropies of the subsystems before contact. That is, the
Boltzmann entropy violates the Planck version of the sec-
ond law for certain systems, as we will show in Sec. VIC
with an example.

One might try to ‘rescue’ the Boltzmann entropy from
failing the Planck’s second law by assuming that ✏ may
always be chosen ‘su�ciently’ (i.e., infinitesimally) small,
so that the entropy ordering is governed by the powers
of ✏. Perhaps, a more appealing solution is provided by
the modified definition (15a) of the Boltzmann entropy
that is based on the Shannon entropy. This Shannon
entropy does satisfy Planck’s version of the second law
(but fails the zeroth and first law).

[Comment (Stefan): I guess we should also

show explicitly that the Shannon version of the

Boltzmann entropy satisfies the Second Law]

VI. EXAMPLES

discuss only on the level of prototypical DOS. DOS
prototypes suggested for examples

• normal system: simple power-law DOS (like classi-
cal ideal gas)

• anormal system: upside-down parabola (i.e.
quadratic) DOS with lower and upper bound

• system with extra bump: any of the above, but
with additional large and sharp (delta-like) peak at
the energy of your choice (moving the peak around
influences the energy distribution between systems
in contatc without necessarily changing entropies
or temperatures of systems before contact)

• possible further examples could include simple clas-
sical systems with finite ⌦(1)

The DOS of the normal system:

!(E) =
⌦0

✏0

(
(E/✏0)

↵�1
, 0 < E

0 , otherwise.
(42)

The DOS of the anormal system:

!̂
�
E
�
=

6⌦1
E+

8
<

:

E (E+ � E)

E2
+

, 0 < E < E+

0 , otherwise.
(43)
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Second Law

∑i

after
Si ≥ ∑ j

before
S j

!

S
GAB(EA + EB)  ≥

         S
GA(EA) + S

GB(EB) 

S
BAB(EA + EB)  ≥

         S
BA(EA) + S

BB(EB) 



Erunt multi qui, postquam mea scripta legerint, non ad 
contemplandum utrum vera sint quae dixerim, mentem
convertent, sed solum ad disquirendum quomodo, vel
iure vel iniuria, rationes meas labefactare possent.

G. Galilei, Opere (Ed. Naz., vol. I, p. 412)

There will be many who, when they will have read my 
paper, will apply their mind, not to examining whether 
what I have said is true, but only to seeking how, by 
hook or by crook, they could demolish my arguments.



Example: Classical Ideal Gas

S B(E , ...)=k B lnϵ ω (E , ...) S G(E , ...)=kB lnΩ (E , ...)

Ω (E ,V , N )=α(D , N )V N E D N /2

E=(DN
2
−1)k BT B

E=
DN
2

k B T G

for DN = 1 or DN = 2?



Example 1:    Classical ideal gas

Using simply the properties of the MC density operator, one derives [? ] from the above
requirements that the MC entropy S equals the Gibbs entropy SG:

aµ = −Tr

[(
∂H

∂Aµ

)
δ(E −H)

ω

]
= − 1

ω
Tr

[
− ∂

∂Aµ
Θ(E −H)

]

=
1

ω

∂

∂Aµ
Tr

[
Θ(E −H)

]
= TG

(
∂SG

∂Aµ

)
.

(12)

This proves that only the pair (ρ, SG) constitutes a consistent thermostatistical model based on
the MC density ρ. As a corollary, the Boltzmann SB is not a thermodynamic entropy of the MC
ensemble.

In a similar way, one can show by a straightforward calculation that, for standard classical
Hamiltonian systems, only the Gibbs temperature TG satisfies the mathematically rigorous10

equipartition theorem [9]
〈

ξi
∂H

∂ξj

〉
≡ Tr

[(
ξi

∂H

∂ξj

)
ρ

]
= kBTG δij (13)

for all canonical coordinates ξ = (ξ1, . . .). Equation (13) is essentially a phase-space version
of Stokes’ theorem, relating a surface (flux) integral on the energy shell to the enclosed phase
space volume.

1.3 Basic examples
Ideal gas. The differences between SB and SG are negligible for most macroscopic systems
with monotonic DoS ω, but can be significant for small systems. This can already be seen for a
classical ideal gas in d-space dimensions, where [13]

Ω(E, V ) = αEdN/2V N , α =
(2πm)dN/2

N !hdΓ(dN/2 + 1)
, (14)

for N identical particles of mass m and Planck constant h. From this, one finds that only the
Gibbs temperature yields exact equipartition

E =

(
dN

2
− 1

)
kBTB, (15)

E =
dN

2
kBTG. (16)

Note that Eq. (15) yields a paradoxical results for dN = 1, where it predicts a negative tem-
perature TB < 0 and heat capacity, and also for dN = 2, where the temperature TB must be

10The direct proof of (13) requires mild assumptions such as confined trajectories and a finite groundstate en-
ergy. The key steps are very similar to those in (12), i.e., one merely needs to exploit the chain rule relation
∂Θ(E −H)/∂λ = −(∂H/∂λ)δ(E −H), which holds for any variable λ appearing in the Hamiltonian H .
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1.1 Entropy and temperature definitions
To make the discussion more specific, let us consider a (quantum or classical) system with
microscopic variables ξ governed by the Hamiltonian H = H(ξ; V, A), where V denotes vol-
ume and A = (A1, . . .) summarizes other external parameters. Assuming that the dynamics
conserves the energy, E = H , all thermostatistical properties are contained in the MC density
operator5

ρ(ξ; E, V,A) =
δ(E −H)

ω
, (1)

which is normalized by the DoS

ω(E, V,A) = Tr[δ(E −H)]. (2)

For classical systems, the trace simply becomes a phase-space integral over ξ. For brevity, we
denote averages of some quantity F with respect to the MC density operator ρ by 〈F 〉 ≡ Tr[Fρ].

