Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

Fluctuation Theorem for Arbitrary Open Quantum Systems

Acknowledgments

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner Sekhar Burada Gert Ingold Eric Lutz Manolo Morillo

Volkswagen Foundation

Tasaki-Crooks Fluctuation Theorem and Jarzynski Equality: State of the art

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

Classical

- ✓ Isolated system
- ✓ Weak coupling
- ✓ Strong Coupling

Quantum

- ✓ Isolated system
- ✓ Weak coupling
- ✓ Strong Coupling

What are fluctuation and work theorems about?

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

Small systems: fluctuations may become comparable to average quantities.

Can one infer thermal **equilibrium properties** from fluctuations in **nonequilibrium** processes?

Jarzynski's equality C. Jarzynski, PRL <u>78</u>, 2690 (1997)

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

Jensen's inequality : $\Delta F \leq \langle w \rangle$ Second Law

Crooks' fluctuation theorem

Fluctuation Theorem for Arbitrary Open Quantum Systems

D. Colin et al. Nature **437**, 231 (2005)

Equilibrium versus nonequilibrium processes

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner Isothermal quasistatic process:

Definition of work

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

A. Classical:

$$w = \int_{t_0}^{t_f} dt \, \frac{\partial H(z(t), t)}{\partial t} = H(z(t_f), t_f) - H(z(t_0), t_0)$$

z(t): Trajectory in phase space $z(t_0)$: Starting point taken from $Z^{-1}(t_0)e^{-\beta H(z,t_0)}$

B. Quantum mechanical:

$$w = e_m(t_f) - e_n(t_0)$$

 $H(t)\varphi_{n,\lambda}(t) = e_n(t)\varphi_{n,\lambda}(t)$

work is a RANDOM quantity due to the randomness inherent in the INITIAL STATE $\rho(t_0)$ and in QUANTUM MECHANICS.

Probability of work

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

$$H(t)\varphi_{n,\lambda}(t) = e_n(t)\varphi_{n,\lambda}(t)$$

 $P_n(t) = \sum_{\lambda} |\varphi_{n,\lambda}(t)\rangle\langle\varphi_{n,\lambda}(t)|$

 $\begin{array}{ll} \rho_n &= \operatorname{Tr} P_n(t_0)\rho(t_0) \\ &= \operatorname{probability} \text{ of being at energy } e_n(t_0) \text{ at } t = t_0 \end{array}$

$$\rho_n = P_n(t_0)\rho(t_0)P_n(t_0)/p_n$$

= state after measurement

$$\rho_n(t_f) = U_{t_f,t_0}\rho_n U_{t_f,t_0}^+$$

 $p(m|n) = \operatorname{Tr} P_m(t_f) \rho_n(t_f)$ = conditional probability of getting to energy $e_m(t_f)$

Probability of work

Fluctuation Theorem for Arbitrary Open Quantum Systems

$$p_{t_f,t_0}(w) = \sum_{n,m} \delta(w - [e_m(t_f) - e_n(t_0)]) p(m|n) p_n$$

Characteristic function of work

Fluctuation Theorem for Arbitrary Open Quantum Systems

$$\begin{aligned} G_{t_{f},t_{0}}(u) &= \int dw \ e^{iuw} p_{t_{f},t_{0}}(w) \\ &= \sum_{m,n} e^{iue_{m}(t_{f})} e^{-iue_{n}(t_{0})} \mathrm{Tr} P_{m}(t_{f}) U_{t_{f},t_{0}} \rho_{n} U_{t_{f},t_{0}}^{+} \rho_{n} \\ &= \sum_{m,n} \mathrm{Tr} e^{iuH(t_{f})} P_{m}(t_{f}) U_{t_{f},t_{0}} e^{-iH(t_{0})} \rho_{n} U_{t_{f},t_{0}}^{+} \rho_{n} \\ &= \mathrm{Tr} e^{iuH_{H}(t_{f})} e^{-iuH(t_{0})} \bar{\rho}(t_{0}) \\ &\equiv \langle e^{iuH(t_{f})} e^{-iuH(t_{0})} \rangle_{t_{0}} \\ H_{H}(t_{f}) &= U_{t_{f},t_{0}}^{\dagger} H(t_{f}) U_{t_{f},t_{0}}, \\ \bar{\rho}(t_{0}) &= \sum_{n} P_{n}(t_{0}) \rho(t_{0}) P_{n}(t_{0}), \quad \bar{\rho}(t_{0}) = \rho(t_{0}) \iff [\rho(t_{0}), H(t_{0})] \end{aligned}$$

