Thermal equilibration between two quantum systems

Peter Hänggi

University of Augsburg

with A. Ponomarev, and S. Denisov, arXiv:1004.2232

Peter Hänggi Thermal equilibration between two quantum systems

Peter Hänggi Thermal equilibration between two quantum systems

э

Peter Hänggi Thermal equilibration between two quantum systems

э

Peter Hänggi Thermal equilibration between two quantum systems

э

Peter Hänggi Thermal equilibration between two quantum systems

< □ > < 同

Thermodynamics from the first principles

E. Schrödinger: "The exchange of energy according to wave mechanics", Annalen der Physik **83** (4), 956 (1927)

Microscopic derivation of thermodynamic behavior?

$$|\Psi_n
angle = \sum_{n=1}^N {
m e}^{-i\epsilon_n t/\hbar} {
m c}_n |\psi_n
angle$$

Time evolution of a quantum system is

- Iinear
- deterministic
- encoded in initial conditions via energy spectrum

イロト イポト イヨト イヨ

Introduction: research timeline

Search with keywords (quantum + thermalization) in article titles

Published Items in Each Year

Peter Hänggi Thermal equilibration between two quantum systems

Introduction: irreversibility

Peter Hänggi Thermal equilibration between two quantum systems

Prehistory and recent developments

a System (A) weakly coupled to huge finite environment (B)

- Canonical thermalization of A
 - Idea: Schrödinger, Annalen der Physik 83 (4), 956 (1927)
 Worked out in: Bocchieri & Loinger, Phys. Rev. 114, 948 (1959)
 - (A+B) as a sum of specific pure states: H. Tasaki, PRL **80**, 1373 (1998)
 - General pure state of (A+B): Goldstein et al, PRL 96, 050403 (2006)

Prehistory and recent developments

b System as a part of "Universe"

For entire system in a pure state the subsystem bears

Canonical typicality

Popescu et al, Nature Physics 2, 754 (2006)

C Single isolated quantum system

 Microcanonical thermalization after quench Rigol et al, Nature 432, 854 (2008)

< ロ > < 同 > < 三 >

Our model setup

0

d | Finite subsystems on equal footing: $H \equiv H_A = H_B$

d

$$\mathcal{H}_{ ext{tot}}^{\lambda} = \mathcal{H}_{ ext{A}} \otimes \mathbf{1}_{ ext{B}} + \mathbf{1}_{ ext{A}} \otimes \mathcal{H}_{ ext{B}} + \lambda \mathcal{H}_{ ext{int}}$$

Subsystems: different initial temperatures, T_A and T_B

- in Gibbs states, i.e. $\rho^{A,B}(0) \propto \sum_{n} e^{-\epsilon_n/k_B T_{A,B}} |n\rangle \langle n|$, or in pure "typical" states, i.e. $\rho^{A,B}(0) = |\psi\rangle \langle \psi|$ with $|\psi\rangle \propto \sum_{n} e^{i\theta_n} e^{-\epsilon_n/2k_B T_{A,B}} |n\rangle$.
- The entire system: $\rho^{\text{tot}}(0) = \rho^{A}(0) \otimes \rho^{B}(0)$

周 ト イ ヨ ト イ ヨ ト

W

What is the equilibrium population of subsystem energy levels?

$$oldsymbol{
ho}_{j}^{A,B}(t > au_{eq}) = \operatorname{Tr}_{B,A}\left[arrho^{\operatorname{tot}}(t)\mathbf{P}_{j}^{A,B}
ight]$$

here projectors: $\mathbf{P}_{j}^{A} = |j\rangle\langle j| \otimes \mathbf{1}_{B}$, and $\mathbf{P}_{j}^{B} = \mathbf{1}_{A} \otimes |j\rangle\langle j|$.

How do the populations evolve towards equilibrium distribution?

- Intermediate states, time scales, and etc.
- Where equilibration (irreversibility) in isolated quantum system comes from?

イロト イ押ト イヨト イヨト

Density matrix

$$\varrho^{\text{tot}}(t) = \mathbf{U}(t)\varrho^{\text{tot}}(0)\mathbf{U}(t)^{\dagger}$$

Evolution operator

In the basis
$$|\psi_n^{\lambda=0}\rangle = |\psi_{kj}^{\lambda=0}\rangle \equiv |k\rangle_A \otimes |j\rangle_B$$
:

$$U_{n,n'}(t) = \sum_{n''} e^{-iE_{n''}^{\lambda}t/\hbar} \Lambda_{n'',n}^* \Lambda_{n'',n'}^{\lambda}$$

Transformation matrix:

$$|\psi_{n}^{\lambda}
angle = \sum_{n'} \Lambda_{n,n'} |\psi_{n'}^{\lambda=0}
angle$$

イロト イボト イヨト イヨト

ъ

Superweak coupling: $\lambda \{H_{int}\} < \{\Delta E^{\lambda=0}\}$

$$E_{kj}^{0} = \epsilon_{k} + \epsilon_{j} = \epsilon_{j} + \epsilon_{k} = E_{jk}^{0}$$
$$|\psi_{kj}^{\lambda}\rangle = \frac{1}{\sqrt{2}} \left(|\psi_{kj}^{0}\rangle + \chi_{kj}|\psi_{jk}^{0} \right)$$
where $\chi_{kj} = \operatorname{sgn}(k - j) - \operatorname{sign}$ function.

. . .