We also define the integrated DoS6

Ω(E, V,A) = Tr[Θ(E −H)], (3)

which is related to the DoS ω by differentiation with respect to energy,

ω =
∂Ω

∂E
≡ Ω′. (4)

Given the MC density operator (1), one can find two competing definitions for the MC
entropy in the literature [9, 10, 13, 15, 16, 17]

SB(E, V,A) = kB ln[εω(E)], (5)
SG(E, V,A) = kB ln[Ω(E)], (6)

where ε is a constant with dimensions of energy, required to make the argument of the logarithm
dimensionless7. The first proposal, SB, usually referred to as Boltzmann entropy, is advocated
by the majority of modern textbooks [16] and used by most authors nowadays. The second
candidate SG is often attributed to P. Hertz8 [18] but was in fact already derived by J. W. Gibbs
in 1902 in his discussion of thermodynamic analogies [10, Chapter XIV]. For this reason, we

5As usual, we assume that, in the case of quantum systems, Eq. (1) has a well-defined operator interpretation,
e.g., as a limit of an operator series.

6Intuitively, for a quantum system with spectrum {En}, the quantity Ω(En, V, A) counts the number of eigen-
states with energy less or equal to En.

7Apart from other more severe shortcomings of SB, it is aesthetically displeasing that its definition requires
the !  "#$ introduction of some undetermined constant.

8Hertz proved in 1910 that SG is an adiabatic invariant [18]. His work was highly commended by Planck [19]
and Einstein, who closes his comment [20] on Hertz’s work with the famous statement that he himself would not
have published certain papers, had he been aware of Gibbs’ comprehensive treatise [10].
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Example: Single 1-dim Particle

● single particle with energy E
in one-dimensional box of length L

●  

pB = −
2E
L
≠ ⟨ ∂H∂ L ⟩ρ pG = +

2E
L
= ⟨ ∂H∂ L ⟩ρ

(dark energy?)

Ω(E)∝√E



Thermal equilibrium

6

values with respect to the joint distribution ⇢ that re-
late the well-defined microcanonical temperatures Ti(Ei)
of A and B before the coupling to the temperature T of
the combined system AB after coupling. This task can
be solved in a straightforward manner, leading to a first
criterion that allows one to evaluate the microcanonical
entropy candidates.

To see this, recall that the energy distribution of a
subsystem i 2 {A,B} is defined by [cf. Eq. (6)]

⇡i(Ei|E) = h�(Ei �Hi)iE = Tr[�(Ei �Hi) ⇢]. (23a)

For subsystem A, this can be expressed in the form

⇡A(EA|E) =
!A(EA)!B(E � EA)

!(E)
. (23b)

The energy density ⇡B(EB|E) of subsystem B is obtained
by exchanging labels A and B in Eq. (23b). The condi-
tional energy distributions ⇡i(Ei|E) can be used to de-
fined expectation values for the subsystems i = A,B and,
in particular, to define their mean temperatures.

To this end, we denote the microcanonical entropy of
the subsystems before coupling by Si(Ei) and the asso-
ciated temperature by Ti(Ei) = (@Si/@Ei)�1. Within a
consistent thermostatistical formalism, it seems reason-
able to demand that the average temperature

hTi(Ei)iE =

Z 1

0
dEi Ti(Ei)⇡i(Ei|E) (24)

is equal is the microcanonical tempera-
ture T = (@S/@E)�1 of the combined system after
coupling,

hTi(Ei)iE
!
= T (E). (25)

We will refer to this condition (25) as the consistent

temperature-averaging (CTA) criterion. Evidently, if an
entropy definition satisfies Eq. (25) for an arbitrary bi-
nary partition (A,B), then the associated mean temper-
ature automatically satisfies the zeroth law

hTA(EA)iE = hTB(EB)iE = hTC(EC)iE (26)

for any three subsystems A,B,C that are in thermal equi-
librium, where E denotes the conserved energy of the
isolated compound system that contains all these sub-
systems.

The CTA condition (25) is of practical importance as
it encodes the prescription for building a thermometer.
Assume system A is a thermometer and we know the
function TA(E) when A is isolated. If the thermome-
ter A is placed in weak contact with a second system B,
then Eq. (25) tells us that, to obtain the temperature
of the compound system AB, we merely have to measure
the fluctuating energy values EA of the thermometer and
average the corresponding temperature values (provided
the dynamics of the compound system is su�ciently er-
godic).

We next test whether the di↵erent entropy candidates
satisfy Eq. (25).

1. Gibbs temperature

The Gibbs temperatures of the subsystems before cou-
pling are

TGi(Ei) =
⌦i(Ei)

!i(Ei)
, i = A,B (27a)

and the Gibbs temperature of the combined system after
coupling is

TG(E) =
⌦(E)

!(E)
(27b)

with ⌦ and ! given in Eqs. (21). Inserting the defini-
tions (27) into Eqs. (24) and (25), and using Eq. (23b),
we find

hTGA(EA)iE =

Z 1

0
dEA

⌦A(EA)

!A(EA)

!A(EA)!B(E � EA)

!(E)

=
1

!(E)

Z E

0
dEA ⌦A(EA)!B(E � EA)

= TG(E), (28)

where the last equality follows from Eq. (21d). The proof
for subsystem B is identical. Equation (28) implies that
the Gibbs temperature generally satisfies the CTA con-
dition (25). Moreover, given that our choice of A and B
was arbitrary, this also means that the Gibbs tempera-
ture satisfies the zeroth law:

hTGAiE = hTGBiE = hTGCiE (29)

for any three systems that are in thermal equilibrium.
Note that, for classical Hamiltonian systems, we could

have obtained an analogous result directly from the
equipartition theorem (9).