Work is not an observable

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner Note: $G_{t_{f},t_0}(u)$ is a CORRELATION FUNCTION. If work was an observable, i.e. if a hermitean operator W existed then the characteristic function would be of the form of an EXPECTATION VALUE

$${\cal G}_W(u)=\langle e^{iuW}
angle ={
m Tr}e^{iuW}
ho(t_0)$$

Hence, work is not an observable.

P. Talkner, P. Hänggi, M. Morillo, Phys. Rev. E **77**, 051131 (2008) P.Talkner, E. Lutz, P. Hänggi, Phys. Rev. E **75**, 050102(R) (2007)

Canonical initial state

$$\rho(t_0) = Z^{-1}(t_0)e^{-\beta H(t_0)}, \quad Z(t_0) = \mathsf{Tr}e^{-\beta H(t_0)}, \quad \bar{\rho}(t_0) = \rho(t_0)$$

$$G_{t_f,t_0}^c(\beta, u) = Z^{-1}(t_0) \operatorname{Tr} e^{iuH_H(t_f)} e^{-iuH(t_0)} e^{-\beta H(t_0)}$$

Fluctuation Theorem fo Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner Choose $u = i\beta$

$$\langle e^{-\beta w} \rangle = \int dw \ e^{-\beta w} p_{t_f, t_0}(w)$$

$$= G_{t_f, t_0}^c(i\beta) \qquad \text{quantum}$$

$$= \text{Tr}e^{-\beta H_H(t_f)} e^{\beta H(t_0)} Z^{-1}(t_0) e^{-\beta H(t_0)} \qquad \text{Jarzynski}$$

$$= \text{Tr}e^{-\beta H(t_f)} / Z(t_0)$$

$$= Z(t_f) / Z(t_0)$$

$$= e^{-\beta \Delta F}$$

Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

$$u \rightarrow -u + i\beta$$
 and time-reversal

$$Z(t_0)G_{t_f,t_0}^c(u) = \operatorname{Tr} \bigcup_{t_f,t_0}^+ e^{iuH(t_f)} \bigcup_{t_f,t_0} e^{i(-u+i\beta)H(t_0)}$$

= Tr $e^{-i(-u+i\beta)H(t_f)}e^{-\beta H(t_f)} \bigcup_{t_0,t_f}^+ e^{i(-u+i\beta)H(t_0)} \bigcup_{t_0,t_f}$
= $Z(t_f)G_{t_0,t_f}^c(-u+i\beta)$

$$\frac{p_{t_f,t_0}(w)}{p_{t_0,t_f}(-w)} = \frac{Z(t_f)}{Z(t_0)}e^{\beta w} = e^{-\beta(\Delta F - w)}$$

Tasaki-Crooks theorem

- H. Tasaki, cond-mat/0009244.
- P. Talkner, P. Hänggi, J. Phys. A 40, F569 (2007).

Microcanonical initial state

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

$$ho(t_0) = \omega_E^{-1}(t_0)\delta(H(t_0) - E),$$

 $\omega_E(t_0) = \operatorname{Tr} \delta(H(t_0 - E)) = e^{S(E, t_0)/k_B}$

 $\omega_E(t_0)$: Density of states, $S(E, t_0)$: Entropy

$$p_{t_f,t_0}^{\mathsf{mc}}(E,w) = \omega_E^{-1}(t_0) \operatorname{Tr} \delta(H_H(t_f) - E - w) \delta(H(t_0) - E)$$

$$\frac{p_{t_f,t_0}^{\rm mc}(E,w)}{p_{t_0,t_f}^{\rm mc}(E+w,-w)} = \frac{\omega_{E+w}(t_f)}{\omega_E(t_0)} = e^{[S(E+w,t_f)-S(E,t_0)]/k_B}$$