Non-degenerate levels:
$$k = j$$

 $E_{kj}^0 = \epsilon_k + \epsilon_j = 2\epsilon_k$
 $|\Psi_{kk}^\lambda\rangle = |\Psi_{kk}^0\rangle$

- ())

▲ @ ▶ ▲ ⊇ ▶

ъ

Superweak coupling: $\lambda \{H_{int}\} < \{\Delta E^{\lambda=0}\}$

Exact result

$$p_k^{\mathrm{A}}(t) = \frac{1}{2} \left[p_k^{\mathrm{A}}(0) + p_k^{\mathrm{B}}(0) \right] + \frac{1}{2} \sum_j X_{kj}^{\mathrm{A}} \cos\left(\omega_{kj}^{\lambda} t\right),$$

where
$$X_{kj}^{A} = p_{k}^{A}(0)p_{j}^{B}(0) - p_{j}^{A}(0)p_{k}^{B}(0), \ \omega_{kj}^{\lambda} = (E_{kj}^{\lambda} - E_{jk}^{\lambda})/\hbar.$$

Equilibration to arithmetic mean

$$oldsymbol{
ho}_k^{\mathrm{A}}(t > au_{\mathrm{eq}}) pprox rac{1}{2} \left[oldsymbol{
ho}_k^{\mathrm{A}}(0) + oldsymbol{
ho}_k^{\mathrm{B}}(0)
ight],$$

estimation for the equilibration time: $\tau_{\rm eq} \approx 2\pi/{\rm RMSD}(\omega_{jk}^{\lambda})$.

-

Weak coupling: $\{\Delta E\} < \lambda \{H^{int}\}$ and $\lambda \Delta_{H^{int}} \ll \Delta_{H_s}$

Generalization to $\Lambda_{n,n'}$ having different $2n \times 2n$ blocks

$$E_{kj}^{0} = \epsilon_{k} + \epsilon_{j} = \epsilon_{j} + \epsilon_{k} = E_{jk}^{0}$$

$$|\psi_{kj}^{\lambda}
angle = \sum_{\{k'j'\}_{kj}} c_{k'j'} \left(|\psi_{k',j'}^{0}
angle + \chi_{k,j}|\psi_{j',k'}^{0}
ight) (c_{k'j'} = c_{j'k'})$$

where $\chi_{kj} = \operatorname{sgn}(k - j) - \operatorname{sign}$ function.

Equilibration to thermal state? $p_k^{A}(t > \tau_{eq}) \approx \frac{1}{2} \left[p_k^{A}(0) + p_k^{B}(0) \right] + \Delta_k^{A}$

corrections Δ_k^A due to blocks of size 2n > 2.

・ 同 ト ・ ヨ ト ・ - ヨ ト …

Weak coupling: $\{\Delta E\} < \lambda \{H^{int}\}$ and $\lambda \Delta_{H^{int}} \ll \Delta_{H_S}$

Generalization to $\Lambda_{n,n'}$ having different $2n \times 2n$ blocks

$$E_{kj}^{0} = \epsilon_{k} + \epsilon_{j} = \epsilon_{j} + \epsilon_{k} = E_{jk}^{0}$$

$$|\psi_{kj}^{\lambda}
angle = \sum_{\{k'j'\}_{kj}} c_{k'j'} \left(|\psi_{k',j'}^{0}
angle + \chi_{k,j}|\psi_{j',k'}^{0}
ight) (c_{k'j'} = c_{j'k'})$$

where $\chi_{kj} = \operatorname{sgn}(k - j) - \operatorname{sign}$ function.

Equilibration to thermal state

$$oldsymbol{
ho}_k^{\mathrm{A}}(t > au_{\mathrm{eq}}) pprox rac{1}{2} \left[oldsymbol{
ho}_k^{\mathrm{A}}(0) + oldsymbol{
ho}_k^{\mathrm{B}}(0)
ight] + \Delta_k^{\mathrm{A}}$$

corrections Δ_k^A drag $p_k^{A,B}(t)$ towards canonical distribution

▲口×▲圖×▲理×▲理× 三里

 $\epsilon_k [\overline{s}]$

Exact numerical calculations for two different models

1. Cold atoms in two traps

- 2 x Bose-Hubbard Hamiltonian,
 - N = 5 (Hilbert space size 15876)

• Contact coupling,
$$n_{j_A=L} \otimes n_{j_B=1}$$

2. Random matrix model

- 2 x Random matrix (RM) GOE Hamiltonian, $\mathcal{N} = 192$ (Hilbert space size 36864)
- A ↔ B invariant RM GOE coupling term, H^{GOE}_{int} ⊗ H^{GOE}_{int}

・ 同 ト ・ ヨ ト ・ ヨ ト …

Arithmetic equilibration (cold atoms)

Arithmetic vs. Thermal equilibration (cold atoms)

Peter Hänggi Thermal equilibration between two quantum systems

Arithmetic vs. Thermal equilibration (RM model)

Peter Hänggi Thermal equilibration between two quantum systems

Quasistatic equilibration (cold atoms)

Evolution of initially pure (dashed lines) and Gibbs (solid lines) states.

Typicality and growth of entanglement entropy

Evolution of initially pure state.

- Non-equilibrium thermodynamic process in an isolated quantum system in a pure state
- Quasistatic thermal equilibration: assignment of temperature at any instant of time
- Irreversibility: development of quantum correlations
- "Dynamical typicality" of thermodynamic evolution

A. V. Ponomarev, S. Denisov, P. Hänggi, arXiv:1004.2232

イロト イポト イヨト イヨト

Thank You!

イロン イロン イヨン イヨン

ъ

Arithmetic vs. Thermal equilibration (cold atoms)

Non-identical systems in contact $(L_A = N_A = 5 \text{ and } L_B = 6, N_B = 4).$