2. Boltzmann temperature

The Boltzmann temperatures of the subsystems before
coupling are

TBi(Ei) =
!i(Ei)

⌫i(Ei)
, i = A,B (30a)

and the Boltzmann temperature of the combined system
after coupling is

TB(E) =
!(E)

⌫(E)
(30b)

with ! and ⌫ given in Eqs. (21). In this case, we find

hTBA(EA)iE =

Z E

0
dEA

!A(EA)!B(E � EA)

!(E)

!A(EA)

⌫A(EA)

6= TB(E). (31)
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values with respect to the joint distribution ⇢ that re-
late the well-defined microcanonical temperatures Ti(Ei)
of A and B before the coupling to the temperature T of
the combined system AB after coupling. This task can
be solved in a straightforward manner, leading to a first
criterion that allows one to evaluate the microcanonical
entropy candidates.

To see this, recall that the energy distribution of a
subsystem i 2 {A,B} is defined by [cf. Eq. (6)]

⇡i(Ei|E) = h�(Ei �Hi)iE = Tr[�(Ei �Hi) ⇢]. (23a)

For subsystem A, this can be expressed in the form

⇡A(EA|E) =
!A(EA)!B(E � EA)

!(E)
. (23b)

The energy density ⇡B(EB|E) of subsystem B is obtained
by exchanging labels A and B in Eq. (23b). The condi-
tional energy distributions ⇡i(Ei|E) can be used to de-
fined expectation values for the subsystems i = A,B and,
in particular, to define their mean temperatures.

To this end, we denote the microcanonical entropy of
the subsystems before coupling by Si(Ei) and the asso-
ciated temperature by Ti(Ei) = (@Si/@Ei)�1. Within a
consistent thermostatistical formalism, it seems reason-
able to demand that the average temperature

hTi(Ei)iE =

Z 1

0
dEi Ti(Ei)⇡i(Ei|E) (24)

is equal is the microcanonical tempera-
ture T = (@S/@E)�1 of the combined system after
coupling,

hTi(Ei)iE
!
= T (E). (25)

We will refer to this condition (25) as the consistent

temperature-averaging (CTA) criterion. Evidently, if an
entropy definition satisfies Eq. (25) for an arbitrary bi-
nary partition (A,B), then the associated mean temper-
ature automatically satisfies the zeroth law

hTA(EA)iE = hTB(EB)iE = hTC(EC)iE (26)

for any three subsystems A,B,C that are in thermal equi-
librium, where E denotes the conserved energy of the
isolated compound system that contains all these sub-
systems.

The CTA condition (25) is of practical importance as
it encodes the prescription for building a thermometer.
Assume system A is a thermometer and we know the
function TA(E) when A is isolated. If the thermome-
ter A is placed in weak contact with a second system B,
then Eq. (25) tells us that, to obtain the temperature
of the compound system AB, we merely have to measure
the fluctuating energy values EA of the thermometer and
average the corresponding temperature values (provided
the dynamics of the compound system is su�ciently er-
godic).

We next test whether the di↵erent entropy candidates
satisfy Eq. (25).

1. Gibbs temperature

The Gibbs temperatures of the subsystems before cou-
pling are

TGi(Ei) =
⌦i(Ei)

!i(Ei)
, i = A,B (27a)

and the Gibbs temperature of the combined system after
coupling is

TG(E) =
⌦(E)

!(E)
(27b)

with ⌦ and ! given in Eqs. (21). Inserting the defini-
tions (27) into Eqs. (24) and (25), and using Eq. (23b),
we find

hTGA(EA)iE =

Z 1

0
dEA

⌦A(EA)

!A(EA)

!A(EA)!B(E � EA)

!(E)

=
1

!(E)

Z E

0
dEA ⌦A(EA)!B(E � EA)

= TG(E), (28)

where the last equality follows from Eq. (21d). The proof
for subsystem B is identical. Equation (28) implies that
the Gibbs temperature generally satisfies the CTA con-
dition (25). Moreover, given that our choice of A and B
was arbitrary, this also means that the Gibbs tempera-
ture satisfies the zeroth law:

hTGAiE = hTGBiE = hTGCiE (29)

for any three systems that are in thermal equilibrium.
Note that, for classical Hamiltonian systems, we could

have obtained an analogous result directly from the
equipartition theorem (9).

2. Boltzmann temperature

The Boltzmann temperatures of the subsystems before
coupling are

TBi(Ei) =
!i(Ei)

⌫i(Ei)
, i = A,B (30a)

and the Boltzmann temperature of the combined system
after coupling is

TB(E) =
!(E)

⌫(E)
(30b)

with ! and ⌫ given in Eqs. (21). In this case, we find

hTBA(EA)iE =

Z E

0
dEA

!A(EA)!B(E � EA)

!(E)

!A(EA)

⌫A(EA)

6= TB(E). (31)
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6

values with respect to the joint distribution ⇢ that re-
late the well-defined microcanonical temperatures Ti(Ei)
of A and B before the coupling to the temperature T of
the combined system AB after coupling. This task can
be solved in a straightforward manner, leading to a first
criterion that allows one to evaluate the microcanonical
entropy candidates.