P.Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008)

Example

Driven harmonic oscillator

$$H(t) = \hbar \omega a^+ a + f^*(t)a + f(t)a^+, \qquad f(t) = 0 \text{ for } t < t_0$$

$$\begin{aligned} G_{t_{f},t_{0}}(u) &= \exp\left[-iu\frac{|f(t_{f})|^{2}}{\hbar\omega} + \left(e^{iu\hbar\omega} - 1\right)|z|^{2}\right] \sum_{n=0}^{\infty} p_{n}L_{n}\left(4|z|^{2}\sin^{2}\frac{\hbar\omega u}{2}\right) \\ p_{n} &= \operatorname{Tr}P_{n}(t_{0})\rho(t_{0}) = \langle n|\rho(t_{0})|n\rangle, \qquad z = \frac{1}{\hbar\omega} \int_{t_{0}}^{t_{f}} ds\frac{df(s)}{ds}e^{i\omega s} \\ \langle w\rangle &= \hbar\omega|z|^{2} - \frac{|f(t_{f})|^{2}}{\hbar\omega}, \quad \langle w^{2}\rangle - \langle w\rangle^{2} = 2(\hbar\omega)^{2}|z|^{2}(\langle a^{+}a\rangle_{0} + \frac{1}{2}) \\ \langle w\rangle: \text{ independent of initial state;} \\ \langle \cdot\rangle: \text{ average w.r.t. initial state } \bar{\rho}(t_{0}) = \sum_{n} p_{n}|n\rangle\langle n|. \\ \text{P. Talkner, S. Burada, P. Hänggi, PRE 78, 011115 (2008). \end{aligned}$$

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

mc.i.s. $n_0 = 0, 3$

Fluctuation Theorem fo Arbitrary Open Quantum Systems

$$|lpha
angle = e^{lpha a^+ - lpha^* a} |0
angle$$

 $p_n = rac{|lpha|^{2n}}{n!} e^{-|lpha|^2}$

Candidate experimental check of Jarzynski equality in the quantum regime

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

Atom in Paul Trap: Quantum Harmonic Oscillator

- Prepare oscillator in thermal state
- Probe the oscillator initial eigenstate
- Change trap stiffness
- Probe the oscillator final eigenstate
- Construct $p_{t_f,t_0}(W)$

G. Huber, F. Schmidt-Kaler, S. Deffner, E.Lutz, PRL **101** 070403 (2008)

Open Quantum Systems: Weak Coupling

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

$$H(t) = H^{S}(t) + H^{B} + H^{SB}$$

$$\begin{aligned} H^{S}(t)P_{i,\alpha}(t) &= e_{i}^{S}(t)P_{i,\alpha}(t), \\ H^{B}P_{i,\alpha}(t) &= e_{\alpha}^{B}P_{i,\alpha}(t), \\ e_{i}^{S}(t_{f}) - e_{j}^{S}(t_{0}) &= E = \text{internal energy change} \\ e_{\alpha}^{B} - e_{\beta}^{B} &= -Q = \text{exchanged heat} \\ \bar{\rho}_{0} &= \sum_{i,\alpha} P_{i,\alpha}(t_{0})\rho_{0}P_{i,\alpha}(t_{0}) \\ p_{t_{f},t_{0}}(E,Q) &= \text{joint PDF for E and } Q \\ G_{t_{f},t_{0}}^{E,Q}(u,v) &= \text{Tr}e^{i\left(uH_{H}^{S}(t_{f}) - vH_{H}^{B}(t_{f})\right)}e^{-i\left(uH^{S}(t_{0}) - vH^{B}\right)}\bar{\rho}_{0} \end{aligned}$$

