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H A R O L D G R A D  

1. Introduction 

One of the reasons for the bewilderment which is sometimes felt at an 
unheralded appearance of the term entropy is the superabundance of objects 
which bear this name. On the one hand, there is a large choice of macro- 
scopic quantities (functions of state variables) called entropy, on the other 
hand, a variety of microscopic quantities, similarly named, associated with 
the logarithm of a probability or the mean value of the logarithm of a 
density. Each one of these concepts is suited for a specific purpose. More 
confusing, however, than the lack of imagination in terminology is the fact 
that several of these distinct concepts, different in meaning and in numerical 
value, may be significant in a single problem. This remark is the theme of 
this paper. A given object of study cannot always be assigned a unique 
value, its" entropy". It may have many different entropies, each one worth- 
while. The proper choice will depend on the interests of the individual, the 
particular phenomena under study, the degree of precision available or 
arbitrarily decided upon, or the method of description which is employed; 
and each of these criteria is largely subject to the discretion of the individual. 

The fertility of this concept is in large part due to its flexibility and 
multiple meanings. On the other hand, much of the confusion in the subject 
is traceable to the ostensibly unifying belief (possibly theological in origin !) 
that there is only one entropy. Although the necessity of dealing with 
distinct entropies has become conventional in some areas, in others there is 
an extraordinary reluctance to do so. The widespread misconception that 
there exists a paradox in classical statistical mechanics associated with the 
name Gibbs, and the frequent difficulties bound to the classical reversibility- 
irreversibility dichotomy are directly traceable to this source. 

I t  does not seem to be possible to give a precise mathematical definition 
of entropy or to create an abstract mathematical structure which is general 
enough to include all of the interesting applications. The strictly conserva- 
tive mathematical attitude is to examine each situation separately. But it 
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will be illuminating to try to synthesize, even though imprecisely, the totali- 
ty  of related mathematical structures. 

The unifying concept, always on the scene whenever entropy makes its 
presence felt, is that of irreversibility. I t  is sometimes claimed that irreversi- 
bility can appear only through the intervention of a stochastic or random 
model.1 This is not so, and we shall give examples to illustrate this pres- 
ently.2 In a classically deterministic system, the relevant concept when 
viewing evolution of the system in time is the progressive weakening of the 
property of continuous dependence on initial conditions. As time goes on, 
the system appears to take on random features, loses sight of its initial state, 
and approaches a more-or-less universal equilibrium. An entropy which 
describes this evolution will be a measure of the deviation from equilibrium 
or a measure of the developing disorder or loss of memory (conventionally, 
the entropy increases with the disorder). Insofar as this behaviour approxi- 
mates randomness, the ultimate equilibrium state will be, in some sense, the 
most probable. 

Fortunately, one is frequently satisfied with a comparison of the end 
states alone, Thus one can put aside the subtleties of whether and how these 
end states are connected by a motion, either deterministic or stochastic. 
A given mathematical entropy structure will usually be founded on a set of 
inequalities, frequently as a consequence of the convexity of some function 
or functional of the state variables. The questions of time evolution and of 
the relation between different structures are more difficult. 

I t  is sometimes possible to apply a definite linear ordering to some of the 
mathematical entropies which apply to a given physical system. One can 
then identify this set as “an” entropy if he wishes; the advisability of doing 
so will be discussed subsequently. The first prerequisite is that there be a 
linear ordering of state variables, i.e., descriptions of the state of the system, 
each one giving more detail and containing the previous one. Intuitively, a 
more detailed description is capable of describing a greater degree of order 
and should have a smaller entropy associated with it. We define the set of 
entropies, each expressed in terms of its state variables, to be comparable 
provided that such a set of inequalities exists, and provided that the 
maximum value of a specific entropy for all states which are compatible 
with a given lower order state is equal to the value of the lower order entropy. 
A set of comparable entropies does not assign a unique entropy value to a 
physical system but only to a selected mathematical description of the 

lFor example, see M. Kac, Pvobabilily and Related Topics in Physical Sciences, Inter- 

aAn early example was given by H. Poincar6, Rdjflexions SUI la thdorie cindtique des gaz, 
science, 1959, p. 86. 

Journal de Physique et  Le Radium, Ser. 4, Vol. 5 ,  p. 369, 1906. 
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system. Also, a low level description of a highly ordered state can have the 
same numerical entropy value as a more detailed description of a more 
disordered state. On the other hand, such comparisons are intuitively 
meaningful, and this is not the case for noncomparable entropy values. 

We now come to the basic question, how to choose an entropy in a given 
situation. We claim that the interests of the individual are paramount. As a 
first example, observation of a portion of the sky might indicate a uniform 
distribution of stars with respect to number and brightness, thus a high 
entropy. A new observation, say of mass or color, could uncover a strong 
inhomogeneity. This would yield a lower value for a different (but compar- 
able) entropy. Here the decision is clearcut; the adoption of a new entropy is 
forced by the discovery of new information. For another example we turn 
to aerodynamics. The existence of diffusion between oxygen and nitrogen 
somewhere in a wind tunnel will usually be of no interest. Therefore the 
aerodynamicist uses an entropy which does not recognize the separate 
existence of the two elements but only that of “air”. In other circumstances, 
the possibility of diffusion between elements with a much smaller mass ratio 
(e.g., 238/235) may be considered quite relevant. 

It is not permissible to insist that only the most detailed description of 
the system is correct, quite apart from the impracticality of this position. 
Such a stand requires either ultimate knowledge, which is, in principle, 
unattainable, or else maximal information according to the current state of 
science. With the latter criterion, the entropy of a system can change sudden- 
ly, with the observer unaware, as a result of a discovery just made in a 
distant laboratory. Even with our attitude, that the choice is up to the 
individual, it is sometimes expedient to change the definition of entropy, 
thus its value, without any concomitant physical change in the system under 
observation. But, such a change in entropy will only occur when some rele- 
vant facet of the problem at hand has changed, even if only in the mind of the 
observer. The change in entropy is therefore substantive to this observer and 
as significant to him as the result of an operation performed on the system. 

We now adopt the specific rule to take, within a set of comparable 
entropies, the one of maximum value which is compatible with the informa- 
tion which is both known and considered relevant, Such a decision is, of 
course, subject to review. Although both are significant, one should be 
careful to distinguish a change in the value of the entropy resulting from 
altering its definition from a change produced by a physical process. 
However, one must be even more careful not to interpret as a difference in 
entropy the different values possessed by non-comparable entropies. 

The rule for selecting an entropy is sometimes useful in discovering an 
entropy which is appropriate to a given specification of a state. If one has an 
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ordered sequence of states and an u firiori definition oi entropy for the most 
detailed state, then one can use the maximum property to define a lower 
order comparable entropy where a suitable definition was not otherwise 
evident. 

I t  is these observations describing the proper choice of an entropy that 
eliminate the Gibbs paradox. Whether or not diffusion occurs when a barrier 
is removed depends not on a difference in physical properties of the two 
substances but on a decision that we are or are not interested in such a 
difference (which is what governs the choice of an entropy function). There 
is no paradox to any observer. When he is aware of a difference in properties, 
he observes diffusion together with an increase in entropy. When he is 
unaware of any difference, he observes no diffusion and nc increase in the 
entropy which he is using. If two observers disagree, they must be interested 
in different phenomena, and there is no conflict. 

It is also evident that the quantum resolution of this paradox is not 
only incomplete (since it cannot refer to purely classical problems of distin- 
guishable particles such as in a cloud of stars), but it is incorrect. It is never 
permissible to refer to an absolute (and therefore unaitainable) decision as 
to the identity of different particles. It is certainly permissible to say that 
they are identical for all practical purposes, but the same statement can 
be made with reference to oxygen and nitrogen under appropriate circum- 
stances. We further note that it is possible to treat indistinguishable par- 
ticles correctly by classical means. In the other direction, it is, in principle, 
possible to observe (and therefore identify) large molecules with an electron 
microscope. This is not to say that there is no difference between quantum 
and classical mechanics, but that the proper handling of distinguishability 
is separate from either. 