To see this, recall that the energy distribution of a
subsystem i 2 {A,B} is defined by [cf. Eq. (6)]

⇡i(Ei|E) = h�(Ei �Hi)iE = Tr[�(Ei �Hi) ⇢]. (23a)

For subsystem A, this can be expressed in the form

⇡A(EA|E) =
!A(EA)!B(E � EA)

!(E)
. (23b)

The energy density ⇡B(EB|E) of subsystem B is obtained
by exchanging labels A and B in Eq. (23b). The condi-
tional energy distributions ⇡i(Ei|E) can be used to de-
fined expectation values for the subsystems i = A,B and,
in particular, to define their mean temperatures.

To this end, we denote the microcanonical entropy of
the subsystems before coupling by Si(Ei) and the asso-
ciated temperature by Ti(Ei) = (@Si/@Ei)�1. Within a
consistent thermostatistical formalism, it seems reason-
able to demand that the average temperature

hTi(Ei)iE =

Z 1

0
dEi Ti(Ei)⇡i(Ei|E) (24)

is equal is the microcanonical tempera-
ture T = (@S/@E)�1 of the combined system after
coupling,

hTi(Ei)iE
!
= T (E). (25)

We will refer to this condition (25) as the consistent

temperature-averaging (CTA) criterion. Evidently, if an
entropy definition satisfies Eq. (25) for an arbitrary bi-
nary partition (A,B), then the associated mean temper-
ature automatically satisfies the zeroth law

hTA(EA)iE = hTB(EB)iE = hTC(EC)iE (26)

for any three subsystems A,B,C that are in thermal equi-
librium, where E denotes the conserved energy of the
isolated compound system that contains all these sub-
systems.

The CTA condition (25) is of practical importance as
it encodes the prescription for building a thermometer.
Assume system A is a thermometer and we know the
function TA(E) when A is isolated. If the thermome-
ter A is placed in weak contact with a second system B,
then Eq. (25) tells us that, to obtain the temperature
of the compound system AB, we merely have to measure
the fluctuating energy values EA of the thermometer and
average the corresponding temperature values (provided
the dynamics of the compound system is su�ciently er-
godic).

We next test whether the di↵erent entropy candidates
satisfy Eq. (25).

1. Gibbs temperature

The Gibbs temperatures of the subsystems before cou-
pling are

TGi(Ei) =
⌦i(Ei)

!i(Ei)
, i = A,B (27a)

and the Gibbs temperature of the combined system after
coupling is

TG(E) =
⌦(E)

!(E)
(27b)

with ⌦ and ! given in Eqs. (21). Inserting the defini-
tions (27) into Eqs. (24) and (25), and using Eq. (23b),
we find

hTGA(EA)iE =

Z 1

0
dEA

⌦A(EA)

!A(EA)

!A(EA)!B(E � EA)

!(E)

=
1

!(E)

Z E

0
dEA ⌦A(EA)!B(E � EA)

= TG(E), (28)

where the last equality follows from Eq. (21d). The proof
for subsystem B is identical. Equation (28) implies that
the Gibbs temperature generally satisfies the CTA con-
dition (25). Moreover, given that our choice of A and B
was arbitrary, this also means that the Gibbs tempera-
ture satisfies the zeroth law:

hTGAiE = hTGBiE = hTGCiE (29)

for any three systems that are in thermal equilibrium.
Note that, for classical Hamiltonian systems, we could

have obtained an analogous result directly from the
equipartition theorem (9).

2. Boltzmann temperature

The Boltzmann temperatures of the subsystems before
coupling are

TBi(Ei) =
!i(Ei)

⌫i(Ei)
, i = A,B (30a)

and the Boltzmann temperature of the combined system
after coupling is

TB(E) =
!(E)

⌫(E)
(30b)

with ! and ⌫ given in Eqs. (21). In this case, we find

hTBA(EA)iE =

Z E

0
dEA

!A(EA)!B(E � EA)
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!A(EA)
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6= TB(E). (31)
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values with respect to the joint distribution ⇢ that re-
late the well-defined microcanonical temperatures Ti(Ei)
of A and B before the coupling to the temperature T of
the combined system AB after coupling. This task can
be solved in a straightforward manner, leading to a first
criterion that allows one to evaluate the microcanonical
entropy candidates.

To see this, recall that the energy distribution of a
subsystem i 2 {A,B} is defined by [cf. Eq. (6)]

⇡i(Ei|E) = h�(Ei �Hi)iE = Tr[�(Ei �Hi) ⇢]. (23a)

For subsystem A, this can be expressed in the form

⇡A(EA|E) =
!A(EA)!B(E � EA)

!(E)
. (23b)

The energy density ⇡B(EB|E) of subsystem B is obtained
by exchanging labels A and B in Eq. (23b). The condi-
tional energy distributions ⇡i(Ei|E) can be used to de-
fined expectation values for the subsystems i = A,B and,
in particular, to define their mean temperatures.