P. Talkner, M. Campisi, P. Hänggi, J.Stat.Mech. (2009) P02025

Theorem fo Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

$$\rho_{0} = Z^{-1}(t_{0})e^{-\beta(H^{S}(t_{0})+H^{SB}+H^{B})} \text{ therm. eq. at } t_{0}$$

$$\approx \rho_{0}^{0} \left[1 - \int_{0}^{\beta} d\beta' e^{\beta'(H^{S}(t_{0})+H^{B})} \delta H^{SB} e^{-\beta'(H^{S}(t_{0})+H^{B})} \right]$$

$$\rho_{0}^{0} = Z_{S}^{-1}(t_{0})Z_{B}^{-1}e^{-\beta(H^{S}(t_{0})+H^{B})}$$

$$\begin{split} B_{0}^{-1} &= Z_{S}^{-1}(t_{0}) Z_{B}^{-1} e^{-\beta (H^{2}(t_{0}) + H^{2})} \\ \bar{\rho}_{0} &= \sum_{i,\alpha} P_{i,\alpha}(t_{0}) \rho_{0} P_{i,\alpha}(t_{0}) \\ &= \rho_{0}^{0} + \mathcal{O}\left((\delta H^{SB})^{2} \right) \end{split}$$

 $G_{t_f,t_0}^{E,Q}(u,v) = \operatorname{Tr} e^{i\left(uH_H^S(t_f) - vH_H^B(t_f)\right)} e^{-i\left(uH^S(t_0) - vH^B\right)} \rho_0^0$

Crooks theorem for energy and heat

Fluctuation Theorem for Arbitrary Open Quantum Systems

$$Z_{\mathcal{S}}(t_0)G_{t_f,t_0}^{\mathcal{E},\mathbf{Q}}(u,v) = Z_{\mathcal{S}}(t_f)G_{t_0,t_f}^{\mathcal{E},\mathbf{Q}}(-u+i\beta,-v-i\beta)$$

$$\frac{p_{t_f,t_0}(E,Q)}{p_{t_0,t_f}(-E,-Q)} = \frac{Z_S(t_f)}{Z_S(t_0)} e^{\beta(E-Q)} = e^{-\beta(\Delta F_S - E + Q)}$$

$$w = E - Q$$
: work

$$\frac{p_{t_f,t_0}^{Q,w}(Q,w)}{p_{t_0,t_f}^{Q,w}(-Q,-w)} = e^{-\beta(\Delta F_S - w)}, \quad \frac{p_{t_f,t_0}^w(w)}{p_{t_0,t_f}^w(-w)} = e^{-\beta(\Delta F_S - w)}$$

$$p_{t_f,t_0}(Q|w) = p_{t_0,t_f}(-Q|-w), \quad p_{t_f,t_0}(Q|w) = rac{p_{t_f,t_0}^{Q,w}(Q,w)}{p_{t_f,t_0}^{W}(w)}$$

Strong coupling: Quantum Treatment

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner $H(t) = H_S(t) + H_{SB} + H_B$

Fluctuation Theorem for the total system:

$$\frac{p_{t_f,t_0}(w)}{p_{t_0,t_f}(-w)} = \frac{Y(t_f)}{Y(t_i)}e^{\beta w}$$

where:

$$Y(t) = \mathrm{Tr}e^{-\beta(H_{S}(t) + H_{SB} + H_{B})}$$

and

$$w = e_m(t_f) - e_n(t_0)$$

 $e_n(t)$ = instantaneous eigenvalues of total system

Free energy of a system strongly coupled to an environment

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner Thermodynamic argument:

$$F_S = F - F_B^0$$

F total system free energy F_B bare bath free energy.

With this form of free energy the three laws of thermodynamics are fulfilled.

G.W. Ford, J.T. Lewis, R.F. O'Connell, Phys. Rev. Lett. 55, 2273 (1985);
P. Hänggi, G.L. Ingold, P. Talkner, New J. Phys. 10,115008 (2008);
G.L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 0611505 (2009).