The crucial point is that the correct classical interpretation, without 
paradox and without the need for overt philosophical interpretation, arises 
automatically in a consistent treatment of classical statistical mechanics.3 
The basic error which produced the Gibbs paradox lay in a Procrustean 
attempt to synthesize two different physical situations into a single thermo- 
dynamic structure. The two situations can be described as follows. In 
the first we have a box containing definite particles labelled 1,  2, - - * ,  a. 
In the second experiment we observe a certain region of space together with 
whatever particles happen to be there at a given instant. The situations are 
different and, when treated properly, give rise to  two different and even 
non-comparable entropy functions. Ignoring irrelevant dependences, the 
first entropy is approximately S, = n log V and the second is approximately 

SH. Grad, Statistical mechanics of dynamical systems with integrals other than energy, 
J. Phys. Chem. 56, p. 1039, 1952. 
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S, = fi log (Vl f i ) ,  where is the mean occupation. In the second case, the 
very de.cription of the state implies that the particles are indistinguishable. 
This classical entropy function turns out to be essentially the same as in 
quantum mechanics. It is found as well in any classical situation where we 
choose to consider the particles to be indistinguishable. 

To compare the two possibilities more precisely, consider a closed system 
in which a physical barrier can be inserted or removed to create the two 
situations. The increase of entropy on removal of the barrier is n log 2 
for S,  and is either n log 2 or zero for S, depending on whether the particles 
in the separate halves are distinguished or not. Reinserting the barrier will 
return S ,  to its original value (independent of how many particles are 
caught in each box), but it will have no effect on S,  whether or not the par- 
ticles were originally distinguishable (assuming that the diffusion has been 
carried to completion). It may seem strange, at first sight, that the entropy 
S, = n1 log V+n, log V = (n,+rt,) log V has the same value for any 
distribution of particles between the boxes. But, since the particles are 
labelled, one has complete information about each particle knowing in which 
box it is; there is the same amount of order if they are all in one box or 
equally distributed between the two. The total number of particles in each 
box is a relevant description only when their individuality is lost. Insertion 
of a barrier chanqes the information known about the system; once particle 1 
has been seen in a box, it will never leave it. If the barrier is made permeable 
to  particle 1, the entropy increases by an amount log 2, and similarly for 
each particle, until complete removal of the barrier yields the increase n log 2. 

It is usually found that a maximal description, giving complete infor- 
mation, has an entropy which is constant in time. This is no surprise since 
complete specification of each identified particle leaves no room for any 
disorder (cf. S, above). Only an incomplete description will have an entropy 
which can vary with time (presumably increasing), There is no conflict 
between these two descriptions; a single physical system can exhibit some 
features which are apparently reversible and others which require the 
epithet irreversible. A mathematical example is discussed in Section 5. 
A very illuminating experimental example is given by the “spin-echo” 
effect.4 In this experiment, it is found to be possible to produce a highly 
ordered microscopic initial state and, at a later time, effectively reverse all 
velocities. To a person who has access to  such equipment, a very high level 
“reversible” entropy will be appropriate; to one who has not, a lower order 
entropy will properly describe all phenomena. 

It is true that the entropy S, is completely impractical in the amount of 

4E. L. Hahn, Spiir echoes, Phys. Rev. 80. p. 580, 1950. 
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information it describes. I t  is, however, necessary to realize its existence and 
even its inevitability in a classical treatment in which the particles are 
labelled with indices at the outset. 

In the remainder of this paper, we analyze properties and interrelations 
of the major sequences of comparable entropies, viz., the sequence of 
H-functions, and the various thermodynamic and fluctuating entropies. 
A brief outline of the structure is given in the following section. 

2. Morphology 

The maximum information is given in statistical mechanics by the n- 
particle distribution f ( z l ,  * * -, z,), where xi = (xi, ti) is the phase space of 
a single particle, xi being its position and ,$$ its velocity. We adopt H = 
J flog fdz, - * as the basic entropy function. 

The one-particle distribution f ( l )  (2,) = J fdzz - 6 * dz, is frequently taken 
as an appropriate description of the state of a gas (it is even in a certain 
sense an asymptotically complete de~cription).~ The comparable entropy 
function, minimizing H subject to given f ( l ) ,  is simply H ,  = J f ( l )  log f ' l 'dz,.  
For an isolated system, f satisfies Liouville's equation, and H is constant in 
time; however, H I  is not. A strong indication of a proof can be given that 
H ,  approaches a minimum as t j .  0 0 . ~  Thus, the maximal information con- 
tained in f can always be withdrawn at a later time, but with increasing 
difficulty as time goes on. With less than maximal information, viz., /(I), 
the irreversible behaviour is unambiguous. To a certain approximation, 
f ( * )  will satisfy Boltzmann's equation. 

The next reduction in information consists essentially in reducing z1 to 
either x1 or 5,. Each is appropriate under the proper circumstances. One 
possibility is to introduce the local thermodynamic state (i.e., mass density, 
fluid velocity, and energy density) at each point x1 . The comparable entropy, 
given by the maximum of -H, at a given point x1 , is the conventional ther- 
modynamic entropy. The other possibility, taking El as a parameter, is to 
introduce Sf(l)dz, = F(,$,) as the state variable, in which case the compara- 
ble entropy turns out to be 

H' = J Flog Fd[,-log V ,  

where V is the volume. The first procedure is appropriate in a gas with small 
mean free path in which -H, closely approximates the thermodynamic 
entropy. The second procedure is relevant in a gas with infinite mean free 
path, in which it can be rigorously proved that collisions with the walls 

6H. Grad, Principles of the Kinetic Theory of Gases in Handbuch der Physik, Vol. XII, 
Springer, 1958. 
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(rather than between particles) produce spatial uniformity in which H, 
approximates H’ (see Section 5) .  In the thermodynamic case, one has a 
choice of dissipative equations which yield a simple increase of the entropy 
with time or non-dissipative equations which one may expect to yield weak 
convergence (possibly through turbulence) to the state of maximum entropy. 
No simple equation is known for the function F(E,). 

It is possible to insert states intermediate between f ( l )  and the local 
thermodynamic state; these are related to the expression (4.11) ,6 

For a general fluid (as distinguished from a gas), 

gives an appropriate description rather than ill) (zJ. The comparable entropy 
is not simply 

= f ( 2 )  log f( ’) dzldz,, s 
which does not make appropriate use of the symmetry of f ,  but is a more 
complicated expression B (Section 4). No satisfactory equation for the 
time behavior of f ( 2 )  for a general fluid has been given. The next step, 
introduction of a local thermodynamic state, yields the conventional ther- 
modynamic entropy (either by minimizing H or B). Note that the gas 
and fluid sequences are not comparable with one another. Although it is not 
relevant to statistical mechanics, is an appropriate comparable entropy 
(between H and H I )  if f is not required to be symmetric. 

It is possible to introduce ordered structures within the framework of 
thermodynamics (in a sense proceeding laterally across the preceding 
structures). Given two isolated systems with fixed energies El and E,, 
one can relax these constraints in favor of the sum, El+ E, = E ,  and obtain 
a comparable entropy for the combined system in thermal contact with E as 
the state variable. Similarly, one can allow two systems containing N, and 
N ,  particles, respectively, to  diffuse, obtaining a comparable entropy which 
is a function of the sum, N,+N, = N ,  alone. A mathematically similar 
procedure is to take a single container with N ,  and N ,  molecules of two differ- 
ent chemical constituents and relax these constraints in favor of the sum 
N,+N, = N. This gives a comparable entropy for the system under the 
assumption that the two chemical constituents are indistinguishable. 