To this end, we denote the microcanonical entropy of
the subsystems before coupling by Si(Ei) and the asso-
ciated temperature by Ti(Ei) = (@Si/@Ei)�1. Within a
consistent thermostatistical formalism, it seems reason-
able to demand that the average temperature

hTi(Ei)iE =

Z 1

0
dEi Ti(Ei)⇡i(Ei|E) (24)

is equal is the microcanonical tempera-
ture T = (@S/@E)�1 of the combined system after
coupling,

hTi(Ei)iE
!
= T (E). (25)

We will refer to this condition (25) as the consistent

temperature-averaging (CTA) criterion. Evidently, if an
entropy definition satisfies Eq. (25) for an arbitrary bi-
nary partition (A,B), then the associated mean temper-
ature automatically satisfies the zeroth law

hTA(EA)iE = hTB(EB)iE = hTC(EC)iE (26)

for any three subsystems A,B,C that are in thermal equi-
librium, where E denotes the conserved energy of the
isolated compound system that contains all these sub-
systems.

The CTA condition (25) is of practical importance as
it encodes the prescription for building a thermometer.
Assume system A is a thermometer and we know the
function TA(E) when A is isolated. If the thermome-
ter A is placed in weak contact with a second system B,
then Eq. (25) tells us that, to obtain the temperature
of the compound system AB, we merely have to measure
the fluctuating energy values EA of the thermometer and
average the corresponding temperature values (provided
the dynamics of the compound system is su�ciently er-
godic).

We next test whether the di↵erent entropy candidates
satisfy Eq. (25).

1. Gibbs temperature

The Gibbs temperatures of the subsystems before cou-
pling are

TGi(Ei) =
⌦i(Ei)

!i(Ei)
, i = A,B (27a)

and the Gibbs temperature of the combined system after
coupling is

TG(E) =
⌦(E)

!(E)
(27b)

with ⌦ and ! given in Eqs. (21). Inserting the defini-
tions (27) into Eqs. (24) and (25), and using Eq. (23b),
we find

hTGA(EA)iE =

Z 1

0
dEA

⌦A(EA)

!A(EA)

!A(EA)!B(E � EA)

!(E)

=
1

!(E)

Z E

0
dEA ⌦A(EA)!B(E � EA)

= TG(E), (28)

where the last equality follows from Eq. (21d). The proof
for subsystem B is identical. Equation (28) implies that
the Gibbs temperature generally satisfies the CTA con-
dition (25). Moreover, given that our choice of A and B
was arbitrary, this also means that the Gibbs tempera-
ture satisfies the zeroth law:

hTGAiE = hTGBiE = hTGCiE (29)

for any three systems that are in thermal equilibrium.
Note that, for classical Hamiltonian systems, we could

have obtained an analogous result directly from the
equipartition theorem (9).

2. Boltzmann temperature

The Boltzmann temperatures of the subsystems before
coupling are

TBi(Ei) =
!i(Ei)

⌫i(Ei)
, i = A,B (30a)

and the Boltzmann temperature of the combined system
after coupling is

TB(E) =
!(E)

⌫(E)
(30b)

with ! and ⌫ given in Eqs. (21). In this case, we find

hTBA(EA)iE =

Z E

0
dEA

!A(EA)!B(E � EA)

!(E)

!A(EA)

⌫A(EA)

6= TB(E). (31)

6

values with respect to the joint distribution ⇢ that re-
late the well-defined microcanonical temperatures Ti(Ei)
of A and B before the coupling to the temperature T of
the combined system AB after coupling. This task can
be solved in a straightforward manner, leading to a first
criterion that allows one to evaluate the microcanonical
entropy candidates.

To see this, recall that the energy distribution of a
subsystem i 2 {A,B} is defined by [cf. Eq. (6)]

⇡i(Ei|E) = h�(Ei �Hi)iE = Tr[�(Ei �Hi) ⇢]. (23a)

For subsystem A, this can be expressed in the form

⇡A(EA|E) =
!A(EA)!B(E � EA)

!(E)
. (23b)

The energy density ⇡B(EB|E) of subsystem B is obtained
by exchanging labels A and B in Eq. (23b). The condi-
tional energy distributions ⇡i(Ei|E) can be used to de-
fined expectation values for the subsystems i = A,B and,
in particular, to define their mean temperatures.

To this end, we denote the microcanonical entropy of
the subsystems before coupling by Si(Ei) and the asso-
ciated temperature by Ti(Ei) = (@Si/@Ei)�1. Within a
consistent thermostatistical formalism, it seems reason-
able to demand that the average temperature

hTi(Ei)iE =

Z 1

0
dEi Ti(Ei)⇡i(Ei|E) (24)

is equal is the microcanonical tempera-
ture T = (@S/@E)�1 of the combined system after
coupling,

hTi(Ei)iE
!
= T (E). (25)

We will refer to this condition (25) as the consistent

temperature-averaging (CTA) criterion. Evidently, if an
entropy definition satisfies Eq. (25) for an arbitrary bi-
nary partition (A,B), then the associated mean temper-
ature automatically satisfies the zeroth law

hTA(EA)iE = hTB(EB)iE = hTC(EC)iE (26)

for any three subsystems A,B,C that are in thermal equi-
librium, where E denotes the conserved energy of the
isolated compound system that contains all these sub-
systems.

The CTA condition (25) is of practical importance as
it encodes the prescription for building a thermometer.
Assume system A is a thermometer and we know the
function TA(E) when A is isolated. If the thermome-
ter A is placed in weak contact with a second system B,
then Eq. (25) tells us that, to obtain the temperature
of the compound system AB, we merely have to measure
the fluctuating energy values EA of the thermometer and
average the corresponding temperature values (provided
the dynamics of the compound system is su�ciently er-
godic).

We next test whether the di↵erent entropy candidates
satisfy Eq. (25).