Partition function

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

$$Z_S(t)=\frac{Y(t)}{Z_B}$$

where $Z_B = \text{Tr}_B e^{-\beta H_B}$

Fluctuation Theorem for Arbitrary Open Quantum Systems

$$\frac{p_{t_f,t_0}(w)}{p_{t_0,t_f}(-w)} = e^{\beta w} \frac{Y(t_f)}{Y(t_0)} = e^{\beta w} \frac{Z_S(t_f)}{Z_S(t_0)} = e^{\beta (w - \Delta F_S)}$$
$$\langle e^{-\beta w} \rangle = e^{-\beta \Delta F_S}$$

Quantum Hamiltonian of Mean Force

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

$$Z_{\mathcal{S}}(t) := rac{Y(t)}{Z_B} = \mathrm{Tr}_{\mathcal{S}} e^{-eta H^*(t)}$$

where

also

$$H^*(t) := -\frac{1}{\beta} \ln \frac{\operatorname{Tr}_B e^{-\beta (H_S(t) + H_{SB} + H_B)}}{\operatorname{Tr}_B e^{-\beta H_B}}$$
$$\frac{e^{-\beta H^*(t)}}{Z_S(t)} = \frac{\operatorname{Tr}_B e^{-\beta H(t)}}{Y(t)}$$

M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009).

Strong coupling: Example

System: Two-level atom; "bath": Harmonic oscillator

$$H = \frac{\epsilon}{2}\sigma_z + \Omega\left(a^{\dagger}a + \frac{1}{2}\right) + \chi\sigma_z\left(a^{\dagger}a + \frac{1}{2}\right)$$
$$H^* = \frac{\epsilon^*}{2}\sigma_z + \gamma$$
$$\epsilon^* = \epsilon + \chi + \frac{2}{\beta}\operatorname{artanh}\left(\frac{e^{-\beta\Omega}\sinh(\beta\chi)}{1 - e^{-\beta\Omega}\cosh(\beta\chi)}\right)$$
$$\gamma = \frac{1}{2\beta}\ln\left(\frac{1 - 2e^{-\beta\Omega}\cosh(\beta\chi) + e^{-2\beta\Omega}}{(1 - e^{-\beta\Omega})^2}\right)$$

$$Z_{S} = \operatorname{Tr} e^{-\beta H^{*}} \quad F_{S} = -k_{b}T \ln Z_{S}$$
$$S_{S} = -\frac{\partial F_{S}}{\partial T} \quad C_{S} = T\frac{\partial S_{S}}{\partial T}$$

M. Campisi, P. Talkner, P. Hänggi, J. Phys. A: Math. Theor. 42 392002 (2009)

Fluctuation Theorem for Arbitrary Open Quantum Systems

Entropy and specific heat

Fluctuation Theorem for Arbitrary Open Quantum Systems

Peter Hänggi, Michele Campisi, and Peter Talkner

Summary

- CORRELATION FUNCTION expression of characteristic function of work valid for all initial states of a closed system.
- Work is not an oservable.
- Canonical initial states.
 - Quantum Crooks' fluctuation theorem.
 - Quantum Jarzynski's work theorem.
- Microcanonical state:
 - Crooks type theorem yields microcanonical entropy changes.
- Open Systems
 - Weak coupling: Fluctuation theorems for energy and heat and work and heat
 - Strong coupling: Fluctuation and work theorems

References

Fluctuation Theorem for Arbitrary Open Quantum Systems

- P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E, 75, 050102(R) (2007).
- P. Talkner, P. Hänggi, J Phys. A 40, F569 (2007).
- P. Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008).
- P. Talkner, P.S. Burada, P. Hänggi, Phys. Rev. E 78, 011115 (2008).
- P. Hänggi, G.-L. Ingold, P. Talkner, New J. Phys. 10, 115008 (2008)
- P. Talkner, M. Campisi, P. Hänggi, J. Stat. Mech., P02025 (2009).
- G.-L. Ingold, P. Talkner, P. Hänggi, Phys. Rev. E **79**, 0611505 (2009)
- M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009).
- M. Campisi, P. Talkner, P. Hänggi, J. Phys. A: Math. Theor. 42 392002 (2009)