Within statistical thermodynamics, one obtains separate structures for 
an isolated system, and for systems in thermal contact and in diffusional 
- 

‘jSee H. Grad, On the kinetic theory of rarefied gases, Comm. Pure and Appl. Math. Vol. 2, 
p. 331, 1919; also J. Lebowitz, H. L. Frisch, and E. Helfand, Non-equizibrium distribution func- 
lion iit a fluid, Phys. Fluids 3, 1, 1960. 

‘J. E. Mayer, Ensembles of mmimum entropy, J.  Chem. Phys. 33, p. 484, 1960. 
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contact. For large systems, the first two are asymptotically the same, and 
they are asymptotically equivalent to the third with the exception of an 
additive constant which is indicative of the different assumptions as to 
distinguishability. 

After relaxing a constraint such as energy or number of particles, it is 
possible to assign to the individual subsystems either instantaneous fluc- 
tuating thermodynamic coordinates or fixed values coupled with a more 
conventional structure (e.g., by assigning the mean value of the energy). 
If a fixed value is assigned, one must be careful to select a comparable 
structure; this will not be the case for diffusional subsystems unless an en- 
tropy based on indistinguishable particles is used. In the case of fluctuating 
thermodynamic structures, the deviation between the sum of the fluctu- 
ating component entropies and the fixed system entropy is found to be 
related to the logarithm of the probability density of the fluctuating quan- 
tity when suitably defined. For example, the energy fluctuation of a small 
component is canonical; as a density in phase space, 

where El is a function of z l ,  but, as a density in energy space 

The fluctuating entropy is correctly given by log P. ’The fixed thermodyna- 
mic entropy of the subsystem is given by - J f ( l )  log f(l)dz,, i.e., by the mean 
value of log f ‘ l ) .  On the other hand, the mean value of log P i s  approximately 
zero. Similar considerations apply to density and volume fluctuations. 

I t  should be remarked that J f log f ,  where f is the n-particle distribu- 
tion, can only yield the thermodynamic entropy for distinguishable particles. 
But, from Sf(’) log f ( l 1 ,  one can obtain either this entropy or the diffusional 
(i.e., quantum) entropy, depending on the normalization of f ( ” .  

As a final remark, we note that there are interesting cases in which the 
sum of a number of component or sub-entropies can be either equal to or 
greater than or less than the system entropy. Th.e sum is larger if the 
combination of component entropies contains less information than the 
system entropy; for example --nH, 2 --H. The sum can be smaller if the 
combination has more detail. For example, the sum of the fluctuating 
entropies describes an instantaneous separation of E into El+ E, which is a 
more detailed description. An example of equality is given by splitting H ,  
into two terms (see (5.17)), one of which expresses the deviation of f ( l )  from a 
locally Maxwellian distribution, the other being the thermodynamic entropy. 
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3. A Combinatorial Problem 

Consider the problem of distributing n identical objects at random in I 

boxes which are assigned probabilities P l ,  P , ,  * * ,  P , ,  2 fii = 1. The 
probability of finding k,  objects in box 1, k,  in box 2, etc., where 2 ki = n, is 

n !  
P(k,, - * ,  K,) = f i p p f a . .  . P:.. k,!k,! * - ’ k,! 

As a special case, the probability of observing the value k, regardless of the 
others is 

(3.3) 

n!  
fi,”I(l- P 1 )  n-kl. 

P(R1) = k,! (72-K,) ! 

For large n and fixed I ,  P(k)  behaves like the n-th power of a function of 

ki y.= -. 
n 

Using Sterling’s formula in (3.1), with y fixed, we verify that 

(3.4) 

The more familiar Gaussian approximation (which has a more restricted 
range of validity near the maximum of P) is obtained by writing 

(3 .5)  yi = P i p + f l - 1 ’ 2 % ) ,  

(3.6) P - const. exp{-+ 2 p i q 3 ,  q = O(1). 

which yields 

The singular behavior of P, viz., that it is exponential in n, can be 
removed as in (3.4) by taking the n-th root, or more conventionally by taking 
a logarithm, 

(3.7) 
1 P i  lim - log P = 2 yi log - 
n Yi 

Comparing (3.6) and (3.7), we see that the Gaussian distribution describes 
the (finite) liklihood of observing a state which deviates only slightly from 
the most probable, while the logarithmic probability (which suggests the 
H-function f y log y) can be used to describe, on an entirely different scale, 
finite (extremely improbable) deviations. 

In order to be able to  interpret the sum in (3.7) as an approximation to 
an integral, something must be said about the step size. If we interpret $i 

as a measure of the size of the occupied domain, then the appropriate form is 
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Yi Pi 
Pi Yc 

2 -log - pidi. 

This is exactly in the form J f log f, where f is the ratio of the density func- 
tion, 9, to the most probable or mean density, p .  

The computations given above have more general validity than might 
appear at first glance. First, to relate these formulas to statistical mechanics, 
consider a constant probability density distributed on a unit cube 0 s x j  5 1, 
j = 1, 2, - * - n. Each interval 0 5 xj 5 1 is divided into subintervals of 
length pi, i = 1 * - Y ,  the unit cube into r n  parts. If at the point (q, - * -, xn), 
we define the random variable (i.e., phase function) k,(xl, - -, x,) to be the 
number of coordinates xj which lie in the interval pi, then P(Kl, - - a ,  K,) in 
(3.1) is the probability distribution function of the occupation numbers ki. 
Moreover, it can be shown that (3.4) is a suitable approximation for large n 
even if the a priori probability distribution j(xl, - * * ,  x,) is not a constant; 
it is sufficient iff is bounded by a constant, cn, which does not grow exponen- 
tially with n. In this application to statistical mechanics, P ( k )  can be 
interpreted as the probability of observing the density fluctuations in a given 
dynamical system which varies in time or in samples taken from separately 
prepared systems. 

Another application of these formulas is provided by taking the proba- 
bility distribution 

12 

f = x n / 2  exp {- C x:) 

on the space - co < xi < + 00. The variables are independent, and we have 
merely to define $i as 7 ~ - ~ / ~  J exp {-&i+)dx over the appropriate interval to 
recover (3.1) and all succeeding formulas. In this case (3.8) approximates 
J f log f dp, where f is the ratio of the given density to the Gaussian and d,u is 
the Gaussian measure, exp(-&x2}dx. 

Thus we see that the problem of the fluctuations in density of particles 
freely moving in a container can be analyzed exactly as the problem of fluctua- 
tions in the distribution of energy over the particles in a box. In one case, 
we measure the deviation from uniformity, in the other, the deviation from 
a Gaussian distribution. It is clear that the general framework does not 
depend on the special Gaussian distribution (3.9). Any independent 
probability f = fl(xl)fl(z2) - - fl(z,) can be treated. I t  is also possible to 
show that many of the results quoted hold for a microcanonical distribution 
in the limit of large n. 

In some problems an entirely different H-function, C p i  log pi, will be 
significant. This represents the deviation of the one-particle marginal 
distribution f " )  (xl) from uniformity (equilibrium) and may be time-depend- 

1 
(3.9) 
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ent. It is entirely distinct from z ( y i / p i )  log (j5Jyi) which measures the 
liklihood of deviations of the fluctuating density yi from its instantaneous 
mean value pi. 

4. Inequalities for the H-function 

From the convexity of the function $(f) = f l o g  f ,  we conclude that 

(4.1) f l o g f  L f-1, f 2 0. 

There is strict inequality unless f = 1. Writing f /g  for f ,  we have the alter- 
native form 

(4.2) f log f-f log g 2 f -g, f 2 0 ,  g > o .  

Here we have strict inequality unless f = g. 
The remainder of this section will be devoted to a study of the various 

integral inequalities which are obtained by taking f and g to be functions on 
some measure space and integrating. The spaces of interest will be intervals, 
finite or infinite, and products of such intervals. 

For the first example, take f to be an arbitrary non-negative normalized 
function on a space of total measure unity, 

(4.3) 

Integrating (4. l ) ,  we obtain 

(4.4) 

dp = 1, I 
j fdp = 1.  

J-f  logf dp 2 0. 