1. Gibbs temperature

The Gibbs temperatures of the subsystems before cou-
pling are

TGi(Ei) =
⌦i(Ei)

!i(Ei)
, i = A,B (27a)

and the Gibbs temperature of the combined system after
coupling is

TG(E) =
⌦(E)

!(E)
(27b)

with ⌦ and ! given in Eqs. (21). Inserting the defini-
tions (27) into Eqs. (24) and (25), and using Eq. (23b),
we find

hTGA(EA)iE =

Z 1

0
dEA

⌦A(EA)

!A(EA)

!A(EA)!B(E � EA)

!(E)

=
1

!(E)

Z E

0
dEA ⌦A(EA)!B(E � EA)

= TG(E), (28)

where the last equality follows from Eq. (21d). The proof
for subsystem B is identical. Equation (28) implies that
the Gibbs temperature generally satisfies the CTA con-
dition (25). Moreover, given that our choice of A and B
was arbitrary, this also means that the Gibbs tempera-
ture satisfies the zeroth law:

hTGAiE = hTGBiE = hTGCiE (29)

for any three systems that are in thermal equilibrium.
Note that, for classical Hamiltonian systems, we could

have obtained an analogous result directly from the
equipartition theorem (9).

2. Boltzmann temperature

The Boltzmann temperatures of the subsystems before
coupling are

TBi(Ei) =
!i(Ei)

⌫i(Ei)
, i = A,B (30a)

and the Boltzmann temperature of the combined system
after coupling is

TB(E) =
!(E)

⌫(E)
(30b)

with ! and ⌫ given in Eqs. (21). In this case, we find

hTBA(EA)iE =

Z E

0
dEA

!A(EA)!B(E � EA)

!(E)

!A(EA)

⌫A(EA)

6= TB(E). (31)
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values with respect to the joint distribution ⇢ that re-
late the well-defined microcanonical temperatures Ti(Ei)
of A and B before the coupling to the temperature T of
the combined system AB after coupling. This task can
be solved in a straightforward manner, leading to a first
criterion that allows one to evaluate the microcanonical
entropy candidates.

To see this, recall that the energy distribution of a
subsystem i 2 {A,B} is defined by [cf. Eq. (6)]

⇡i(Ei|E) = h�(Ei �Hi)iE = Tr[�(Ei �Hi) ⇢]. (23a)

For subsystem A, this can be expressed in the form

⇡A(EA|E) =
!A(EA)!B(E � EA)

!(E)
. (23b)

The energy density ⇡B(EB|E) of subsystem B is obtained
by exchanging labels A and B in Eq. (23b). The condi-
tional energy distributions ⇡i(Ei|E) can be used to de-
fined expectation values for the subsystems i = A,B and,
in particular, to define their mean temperatures.

To this end, we denote the microcanonical entropy of
the subsystems before coupling by Si(Ei) and the asso-
ciated temperature by Ti(Ei) = (@Si/@Ei)�1. Within a
consistent thermostatistical formalism, it seems reason-
able to demand that the average temperature

hTi(Ei)iE =

Z 1

0
dEi Ti(Ei)⇡i(Ei|E) (24)

is equal is the microcanonical tempera-
ture T = (@S/@E)�1 of the combined system after
coupling,

hTi(Ei)iE
!
= T (E). (25)

We will refer to this condition (25) as the consistent

temperature-averaging (CTA) criterion. Evidently, if an
entropy definition satisfies Eq. (25) for an arbitrary bi-
nary partition (A,B), then the associated mean temper-
ature automatically satisfies the zeroth law

hTA(EA)iE = hTB(EB)iE = hTC(EC)iE (26)

for any three subsystems A,B,C that are in thermal equi-
librium, where E denotes the conserved energy of the
isolated compound system that contains all these sub-
systems.

The CTA condition (25) is of practical importance as
it encodes the prescription for building a thermometer.
Assume system A is a thermometer and we know the
function TA(E) when A is isolated. If the thermome-
ter A is placed in weak contact with a second system B,
then Eq. (25) tells us that, to obtain the temperature
of the compound system AB, we merely have to measure
the fluctuating energy values EA of the thermometer and
average the corresponding temperature values (provided
the dynamics of the compound system is su�ciently er-
godic).

We next test whether the di↵erent entropy candidates
satisfy Eq. (25).

1. Gibbs temperature

The Gibbs temperatures of the subsystems before cou-
pling are

TGi(Ei) =
⌦i(Ei)

!i(Ei)
, i = A,B (27a)

and the Gibbs temperature of the combined system after
coupling is

TG(E) =
⌦(E)

!(E)
(27b)

with ⌦ and ! given in Eqs. (21). Inserting the defini-
tions (27) into Eqs. (24) and (25), and using Eq. (23b),
we find

hTGA(EA)iE =

Z 1

0
dEA

⌦A(EA)

!A(EA)

!A(EA)!B(E � EA)

!(E)

=
1

!(E)

Z E

0
dEA ⌦A(EA)!B(E � EA)

= TG(E), (28)

where the last equality follows from Eq. (21d). The proof
for subsystem B is identical. Equation (28) implies that
the Gibbs temperature generally satisfies the CTA con-
dition (25). Moreover, given that our choice of A and B
was arbitrary, this also means that the Gibbs tempera-
ture satisfies the zeroth law:

hTGAiE = hTGBiE = hTGCiE (29)

for any three systems that are in thermal equilibrium.
Note that, for classical Hamiltonian systems, we could

have obtained an analogous result directly from the
equipartition theorem (9).

