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Birkhäuser Verlag, Basel, 2006 Poincaré Seminar 2005

Brownian Motion, “Diverse and Undulating”

Bertrand Duplantier

Translation by Emily Parks and the author from the original French text1

Abstract. Truly man is a marvelously vain, diverse, and undulating object. It is hard
to found any constant and uniform judgment on him. Michel de Montaigne, Les
Essais, Book I, Chapter 1: “By diverse means we arrive at the same end”; in The
Complete Essays of Montaigne, Donald M. Frame transl., Stanford University Press
(1958).

Pour distinguer les choses les plus simples de celles qui sont compliquées et pour
les chercher avec ordre, il faut, dans chaque série de choses où nous avons déduit
directement quelques vérités d’autres vérités, voir quelle est la chose la plus simple,
et comment toutes les autres en sont plus, ou moins, ou également éloignées. René

Descartes, Règles pour la direction de l’esprit, Règle VI.
In order to distinguish what is most simple from what is complex, and to deal

with things in an orderly way, what we must do, whenever we have a series in
which we have directly deduced a number of truths one from another, is to observe
which one is most simple, and how far all the others are removed from this-whether
more, or less, or equally. René Descartes, Rules for the Direction of the Mind,
Rule VI.

Car, supposons, par exemple que quelqu’un fasse quantité de points sur le papier
à tout hasard, comme font ceux qui exercent l’art ridicule de la géomance. Je dis
qu’il est possible de trouver une ligne géométrique dont la notion soit constante
et uniforme suivant une certaine règle, en sorte que cette ligne passe par tous ces
points, et dans le même ordre que la main les avaient marqués.

... Mais quand une règle est fort composée, ce qui luy est conforme, passe pour
irrégulier.

G. W. Leibniz, Discours de métaphysique, H. Lestienne ed., Félix Alcan, Paris
(1907).

Thus, let us assume, for example, that someone jots down a number of points
at random on a piece of paper, as do those who practice the ridiculous art of
geomancy.2 I maintain that it is possible to find a geometric line whose notion is
constant and uniform, following a certain rule, such that this line passes through
all the points in the same order in which the hand jotted them down.

... But, when the rule is extremely complex, what is in conformity with it passes
for irregular.

G. W. Leibniz, Discourse on Metaphysics.

Mens agitat molem. Virgil, AEneid. lib. VI.

Un coup de dés jamais n’abolira le hasard. Stéphane Mallarmé, Cosmopolis,
1897.

A throw of the dice never will abolish chance.

1Expanded and updated version (13 May 2007).
2Note: From géomance, a way to foretell the future; a form of divination.

http://arXiv.org/abs/0705.1951v1


202 B. Duplantier Poincaré Seminar 2005

L’antimodernisme, c’est la liberté des modernes. Antoine Compagnon, about
his book “Les antimodernes : de Joseph de Maistre à Roland Barthes,” Bibliothèque
des Idées, Gallimard, March 2005.

Antimodernism is the liberty of modern men.

Here we briefly describe the history of Brownian motion, as well as the contribu-
tions of Einstein, Sutherland, Smoluchowski, Bachelier, Perrin and Langevin to its
theory. The always topical importance in physics of the theory of Brownian motion
is illustrated by recent biophysical experiments, where it serves, for instance, for
the measurement of the pulling force on a single DNA molecule.

In the second part, we stress the mathematical importance of the theory of Brow-
nian motion, illustrated by two chosen examples. The by-now classic representation
of the Newtonian potential by Brownian motion is explained in an elementary way.
We conclude with the description of recent progress seen in the geometry of the
planar Brownian curve. At its heart lie the concepts of conformal invariance and
multifractality, associated with the potential theory of the Brownian curve itself.

1 A brief history of Brownian motion

Several classic works give a historical view of Brownian motion. Amongst them, we
cite those of Brush,3 Nelson,4 Nye,5 Pais6, Stachel7 and Wax.8 We also cite a num-
ber of essays in mathematics,9 physics,10 11 especially those which have appeared
very recently for the centenary of Einstein’s 1905 articles,12 and in biology.13

3Stephen G. Brush, The Kind of Motion We Call Heat, Book 2, p. 688, North Holland (1976).
4E. Nelson, Dynamical Theories of Brownian motion, Princeton University Press (1967),

second ed., August 2001, http://www.math.princeton.edu/∼nelson/books.html .
5Mary Jo Nye, Molecular Reality: A Perspective on the Scientific Work of Jean Perrin, New-

York: American Elsevier (1972).
6Abraham Pais, “Subtle is the Lord...,” The Science and Life of Albert Einstein, Oxford

University Press (1982).
7John Stachel, Einstein’s Miraculous Year (Princeton University Press, Princeton, New Jersey,

1998); Einstein from ‘B’ to ‘Z’, Birkhäuser, Boston, Basel, Berlin (2002).
8N. Wax, Selected Papers on Noise and Stochastic Processes, New-York, Dover (1954). It

contains articles by Chandrasekhar, Uhlenbeck and Ornstein, Wang and Uhlenbeck, Rice, Kac,
Doob.