Equality holds only if f = 1.8 This result can be interpreted variationally 
as the statement that the functional H v ]  = J flog f is minimized by the 
function f = 1. The simplest application is to functions f (x) defined on the 
unit interval 0 5 z 5 1. Clearly, H is a measure of the deviation of f from 
its mean value. 

Next, consider the easy generalization to  a space of finite total measure 
m and to functions of norm a, 

(4.5) 

By introducing the measure dv = dp/m and the function f ’  = mf/a to 

SFor measureable functions, a statement such as “ f  = 1” or “f = g” is to  be interpreted 
as holding almost everywhere. All  the results also hold for continuous functions, in which case 
such statements hold everywhere. 
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which (4.4) can be applied, we obtain 
a 

f log f dp 2 a log -. s m 

There is equality if f is the constant a/m. 
A similar inequality is obtained by integrating (4.2), taking f and g to 

be two functions of equal norm (the total measure of the space need not be 
specified and can be infinite), 

(4.7) 

viz. , 

(4.8) J f  1% f 2 S f  log& 

Equality follows only when f = g. This inequality hides a wealth of inter- 
esting possibilities depending on the choice of an appropriate comparison 
function g. We shall give several examples. 

First, on the infinite line, -co < x < fa, we take 
(4.9) g ( x )  = ae-b(@-C)' 

and require 

(4.10) 
J x f d x  = S a g a x ,  

s z2 f d x  = x2gdx ,  

as well as J f d x  = J g d x .  Since log g is quadratic in x ,  we have 

s f log g d x  = /g log g d x .  

The inequality (4.8) reads J f log f 2 J g log g. Thus, among functions f 
with given zero, first, and second moments, H [ f ]  is minimized by the 
Maxwellian function g which has the same moments (it is separately verified 
that these moments determine g uniquely). Exactly the same theorem holds 
if x is n-dimensional; the first moments and c are vectors, as is x .  

An approximate generalization of this result is the following. We take 
N 

(4.11) g = e4' z\ a n z n  ( X I ,  

where Zn are Hermite polynomials and a, are given constants. We demand 
of f that 
(4.12) J f X n d x  = S g Z n d x ,  n = 0 , l  --"; 

(if N < 2, the energy constraint, n = 2, is also included). 
The conclusion, from (4.8), is that H [ f ]  is minimized by the function g. 

0 
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.Among all functions whose Hermite expansion starts in a fixed way, H [ f ]  is 
minimized by the fixed (polynomial) part of the expansion. 

An alternative generalization of the Maxwellian problem, (4.9), is to take 

(4.13) g = ae-8s, 

where E is a given function on the space and 0 is a constant. In addition 
to J /  = fg ,  we require 

(4.14) j & f  = S E g ,  

from which we conclude that J f log g = J g log g. The inequality (4.8) then 
states that, among functions f with given mass, J f ,  and mean energy, 
f ef, H [ f ]  is minimized by the canonical distribution (4.13). The parameters 
a and 8 are to be chosen to give g the requisite mass and mean energy. The 
dimensionality of the space is clearly irrelevant. 

Next consider a function f ( x l ,  * a ,  x,) which is a normalized probability 
distribution, J f = 1, and introduce the marginal distributions 

fl(x1) = Sf dxz * * dxn, 

(4.15) f2(x2)  = ~ f a x l a x 3 - . a ~ n ,  

(4.18) 

we have the inequality 

(4.19) H 2 Hl+Hz+ * * +H,. 
Equality holds only if the variables are independent, i.e., iff = f l  ( x l )  * *fn(xn) ,  
The functions f, need only be non-negative since f vanishes wherever f, 
does. 

For a function f which is not normalized, J fdx ,  - - * b, = J f,dx, = a, 
the appropriate inequality is 
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(4.20) 

and equality is attained only when f  = a1-nflf2 - * * f,. 
A slightly different version of this result is obtained by dividing the 

coordinates (x,, * 0 ,  xr) into two (or more) sets x' = (x,, - a ,  xm), x" 
= (x,+~, - - - ,  x,). For the marginal distributions 

H 2 H,+ - * * +H,- ( ~ z - 1 ) ~  log U ,  

(4.21) 

we introduce 

(4.22) 
H = I f '  logf'dx', 

H" = 1 f" log f"dx", 
and conclude that 
(4.23) H 2 H'+H", 

with equality only if f  = f'f". 

simple form 
(4.24) H 2 nH,. 
Again, the inequality is strict unless f  is a product. The implications of symme- 
try with respect to the inequality (4.23) are more subtle. Indeed, in contrast 
to all other inequalities (in particular (4.24)), this inequality is not the best 
possible since the minimizing function, f  = f'f", is not necessarily symmetric 
in the n variables. To pursue this, we restate the content of the inequality 
(4.24) as follows. Consider the class of symmetric functions f  (x,, * * * , x,) 
which have a given function fl(zl) as their common marginal distribution. 
The functional H v ]  is minimized in this class by the symmetric function 
f = fl(xl) * * * f l (x , ) ,  and the minimum value is nH,. Thus, if H [ f ]  is 
considered as an a priori entropy function for functions of n variables, we 
are led to the conclusion that H,[f,] is a compatible entropy function when 
incomplete information, viz., f l ,  is given. 

Now let us examine the same question for the two-coordinate marginal 
distribution, 

If f  is symmetric in its 'yt arguments, the inequality (4.19) takes the 

(4.25) p (x,, x 2 )  = j f  dz, * * * ax,. 

Considering symmetric f ,  for even n we can obtain 

(4.26) 

while for odd 'YE, 
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(4.27) 
n-1 

2 
H Z -  H'2' + H ,  

Equality is obtained in (4.26) with 

(4.28) 

(4.29) 

f = 

f = f ( 2 ) ( X 1 ,  2 2 )  ' * - f ( 2 ) ( % - 2 ,  %l)fl(xn), 

(XI, X,)f'2' (x3, 5 4 )  * * . Y2' (%-I, xn) 

and in (4.27) with 

as well as with other such functions obtained by permutation of coordinates. 
If these functions do not happen to be symmetric in all rt variables, then the 
right sides of (4.26) and (4.27) do not give the correct minimum values taken 
by H evaluated for symmetric functions f .  Furthermore, it is easy to verify 
that these minimizing expressions are symmetric only when f ( 2 ) ( ~ 1 ,  x2) 
= f1(x1)fi(x2). For, assuming symmetry and interchanging x2 and x 3 ,  
we obtain 

Y2) (21, 22) f ' 2 '  ( 2 3 ,  x4) = P) (XI,  x 3 ) f ( 2 )  (.2 , x4) ; 

integration with respect to x3 and x4 then yields the result. 
The conclusion is that the two-coordinate H-function, J f t 2 )  log f @ ) ,  

does not correctly incorporate the symmetry of f (except in the trivial 
case f ( 2 )  = f l  (x,)fl (x2), in which case it is really H ,  that covers the situation). 
We pose the problem, to minimize H subject to f ( 2 )  being given. The solution, 
we claim, is given by a function f which can be written 

(4.30) 

This result is suggested by the formal procedure of performing a variation of 
the functional 

(4.31) H -  J 4 ( %  Xz) f ' 2 ' ( x , ,  ~,)~X,dxz, 

where q is a Lagrange multiplier. The difficulty is to relate the function q to 
the given function f ( 2 ) ,  i.e., to invert the relation 

(4.32) j ( 2 )  (x, , x2) = J exp (2 qij}dx3 * * dx, . 
We conjecture that this can always be done. In the absence of a proof, we 
consider only those functions f @ )  which can be so generated from functions q. 
For such an /@) we can prove that the generator q is unique, and the related 
product f does minimize H .  Given f ( l )  and any q related to it by (4.32), we 
construct 

(4.33) g = exp {I 4 J -  
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That J g  = 1 follows from (4.32). Applying the inequality (4.8), we find 

where the inequality is strict unless f = g. The last remark implies that g is 
unique; a very simple argument then shows that q is also unique. 