2. Boltzmann temperature

The Boltzmann temperatures of the subsystems before
coupling are

TBi(Ei) =
!i(Ei)

⌫i(Ei)
, i = A,B (30a)

and the Boltzmann temperature of the combined system
after coupling is

TB(E) =
!(E)

⌫(E)
(30b)

with ! and ⌫ given in Eqs. (21). In this case, we find

hTBA(EA)iE =

Z E

0
dEA

!A(EA)!B(E � EA)

!(E)

!A(EA)

⌫A(EA)

6= TB(E). (31)

Zeroth law



Summary
● Entropy candidates for isolated systems:

entropy S(E) 0th law 1st law 2nd law equipart.
...other...
Boltzmann ln(ϵω) no no no no
Gibbs ln(Ω) yes* yes yes yes
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w(E) = Tr [8(E - H)] 

= TrA {Tra [8(E - HA - Ha)]} 
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Thermal Casimir
forces and
quantum

dissipation

Introduction

Quantum
dissipation

Thermal Casimir
effect

Conclusions

Finite bath coupling

T

HS HSB

γ

HBHS

The definition of thermodynamic quantities for systems
coupled to a bath with finite coupling strength is not unique.

P. Hänggi, GLI, Acta Phys. Pol. B 37, 1537 (2006)



Partition function

ZS(t) =
Y(t)

ZB

where ZB = TrBe
−βHB



Quantum
Brownian

motion and
the 3rd law

Specific heat and
dissipation
Two approaches

Microscopic model

Route I

Route II
specific heat

density of states

Conclusions

An important difference

Route I E
.= ES = 〈HS〉 = TrS+B(HSe−βH )

TrS+B(e−βH )

Route II Z = TrS+B(e−βH )

TrB(e−βHB )
U =−∂ lnZ

∂β

⇒ U = 〈H〉−〈HB〉B

= ES +
[
〈HSB〉+ 〈HB〉−〈HB〉B

]

For finite coupling E and U differ!
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Fluctuation
Theorem for

Arbitrary
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Quantum
Systems

Michele
Campisi

Strong coupling: Example

System: Two-level atom; “bath”: Harmonic oscillator
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Free energy of a system strongly coupled to
an environment

Thermodynamic argument:

FS = F − F 0
B

F total system free energy
FB bare bath free energy.

With this form of free energy the three laws of thermodynamics
are fulfilled.

G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985);

P. Hänggi, G.L. Ingold, P. Talkner, New J. Phys. 10,115008 (2008);

G.L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 0611505 (2009).
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Entropy and specific heat
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Summary

Isolated systems:
● thermodynamic entropy: Gibbs volume entropy
● no negative thermodynamic temperature
● no Carnot efficiencies > 1
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Summary

Isolated systems:
● T's before coupling do not predict

heat flow during coupling

● bounded spectra  ensembles not equivalent
● thermodynamic entropy

not always Shannon-like entropy
● incorrect entropy

 incorrect temperature, forces, and responses

SS=−Tr [ρ lnρ ]



Summary

Systems coupled to heat bath:
● Boltzmann temperature (of the bath) describes 

the probability of (energy)-fluctuations
● Boltzmann factor approximate for bath with 

finite heat capacity
● for certain N-particle isolated systems:

1-p. pi(Ei) ≈ c exp[-Ei / (kB TB, N-1)]
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Important

 

UNSOLVED

 

(open) Problems are:

1.) Quantum systems

 

and discrete

 

spectral

 

parts: DoS

 

becomes

 

singular

 
===> a sum

 

of delta-functions

 

!!! 

??? !!! best smoothing

 

procedure

 

???!!!

2.) Canonical

 

ensemble: When

 

is

 

the

 

Bolzmanfactor

 

truly

 

OK? 

3.) Canonical

 

ensemble

 

and STRONG coupling: 

Quantum case:

 

Canonical

 

specific

 

heat

 

can

 

now

 

become

 

negative (!)
despite

 

system

 

being

 

stable
Classical

 

case:

 

Are *negative* canonical

 

specific

 

heat

 

values

 

possible? 
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A QUESTION ? 
 
 
 

 



Erunt multi qui, postquam mea scripta legerint, non ad 
contemplandum utrum vera sint quae dixerim, mentem
convertent, sed solum ad disquirendum quomodo, vel
iure vel iniuria, rationes meas labefactare possent.

G. Galilei, Opere (Ed. Naz., vol. I, p. 412)

There will be many who, when they will have read my 
paper, will apply their mind, not to examining whether 
what I have said is true, but only to seeking how, by 
hook or by crook, they could demolish my arguments.
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Under moderate assumptions about the analytic behaviour of H(A), there exists a solution to the equations for
S(E,A) in the physically accessible parameter region {(E,A)| ⇥(E,A) > 0}, namely the phase volume �(E,A) [2–
4]. This solution is, however, not unique. In particular, for any solution S and any su⇤ciently smooth function f ,
Sf (E,A) ⇥ f

�
S(E,A)

⇥
is also a solution. Thus, additional criteria are needed to uniquely define the entropy. These

may include conventions for the normalization or the zero point of the entropy, or requiring extensivity of the entropy
for particular model systems. Most importantly, the entropy should be compatible with conventional measurement-
based definitions of ‘temperature’, e.g. via classical ideal gas thermomether or the classical Carnot cycle with a
classical ideal gas as medium. Compatibility with the ideal gas law, combined with sensible normalization conditions
that account for ground-state and ‘mixing’ entropy, su⇤ces to single out the Gibbs entropy.