9J.-P. Kahane, Le mouvement brownien : un essai sur les origines de la théorie mathématique,
in Matériaux pour l’histoire des mathématiques au XXème siècle, Actes du colloque à la mémoire
de Jean Dieudonné (Nice, 1996), volume 3 of Séminaires et congrès, pages 123-155, French
Mathematical Society (1998).

10M. D. Haw, J. Phys. C 14, pp. 7769-7779 (2002).
11R. M. Mazo, Brownian Motion, Fluctuations, Dynamics and Applications, International

Series of Monographs on Physics 112, Oxford University Press (2002).
12B. Derrida and É. Brunet in Einstein aujourd’hui, edited by M. Leduc and M. Le Bel-

lac, Savoirs actuels, EDP Sciences/CNRS Editions (2005); P. Hänggi et al., New J. Phys. 7
(2005); J. Renn, Einstein’s invention of Brownian motion, Ann. d. Phys. (Leipzig) 14, Sup-
plement, pp. 23-37 (2005); D. Giulini & N. Straumann, Einstein’s Impact on the Physics of
the Twentieth Century, arXiv:physics/0507107; N. Straumann, On Einstein’s Doctoral Thesis,
arXiv:physics/0504201; S. N. Majumdar, Brownian functionals in Physics and Computer Sci-
ence, Current Science 89, pp. 2075-2092 (2005); J. Bernstein, Einstein and the existence of atoms,
Am. J. Phys. 74, pp. 863-872 (2006).

13E. Frey and K. Kroy, Brownian Motion: a Paradigm of Soft Matter and Biological Physics,
Ann. d. Phys. (Leipzig) 14, pp. 20-50 (2005), arXiv:cond-mat/0502602.

http://www.math.princeton.edu/~nelson/books.html
http://arXiv.org/abs/physics/0507107
http://arXiv.org/abs/physics/0504201
http://arXiv.org/abs/cond-mat/0502602
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1.1 Robert Brown

1.1.1 Brown’s observations and precursors

Robert Brown (1773-1858), of Scottish descent, was one of the greatest botanists
of his time in Great Britain. He is renowned for his discovery of the nucleus of plant
cells, for being the first to recognize the phenomenon of cytoplasmic streaming,
and for the classification of several thousands dried plant specimens he brought
back to England from a trip to Australia in 1801-1805.

In 1801 indeed, at the age of twenty-eight, he was chosen by Sir Joseph Banks
as the botanist to accompany Matthew Flinders in the Investigator on the first
circumnavigation of the Australian continent. The voyage was to extend over 5
years, and Brown used his time well, assembling substantial collections of plants,
animals and minerals, and kept a diary.14

Brown returned to England with his scientific reputation established. As said
by Brown’s biographer, D. J. Mabberley,15 Brown’s Australian experiences and
connections with the Continental schools of scientific thought moulded his research,
with the result that he was recognized as one of the great European intellectuals
of his day. Brown was called by Humboldt “Princeps Botanicorum.”

In a pamphlet, dated July 30th, 1828, first printed privately,16 then published
in the Edinburgh New Philosophical Journal later that year,17 and republished
several times elsewhere,18 entitled “A Brief Account of Microscopical Observations
Made in the Months of June, July, and August, 1827, on the Particles Contained in
the Pollen of Plants; and on the General Existence of Active Molecules in Organic
and Inorganic Bodies,” Brown reported on the random movement of different
particles that are small enough to be in suspension in water. It is an extremely
erratic motion, apparently without end (see figure 1).19 A second article, dated
July 28th, 1829, was published later and bears the brief title “Additional Remarks
on Active Molecules.”20

14A rivulet south of Hobart in Southern Tasmania, Browns River, is named after him (as
mentioned by Bruce H. J. McKellar, in Einstein, Sutherland, Atoms, and Brownian Mo-
tion, Einstein International Year of Physics 2005, Melbourne AAPPS Conference, July 2005,
http://www.ph.unimelb.edu.au/). See also Some aspects of the work of the botanist Robert Brown
(1773-1858) in Tasmania in 1804, Tasforests, Vol. 12, pp. 123-146 (2000).