We can combine the inequalities (4.26) and (4.34) as follows: 

(4.36) 

there is a similar result if n is odd. The second inequality is a consequence of 
the fact that the middle member is the minimum for a variational problem 
with fewer admissible functions than one for which the last member is the 
minimum. The first inequality is strict unless f is of the form (4.33); the 
second inequality is strict unless f(,) = f,(xl)fl(x,). 
is an appropriate entropy function for unrestricted. functions f ,  whereas 
J f@)p is appropriate for symmetric functions f .  

We remark that the variation of H v ]  with energy fixed, (4.14), gives 
the same result as the variation of I?y(2)] with energy fixed, provided that E 

takes the form &, E~~ = +(xi, z,). We have q = .++PI where a and ,!l are 
adjusted to yield the normalization and correct mean value of E. 

We conclude with some general remarks regarding bounds for the margi- 
nal H-functions, H,. If the domain of integration (x, , - - - , xn) is finite, then 
the existence of H alone in (4.19) implies the existence of each of the integrals 
H,. For, with a finite total measure, (4.6) gives a lower bound for each H,. 
Transposing all but one of the H ,  in (4.19) yields an upper bound for the 
remaining one. With an infinite domain, it is possible for H ,  to be either 
positively or negatively infinite even though H is finite. We shall illustrate 
these conclusions with several two-dimensional examples. 

First consider f ( x , ,  x ~ ) ,  where 0 S X, 5 1. From (4.4) and (4.19) we 
observe that 

In short, J f(,) log 

(4.36) 0 5 H ,  5 H ,  Y = 1, 2. 

In the application to statistical mechanics, the equations of motion induce an 
area-preserving flow on the phase space (x, , x,), with the values of f carried 
by the flow. We can interpret this more abstractly as a rearrangement of 
the values taken by f on (xl, x,), without looking in detail at the possible 
motions. Clearly H is constant for any rearrangement, but H ,  and H ,  are 
not. H ,  can attain its maximum value, viz., H ,  only when H ,  = 0. This can 
occur only if fi = 1, consequently f = fl(xl). Such a situation can be 
described as a rearrangement of the values of f to yield the maximum order 
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with regard to x1 (all points with a given value off are moved to the same xl) 
and maximum disorder, or rather mixing, with regard to 2,. The combined 
order, H , + H , ,  is a maximum for any arrangement which satisfies f = f l f z ,  
of which f = f l ,  f z  = 1 is a particular example. 

If f is symmetric, instead of (4.36) we have 

(4.37) 0 5 H ,  5 * H ,  I = 1, 2. 

There is no possibility of obtaining maximum order for either H ,  or H,, but 
only a maximum combined order when f is a product. I t  is intuitively clear 
that any very complicated mixing will produce values of H, and H ,  which 
are close to zero. 

Now we turn to the case of two variables f ( x ,  E ) ,  where 0 6 x 5 1 and 
- co < t < + co. Thus x could represent position and E velocity. In this 
example we introduce the special notation 

(4.38) 

also 

(4.39) 

As always, H 2 H,+HF. We have a lower bound on H,, consequently 
an upper bound on H F ,  

(4.40) 

I t  is easy to construct examples in which HF does not exist or in which nei- 
ther HF nor H ,  exists, but existence of HF implies the same for H,. There 
are many simple conditions which imply the existence of a lower bound on 
H F ,  e.g., finiteness of the energy, 

(4.41) E = 1 F 2 f ( ~ ,  5)dxdE = t 2 F ( t ) d 5 .  

Introducing the measure dp = n-112e--ja and the auxiliary function 
F' = z1I2 eta F ,  we note that J dp = J F'dp = 1. The inequality (4.4) 
applied to F' yields 

0 5 1 F' log F'dp = 1 (i log n+t2+log F ) F d [  

= 8 log n+E+HF,  
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from which we obtain a lower bound for HF. Thus even in the infinite 
domain, there exist both upper and lower bounds on the marginal H- 
functions in terms of constants of the motion, H and E. 

5. Irreversible Behavior of a Gas 

We examine the properties of a gas of independently moving particles 
in a rectangular The particles do not see one another and collide only 
with the walls. We take position coordinates x = (XI, x2, x3) and velocity 
5 = ([l, t2 ,  5”.  The motion of a particle is given by 

in the extended domain x which is covered by reflections of the basic box, 
0 5 xi I; u i .  It is easier to treat the doubled domain, 0 S xi 5 2ui, as 
basic, since the boundary condition is then periodicity. More precisely, if 
there is given an initial distribution fO(x,  6) which is periodic in the doubled 
domain, then the solution to the originally posed problem is obtained from 

(5-2) f ( x ,  5, t )  = f o ( X - & ,  5 )  
by “folding” once with respect to each space coordinate. Since this folding 
will be irrelevant to our purposes, we shall pursue the modified problem of 
the motion (5.1) in a basic domain 0 5 xi 5 ui .with u1u2u3 = 1 (unit 
volume) but with periodic rather than reflection boundary conditions; in 
other words we assume that fo  (2, 5 )  has periods ai , and the time evolution of 
f is given by (5.2). 

The marginal distributions p(z)  and F ( t )  and the marginal entropies 
H ,  and HF are defined in (4.38) and (4.39). It is evident that F(5)  is 
independent of the time. Thus H F  as well as H is constant in time, H ,  is the 
only entropy which can vary, and it is restricted by the inequalities 

(5.3) 0 5 H ,  5 H-HF. 
In order to reach the desired results with a minimum of mathematical 

manipulation we assume that fo(x, 5 )  is uniformly bounded, 

(5.4) 

SflogfdE = H ;  

eRelated problems are discussed in: 
a) H. Poincar6, Zoc. cit. 
b) H. Grad, Handbuch der Physik,  loc. cit. 
c) H. L. Frisch. An Approach to Equilibrium, Phys. Rev. 109, p. 22, 1958. 
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also fo(x, t )  is uniformly continuous,lO 

(5.6) lfo(2, F’)-fo(x, 81 < 

(5 .6 )  IE’-tI < d ( E ) .  

i f  

First we prove that p(x,  t )  --f 1 and HP( t )  + 0 as t --f CQ. We write 

P ( 5 ,  t )  = J fo(x-5 t ,  [)a, 
P(X’ ,  t )  = jio4‘-tt, 5)d5 (5.7) 

where 

(5.8) 
X I - x  q = -  

t 

Subtracting (and changing 5’ to E), 

whence 

Given E > 0, we choose A to make the term infsmaller than 4 2 .  Then, by 
taking t large, i.e., 171 < 6, the first integral, which is bounded by z A 3 8 / 6  can 
also be made smaller than €12. From 

(5.9) l pk ,  t)-p(x’, t)I < E ,  t > t o ,  

and the normalization, S p d x  = 1, we conclude that 

(5.10) lP(G Q-11 < E, t > to .  

IP log pi < E + 9 E 2 ,  

It is an elementary consequence of this inequality that 

from which follows 

‘OTheorems equivalent to those proved here for continuous functions can be proved for 
measurable functions as well, b u t  the proofs are rather intricate and will not be given. 
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(5.11) H ,  < E + $ ~ ,  t > t,. 
The weak convergence of f (x ,  5,  t )  to F ( 5 )  is proved in the same way. 

Let I and I' refer to the intervals 

(5.12) 

We write 

(5.13) 

The difference between fA and f"' can be written as an integral over the inter- 
section of I and I' plus an integral over the difference. The first integrand is 
estimated by the continuity of f ,  the second by the uniform bound f, and 
both become arbitrarily small when 171 is small, 

I f - f ' I  < & I  t > t,. 
From the fact that 

j j a x  = Sj'dz' = F(5)dE = P 
we conclude that 

(5.14) t > t o .  

We remark that this is a somewhat stronger statement than conven- 
tional weak convergence; the integral of f over a &interval rather than a 
maximum dimensional ( x ,  ()-interval is convergent. 