Proof of Eq. (33) in the Main Text

To prove the temperature formula

TB =
TG

1� kB/C
, (11)

we recall that by definition

kBTG =
�
�⇥ =

�
⇥

, kBTB =
⇥

⇥⇥ =
�⇥

�⇥⇥ , (12)

where primes denote partial derivatives with respect to energy E. Then, from the definition of the (inverse) heat
capacity, one finds

1
C
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1
kB
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1
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�⇥�⇥ � ��⇥⇥

(�⇥)2
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1
kB

⇧
1� ��⇥⇥

(�⇥)2

⌃
=

1
kB

⇤
1� TG

TB

⌅
, (13)

which can be solved for TB to yield Eq. (11). Note that Eqs. (11) and (13) are valid regardless of particle number
N , provided the derivatives of � up to second order exist. In particular, as directly evident from Eq. (13), when
the energy of a finite system with N < ⌃ and TG < ⌃ approaches a critical value E� where the density of states
⇥ = �⇥ has a non-singular maximum, such that ⇥⇥ = �⇥⇥ = 0 or equivalently |TB| ⇧⌃ , then C ⇧ kB regardless of
system size4 N . The non-extensivity of C for E ⌅ E� simply reflects the physical reality that it is not possible to
create population inversion by conventional heating. We further illustrate this general result by means of analytically
tractable spin models in the next section.

Extensivity and heat capacity of spin systems

To illustrate the non-trivial scaling of entropy and heat capacity with system size for spin systems with bounded en-
ergy spectrum, it is useful to discuss indistinguishable and distinguishable particles separately. Below, we first demon-
strate that, for indistinguishable particles, symmetry requirements on the wavefunction can lead to non-extensive
scaling behavior for both Boltzmann and Gibbs entropy. To clarify this fact, we consider as exactly solvable examples
the generic spin (oscillator) model from the Main Text for the analytically tractable cases L = 1 (two single particle
levels) and L = 2 (three single particle levels). Subsequently, we refer to a classical Ising chain to show that, even when
both SB and SG scale extensively with particle number N , they can still di⇥er substantially in the thermodynamic
limit.

Two-level systems (indistinguishable particles). For the generic spin model from the Main Text with L = 1,
each of the n = 1, . . . , N particles can occupy one of the two single-particle levels ⌅n = 0 or ⌅n = 1. Considering
indistinguishable bosons, the total N -particle energy E = �

⌥N
n=1 ⌅n can take values 0 ⇤ E ⇤ �N and, due to

symmetry requirements on the wavefunction, there is exactly one N -particle state per N -particle energy value E, i.e.,

4 This statement remains true for infinite systems, but their mathematical treatment requires some extra care because it is possible that
in the thermodynamic limit both TB and TG diverge at E� whilst the heat capacity remains finite or approaches zero; see the Ising
chain example below.
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Carnot efficiencies > 1?

• Carnot cycle assumes adiabatic switching

• Carnot formula assumes that TD relations 
are fulfilled ... only for              the case

We hope that the discussion in this section, although presented in an unusual form, is helpful
for the objective evaluation of Gibbs and Boltzmann entropy27. It should be emphasized, how-
ever, that no false or correct argument against the Gibbs entropy can cure the thermodynamic
incompatibility of the Boltzmann entropy.

4 Carnot efficiencies > 1 ?
For completeness, we still comment briefly on speculations [2, 5, 6] that population-inverted
systems can provide Carnot machines with efficiency > 1. To evaluate such statements, let
us recall that a Carnot cycle, by definition, consists of four successive steps: (I) isothermal
expansion; (II) isentropic expansion; (III) isothermal compression; (IV) isentropic compression.
Steps I and III require a hot and cold bath with temperatures TH and TC, respectively, and the
isentropic steps II and IV can be thought of as place-holders for other more general work-
like parameter variations (changes of external magnetic fields, etc.). The associated Carnot
efficiency, defined by

� = 1� TC

TH
, (34)

owes its popularity to the fact that it presents an upper bound for other heat engines. To realize
values � > 1, one requires either TC or TH to be negative. At least formally, this appears to
be achievable by considering a spectrum as in Fig. 1 and naively inserting positive and negative
Boltzmann temperature values into Eq. (34).

We think that speculations [2, 5, 6] of this type are misleading for a number of reasons.
First, the Boltzmann temperature TB is not a consistent thermodynamic temperature, and, if at
all, one should use the Gibbs temperature TG in Eq. (34) instead. Second, in order to change
back and forth between population-inverted states with TB < 0 and non-inverted states with
TB > 0, work must be performed in a non-adiabatic [28] manner (e.g., by rapidly switching
a magnetic field), regardless of whether one considers Boltzmann or Gibbs entropy. That is,
the resulting process is not of the Carnot-type anymore, requiring a carefully performed energy
balance calculation [4]. In particular, such an analysis has to account for the peculiar fact that,
when the heat engine is capable of undergoing population-inversion, then both hot and cold bath
may inject heat into the system. Properly defined efficiencies of thermodynamic cycles that
involve systems with lower and upper energy bounds are, in general, not just simple functions
of TG or TB. For these reasons, the naive application of Eq. (34) can be severely misleading in
those cases.

27One could add two more ‘arguments’ to the above list: (i) ‘The Boltzmann entropy is prevalent in modern
textbooks and has been more frequently used for more than 50 years and, therefore, must be correct’– we do not
think such reasoning is constructive. (ii) ‘The Gibbs entropy gives incorrect results for simple systems such as the
ideal gas, etc.’– this can be easily disproven with Eq. (14) and similarly elementary calculations for other systems.
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no Carnot efficiencies > 1 when treated consistently

source: wiki
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