The significance of the strict convergence of p ( x ,  t )  to  its limit, without 
interference from exceptional events, PoincarC recurrences, etc., may 
require elaboration. We have taken the position that f (x l  5 )  is a probability 
distribution, governed by repeated sampling. Let us now interpret it as an 
actual physical density. For a system containing a finite number of particles, 
n, f will be a sum of n &functions. The equation (5.2) for the time variation 
of f is the same whether f is an actual density or a probability density; 
properly interpreted, it is the same whether f is singular or smooth. To make 
use of the results we have obtained, we now take a sequence of singular 
initial distributions, f n ( q  6) which converges weakly to the smooth function 
f o ( q  6). I t  is a simple matter t o  verify that, in any fixed interval, 
0 < t < to ,  f,(x, 6, t )  will converge weakly to f (x ,  5, t ) .  For a fixed large 
value of t ,  fn(x,  5, t )  will therefore converge weakly to a function which is 
close to F(6) .  Similarly, p,(x, t )  (which is also singular) will converge weakly 
to p(x, t )  - 1. However, this convergence is not uniform in t. For fixed n it 
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is known that complex behavior such as PoincarC recurrences will occur for 
large enough t. This phenomenon, resulting from the inversion of the limits 
n -+ 00, t -+ co, is well understood, but this is one of the very few examples in 
which the mathematical analysis can be completed. 

A more difficult problem than the one considered up to now, but one 
that still can be analyzed rigorously, is that of the expansion or compression 
of the gas by movement of the walls. To be definite, we assume that the 
state at time t = 0 is one of equilibrium, viz., p = 1 and f o  = F,, and we 
assume further that the motion of the wall ceases at a finite time t,. Of 
course, the gas parameters will continue to vary after t,, but another equilib- 
rium will ultimately be approached in which p, = l / V  (V is the final volume) 
and f converges weakly to F,. H is still a constant of the motion, but neither 
F nor HF are constant. Initially we have 

(5.15) H = H;+P,, H ;  = 0, 

and finally 

(5.16) 
1 

V H 2 H i + H k ,  H i  = log -. 

Thus the combined entropy, - ( H , + H F ) ,  has increased as a result of the 
change in volume. The inequality holds unless f = pF is identically true at 
the instant t = t,; it has not been proved, but it seems very likely that this 
factorization is impossible for any actual motion of the walls. What is true, 
however, is that equality in (5.16) is a##vouched if the change of volume 
occurs more and more slowly (adiabatically). The proof is somewhat 
intricate but not difficult and will not be given here. I t  is based on the 
fact that there is an adiabatic invariant (viz., P u l ,  where u1 is the length of 
the side which is varied) for an individual particle orbit. This invariant is 
constant to an arbitrarily high order in the slowness parameter E provided 
that the motion is smooth.'l However, it is not uniform in velocity; in 
particular, particles with small velocities of order E are not adiabatic. Thus 
the change in H,,+HF turns out to be of order E.  

A natural question to ask is, what is the relation of the behavior of 
this highly idealized model of a gas to one with colliding molecules? The 
problem is extremely difficult and one can only conjecture, but these conjec- 
tures appear to be very soundly based. For simplicity, suppose the molecules 
are elastic spheres. The path of the system in 6n-dimensional phase space is 
exactly a rectilinear motion at constant speed interrupted by reflections at 
rigid walls. The location of the walls is extraordinarily complex however. 

llC. S .  Gardner, Adiabatic invavzants of peviodic classical syslems, Phys. Rev. 115, p. 791, 
1959. 
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In addition to the actual physical walls, there are walls given by the typical 
equation Ixi-xjl = d, where d is the molecular diameter. The “speed” in 
this 6n-dimensional model is essentially the total energy of the system. 
It is likely that, except for very special initial conditions, the energy is the 
only constant of the motion and the path is ergodic on an energy surface. 
However, we do not have to depend on this property, and it is not the prop- 
erty which we have made use of in our simple model. Rather, it is the 
concept that two initial states with slightly different velocities will eventually 
end up very far apart. This can be true within an ergodic subspace if the 
motion is mixing, but this condition is not required. In our example, the 
flow within an ergodic subspace (constant 6) is completely non-mixing. I t  is 
intuitive that intermolecular collisions can weaken the continuous depend- 
ence on initial conditions very effectively, much more so than collisions 
with the walls. It is also clear from our example that the Poincar6 recurrence 
theorem is no impediment to an approach to equilibrium provided that we 
avoid singular distribution functions. Thus, in a realistic gas model with 
collisions we should expect the marginal entropy H, for a single particle 
(Boltzmann’s H-function) to approach its minimum (i.e., equilibrium) value 
strictly. The averaging which is required to convert weak convergence of f 
into strong convergence is implicit in the integration which defines the 
marginal distribution f l  .12 

The analogy between our model and the colliding gas can be made 
stronger. For a gas which is governed by the Boltzmann equation, it is 
appropriate to consider 

H = If log f d t d x  = H’i-H”, 

H’ = S f 0  log f a d t d x ,  (5.17) 

f 
f a  

H” = j f  log -- d t d x ,  

where f a  is the local Maxwellian corresponding to  f .  H” is a measure of the 
deviation of f from the local Maxwellian and H’ measures the deviation 
from uniformity in space (it is exactly the negative of the thermodynamic 
entropy). To make the comparison, in t.he non-colliding gas we write 

H,+H, = H+H“, 
(5.18) H’ = HR-log V ,  

H“ = H,+log V ,  
_ _ _ ~  

lZA more complete discussion of these points is given in H. Grad, Handbuch der Physik ,  
lac. cit. 
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where V is the variable volume. In the one case, intermolecular collisions 
and, in the other, collisions with the wall make H" approach zero. In an 
adiabatic process, H" remains at all times close to zero, whereas H' decreases 
slowly. Note that in this analogy position and velocity are essentially 
reversed! 

6. Macroscopic Thermodynamics 

For an isolated system of fixed composition, a concise formulation of the 
thermodynamic structure is that there exists an entropy S ( E ,  V )  which is a 
convex function of energy and volume. The pressure and temperature can 
be defined as the partial derivatives of this function by the schematic 

(6.1) TdS = d E f f d V .  

This can be written alternatively in terms of densities per unit mass or 
volume, Since the total mass, M ,  is fixed, we merely divide through by M in 
(6.1) to obtain 

(6.2) Tdtj = de+fidt, 

where 

(6.3) 

In terms of volume densities, 

(6.4) 

S = qM,  
E = E M ,  
v = TM. 

s = sv, 
E = eV, 

we obtain 
dV 
V 

Tds = de+@+e-Ts) -. 

\lie write dV/V as d t l z  or --dp/p, 
1 

(6.5) P=t '  
and introduce the quantity 

(6.6) p = t(Ts-e-fi), 

to obtain 
d t  

Tds = de-,u - = de+pdp. 
t2 
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We remark that it is V alone that is varied in the differentials d t  and dp. 
With composition variable, we postulate the existence of a convex 

function S ( E ,  V ,  Mi), where Mi are the component masses, and introduce 
the partial derivatives of S through 

In addition to the volume densities (6.4), we introduce 

(6.9) Mi = p i v  

and compute 
dV 

T d s - d e - 2 , u i d p j  = ( p + x p i p r + e - T s )  - V , 

It is now postulated that S is homogeneous of first degree in the variables 
(E,  V ,  Mi), or the equivalent, that s is a function of e and pi  alone: 

(6.10) T d s  = d e + z p U i d p r ,  

or another equivalent, 

(6.11) 

We note that the previous formalism with mass constant is encom- 
passed within the present formalism as a special case only if the homogeneity 
assumption is made there. In practice it is not the entropy function which is 
directly measured but the partial derivatives p and T and to some extent pi. 
Thus S is determined only within an additive constant. In the general 
case of variable mass, the constant is a number; in the case of fixed mass, the 
constant could be an arbitrary function of the mass and thus give a non- 
homogeneous entropy function. But, since the added constant inherently 
contains only parameters which are of no immediate interest (they are not 
varied), it is permissible (although not necessary) to  take the homogeneous 
entropy universally in this macroscopic theory. 

I t  is an elementary consequence of the convexity of S that there exists a 
unique maximum for the sum 

(6.12) S’(E’, ,,)+S”(E”, V’) 
when E‘ and E“ are varied subject to the sum E‘+E’“ = E being constant. 
This maximum is obtained when T’ = TI’. On relaxing the two constraints 
E‘ and E” in favor of the single constraint E (thereby defining thermal 
contact), we obtain a system described by the coordinates E,  V’, V”. The 
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entropy of this system, S ( E ,  V’, V”),  is defined to be the maximum value of 
S’+S”. It is convex and satisfies 

(6.13) TdS = dE+$’dV‘+$”dV”. 

The entropy has been defined to have the property that bringing two bodies 
into thermal contact increases it. 

If we adopt the conservative attitude that thermodynamic functions 
are properly defined only in terms of fixed constraints or parameter values, 
then the individual systems in thermal contact do not possess separate 
entropies, since the energies, E‘ and E”, are fluctuating quantities. What is 
conventionally done is to consider T (or 6 = 1/T which is more convenient) 
to be a common property of either of the systems in thermal contact. 
The appropriate thermodynamic function, when 0 is the independent variable 
rather than E ,  is given by the Legendre transformation 

(6.14) 

of which the inverse is 

(6.15) 

F(6 ,  V )  = 8E-S, 
dF = EdO-efidV, 

S ( E ,  V )  = BE-F, 
dS = 6(dE+$dV). 

The potential F is held to be defined for each of the systems in thermal 
contact and is seen to be additive, 

F ( B ,  v, v”) = q e ,  v’)+F’ye, v”). 
The convexity of S implies convexity of F ,  and it is an elementary conse- 
quence of this property that 

(6.16) 
F(8)  = min [OE-S(E)], 

S ( E )  = min [6E-F(8)]. 
E 

e 

In the first expression the minimizing E is the value associated with 6 ,  and 
in the second expression the minimizing 6 is that associated with the given E.  

These relations supply a simple and elegant proof of the minimum 
property of S’+S” that was referred to above. We minimize 

(6.17) B(E”E”)--S’(E’, V) -S”(E”,  V”) 

with respect to both E’ and E“, where 6 is a Lagrange multiplier. The 
minimum is attained at 6 = l/T’ = 1/T” and the minimum value is 
F ( 8 ,  V’, V”). At the same time, BE-S(E) is minimized for each component 
separately. 
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Now, from the potential F ( 6 ,  V’) of one component, we can formally 
compute a value for E‘, viz., E i  = aF‘/aB and a value for S’, Si = BE:- F’. 
Clearly this value for E’ is not “the” energy of the component since it has 
no fixed energy. Also, in computing BE‘--‘, we would seem to have a 
choice of inserting the actual fluctuating energy or the fixed value Ei .  
The conventional thermodynamic procedure is to extend the range of validi- 
ty  of the purely thermodynamic formalism by assigning the constant values 
E,’, and Sk to the fluctuating component. The alternative possibility, of 
introducing a fluctuating entropy, will be considered in the next section. 
We note only that the sum of the fluctuating component entropies is smaller 
than the system entropy, 

S’(E’)+S’’(E‘’) = BE+ [S‘(E’)--BE’]+ [.Sr’(E”)-6E”] 
5 BE - F’(0) - F”(0) 
= S ( E ) .  

One can introduce Legendre transformations and minimum principles 
for the conjugate pairs of variables (6+, V )  and (Bpi, M i )  just as for (0, E ) .  
Specifically, we remark that removing a constraint with separate masses 
M i  and MY in two containers in favor of their sum M::+MY = M ,  increases 
the entropy. Physically, the process is diffusion. But the same mathematical 
apparatus shows that removal of the two constraints Mi and M ,  in a single 
container in favor of their sum yields an increased entropy. This process 
consists in deciding to identify two different chemical components. Relaxa- 
tion of the constraints V,  and V ,  subject to V,+ V2 = V can refer to the action 
of releasing a wall and allowing it to move freely. 

7. Log $2 as Entropy 

Consider a dynamical system described by the Hamiltonian.zY(q, $, A), 
where iz is a parameter. We assume that .zY is the only time-independent 
constant of the motion and that a motion will, in general, be ergodic on a 
constant energy surface. Now we suppose that 3, is a slowly varying function 
of the time. By this we mean that both 3, and the energy change only slightly 
in the time required for an orbit to wander all over an energy surface. Over 
such a time interval, we can plausibly replace a time integral by an average 
on an energy surface, 

in this way obtaining the adiabatic approximation 

hanggi
Hervorheben

hanggi
Notiz
Omega is here density of states ...I do not like all which Grad states in this article!
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(7.1) 

However, we can integrate this differential equation quite generally using 
only the fact that the system is Hamiltonian. We recall that the volume 
element in phase space is an invariant measure. Therefore the volume 
within an energy surface, 2 < E, is the same as the volume within the 
image surface into which the points df 2 = E are carried by the motion. 
But, by our adiabatic hypothesis, the image of an energy surface remains 
an energy surface. Thus the function 

(7.2) 

is an approximate constant of the motion, i.e., an adiabatic invariant. It is 
an exact integral of the adiabatic equation (7 .1) .  

Proofs of this type of theorem are meagre. Essentially the only cases 
that have been treated rigorously are problems in which the ergodic manifold 
is a closed curve, or other closely related problems (cf. the example of 
Section 5). 

For systems with many degrees of freedom, it is likely that the reference 
to ergodicity is unnecessary. It appears to be a frequent occurrence that the 
value of a phase function (possibly aX/aA) deviates appreciably from its 
mean value only on a set of very small measure. 

Of course, any function of -tr is also an adiabatic invariant. For large 
systems, V‘- is approximately exponential in n; thus to obtain an additive 
quantity which is proportional to the size of the system, we should take log 9‘“ 
as the entropy. To complete the thermodynamic structure we write 

(7.3) 
a a 

d(log v-) = - (log V ) d E +  - (log ? q d l  
aE aA 

and identify 8 log V/aE with 6 and alog-tr/aAwithOX, wherexis the “force” 
conjugate to the parameter A. To show that these identifications are proper 
requires treatment of interacting systems which we defer. But, to obtain 
more familiar expressions we introduce 

(7.4) 

and note the formula13 

(7.5) 

l3-k I. Iihinchin, Statistical Mechanics, Dover, 1949. 

hanggi
Hervorheben

hanggi
Notiz
This is GIBBS

hanggi
Hervorheben

hanggi
Notiz
GOOD

hanggi
Hervorheben

hanggi
Notiz
Hmm...



350 H. GRAD 

where dZis the “area” element on the energy surface, dZ/\V#l is the invari- 
ant measure on this surface; d&dZ/\VSI is the volume element. Now, 
taking E fixed and 3, variable, we can evaluate 

or 

Summarizing, we have 

From the exponential behavior of V for large n, it is easily seen that 
log 52 is asymptotically equal to log Y. For reasons that will appear shortly, 
it is more convenient to use log 9. Also it can be shown in cases where 
there are integrals other than energy, that the generalization of log 52 is the 
more appropriate choice. 

To study fluctuations, we consider two systems in weak thermal contact. 
The adjective weak implies that the combined Hamiltonian can be approxi- 
mated numerically by the sum of the values of the individual Hamiltonians 
ignoring interactions. Thermal contact implies that the Hamiltonian is not 
exactly a sum; more precisely we make the assumption that the combined 
Hamiltonian is the only constant of the motion, which motion is ergodic 
on the energy surface N = constant. Thus the distribution is microcanonical. 
It is an easy consequence of this fact that the probability distribution of the 
energy of one component is given byls 

(7.7) 
52” ( E -  E‘ ) 

J-2 ( E )  
P(E’) = Q’(E’) 

Here Q‘ refers to the component under discussion, 9” to the other component 
(the reservoir) and 52 to the combined system; E’is the (fluctuating) energy 
of the component and E is the constant total energy. 

It is immediately evident that we can interpret log P as a fluctuating 
entropy, 

(7 .8)  log P = log sz’+log sz”-log n. 
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\\’e have previously identified log 9 as the entropy of an isolated system. 
The quantities log 9‘ and log 9“ are exactly the respective entropies that 
would be assigned to the two components if they were isolated at  the instant 
when the energies happened to have the values E’ and E“ = E-E‘. Thus 
the logarithmic probability of observing the values E’ and E“ is given by 
the difference between the instantaneous fluctuating entropy and the 
system entropy. 

Furthermore, in a large system the expression P is peaked near its 
maximum, since P is approximately the n-th power of some fixed function 4, 
Since P is a normalized probability, the maximum value of 4 must be approx- 
imately unity (otherwise J PdE’ would become exponentially small or 
large). Thus the maximum value of log P is approximately zero, and we 
conclude that the fluctuating entropy is smaller than the system entropy 
with equality for the most probable state. 

Because P is an approximate n-th power, we also know that it can be 
approximated near its maximum by a Gaussian distribution. This approxi- 
mation is equivalent to a quadratic dependence on E’ for sufficiently small 
excursions from its most probable value in (7.8). 

8. Statistical Thermodynamics 

We have described the thermodynamic structure for an isolated system 
in terms of log $2 as the entropy. We continue with a discussion of systems in 
thermal or diffusional contact and recall that the complete thermodynamic 
structureis determinedifweknowoneof thefunctionsS(E, V , N ) ,  F(8 ,  V , N ) ,  
or p ( 9 ,  p )  (in a microscopic analysis, the number of particles, N ,  is a more 
convenient variable than the mass, M = mN).  

For two systems in thermal contact we recall (7.7), 

8’ (E’”’‘ ( E -  E’) 
P(E’) = 

The normalization J PdE‘ = 1 yields the convolution relation 

(8.2) 8 ( E )  = /Q’(E’)B’’(E--E’)IE’. 

We accept these relations as postulates for the moment. They should be 
considered as approximations depending on an estimate of the coupling 
energy between the two systems. The convolution property implies 

(8.3) log 2 = log Z‘+log z”, 

where 

(8.4) 
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and similarly for 2’ and 2”. The conventional thermodynamic structure 
results from an identification of log 2 with --F(8, V)/k.14 

For two systems which are free to exchange particles as well as energy, 
we h a d 5  

N !  Q‘(E’, N’)Q”(E-E’, N--”) 
Q(E,  N )  

P(E’, ”) = 
“! (N- -” )  ! 

” ! ( N - - ” )  ! 
N !  (8.5) 

P(N‘ )  = zip, w)z’ye, N-w).  

The last formula should be compared with (3.2). We have the normalization 
x N , J P d E ‘  = 1 as well as the convolution relations 

SZ‘(E’, ”) SZ”(E-E’, N--N’) 
dE’ , 

N‘ s N ’ !  (N-”) ! 
1 

N !  
- SZ(E, N )  = c 

Pa6) Z(6 ,N)  zye, N’) zye, N-N’) 
N !  (N--”) ! . 

This function SZ is the customary one but with N exhibited (the parameter V ,  
or rather the domain of integration, has been suppressed). If there are several 
species of particles, we replace N ! by the product N ,  ! N ,  ! * - . The convolu- 
tion property implies additivity, 

(8.7) log E = log s’+Iog s”, 
where 

The thermodynamic structure arises from an identification of log E with 
OpV and log ( with -6pm (m is the mass of a particle, mN = M ) .  

We have presented three distinct but related thermodynamic structures 
in which log a, log 2, and log B are additive in the respective situations to 
which they apply. In particular, for fixed ( and 8, log s” defines an additive 
set function which is invariant under translation (provided that we are 
sufficiently far from any wall potentials); thus it is proportional to the 
volume, which establishes the homogeneity of this particular thermodynamic 
structure. 

Two problems arise: first to relate the three structures (since macro- 
scopically we find only one); second to reestablish similar results with the 
correct error estimates for the energy coupling. 

lPFor dimensional consistency, 0 as used in this section is l / kT  rather than 1/T. Thus 

16H. Grad, J. Chem. Phys., Zoc. cit. 
log f4 is S / k ,  log 2 is - F/k,  and log .Z will be pV/kT .  
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If it is known that 9 is an approximate N-th power, then an elementary 
argument, based on the fact that the integrand in (8.4) is peaked, yields the 
asymptotic result 

where E, is the value which maximizes --BE +log L!. We recognize 
the asymptotic approximation to the Laplace transform as the Legendre 
transformation connecting F(8)  with S ( E ) .  Exactly the same type of 
estimate in the discrete Laplace transform (8.8) establishes the asymptotic 
equivalence of the third structure, with the exception of the added term 
log ( N o ! )  -No log No-No.  Thus, by examining those quantities which are 
additive in a given situation, we are led to the entropies log D or log Z+OE 
under circumstances of distinguishable particles and the different entropy 
logc”f8EfN log [ in a case when particles cannot be distinguished. We 
remark that, although log 2 is additive in the case of thermal contact, it is 
not additive, cf. (8.6), when there is diffusional contact. Instead, log ( Z / N ! )  
becomes approximately additive in the limit of large N .  

ilctually, it is 2 which is known to be an N-th power (using 2 = 
Z‘Z”Z”’ * 

* for a large system). The reverse procedure, viz., to invert 
(8.4) to obtain the asymptotic behavior of a, is usually done by use of 
contour integration or the central limit theorem. What is needed is a very 
weak condition, viz., that the distribution P,(E) of the sum of N independent 
random variables has the property (l/N) log PN(E0) -+ 0, where E, is the 
mean (actually PN(Eo) -N-ll2)).  Applying this condition to the normalized 
convolution distribution 

(8.10) 

yields the equivalence relation (8.9). 
For the case of thermal contact, one might postulate that there exists a 

wall separating the two systems such that the coupling energy is negligible. 
But, for diffusional contact there is no real wall and one must actually 
perform the estimate. The asymptotic additivity of log ( Z / N ! )  has been 
shown 16. The remaining arguments, indicated above under the assumption 
Z = 2’ Z“, can be repeated with error estimates that take into account the 
coupling. We note only that the error terms have the rather large order 
N-l/3. Thus the conventional asymptotic expansion, of which (8.9) gives 
the lowest order, cannot without special precautions be used to any higher 
order, since N-1/3 is more important. 

I%. van Hove, Quelques pr@rittLs gbnnhales de Z’intLgrule de cwzfigurution d’un systdme de 
particztles azlec interaction, Physica 15, p. 951, 1949. Some of this analysis can be simplified. 
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We conclude with some further remarks concerning fluctuations. The 
distribution of energy of a small component in contact with a large reservoir 
is given by the canonical distribution (8.10).17 If we further assume that 
the small component is itself large (to be able to identify log 9’ with the 
entropy), then we see that 

(8.11) 

We verify that the fluctuating entropy of the reservoir is simply O(E”-Ei) ,  
and, by examination of the constant in (8.11), we obtain (8.9) again. This 
result for the entropy fluctuation of the reservoir is intuitive. Since the 
energy fluctuation of the reservoir is relatively small, the entropy fluctuation, 
dS = BdE, ca,n be evaluated with 8 kept constant. An appealing heuristic 
procedure is to accept the intuitive formula for the entropy fluctuation of 
the reservoir and the postulate that log P is the fluctuating entropy to 
“derive” the formula 

P(E’) = const. exp(--BE’+S’} 

log P’ = --BE‘+log Q’(E’)-lOg 2’ 
= log Q’(E’)+OE”+const. 

for the energy distribution of a small component. 

Received March, 1961. 

17Khinchi~i, Zoc. cit. 