15D. J. Mabberley, Jupiter Botanicus: Robert Brown of the British Museum, Lubrecht &
Cramer Ltd (1985).

16R. Brown, A Brief Account of Microscopical Observations Made in the Months of June,
July, and August, 1827, on the Particles Contained in the Pollen of Plants; and on the General
Existence of Active Molecules in Organic and Inorganic Bodies, July 30th, 1828 [Not Pub-
lished]. It can be found in: R. Brown, The miscellaneous botanical works of Robert Brown,
Vol. 1, pp. 464-479, John J. Bennett, ed., R. Hardwicke, London (1866); available online at:
http://sciweb.nybg.org/science2/pdfs/dws/Brownian.pdf .

17R. Brown, Edinburgh New Phil. J. 5, pp. 358-371 (1828).
18R. Brown, Ann. Sci. Naturelles, (Paris) 14, pp. 341-362 (1828); Phil. Mag. 4, pp. 161-173

(1828); Ann. d. Phys. u. Chem. 14, pp. 294-313 (1828).
19One can find examples of real Brownian motion at: www.lpthe.jussieu.fr/poincare/.
20R. Brown, Additional Remarks on Active Molecules, Edinburgh Journal of Science, 1, new

series, pp. 314-319 (1829); Phil. Mag. 6, pp. 161-166 (1829); in: R. Brown, The miscellaneous

http://www.ph.unimelb.edu.au/
http://sciweb.nybg.org/science2/pdfs/dws/Brownian.pdf
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Figure 1: Brownian motion described by a pollen granule in suspension.

Brown used the wording active molecule in these titles in a sense different from
its current one. It referred to earlier teaching of Georges-Louis Leclerc de Buffon
(1707-1788) who introduced this word for the hypothetical ultimate constituents
of the bodies of living beings. Only later with the acceptance and development of
Dalton’s 1803 atomic theory the word molecule was going to take on its modern
meaning.

The first plant Brown studied was Clarkia pulchella, whose pollen grains
contain granules varying “from nearly 1

4000 to about 1
3000 of an inch in length,

and of a figure between cylindrical and oblong, perhaps slightly flattened...” [from
about six to eight microns]. It is these granules, not the whole pollen grains, upon
which Brown made his observations. Concerning them, he wrote:

“While examining the form of these particles immersed in water, I observed many of them

very evidently in motion; their motion consisting not only of a change of place in the fluid,

manifested by alterations in their relative positions, but also not unfrequently of a change of

form in the particle itself; a contraction or curvature taking place repeatedly about the middle

of one side, accompanied by a correspondong swelling or convexity on the opposite side of the

particle. In a few instances, the particle was seen to turn on its longer axis. These motions were

such as to satisfy me, after frequently repeated observation, that they arose neither from currents

in the fluid, nor from its gradual evaporation, but belonged to the particle itself.”

Brown made his observations just after the introduction of the first compound
achromatic objectives for microscopes. Still, he used a simple microscope with a
double convex lens, while he also possessed a pocket microscope with two lenses

botanical works of Robert Brown, Vol. 1, pp. 479-486, John J. Bennett, ed., R. Hardwicke, London
(1866); available online at: http://sciweb.nybg.org/science2/pdfs/dws/Brownian.pdf .

http://sciweb.nybg.org/science2/pdfs/dws/Brownian.pdf
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having a delicate adjustment:

“The observations, of which it is my intention to give a summary in the following pages,

have all been made with a simple microscope, and indeed with one and the same lens, the focal

length of which is about 1
32

nd of an inch.”21

In fact, it is nowadays sufficient to look in a microscope to see small objects
dancing.

Brown may have not been the first, however, to observe Brownian motion.
In fact, he discussed in his second article (1829)22 previous observations by others
which could have been interpreted as prior to his. The universal and irregular
motion of small grains suspended in a fluid may have been observed soon after the
discovery of the microscope.

The story begins with Anthony van Leeuwenhoek (1632-1723), a famous con-
structor of microscopes in Delft, who in 1676 was also designated executor of the
estate of the no-less-famous painter Johannes Vermeer, who was apparently a
personal friend.23 Leeuwenhoek built several hundred simple “microscopes,” with
which he went as far as to observe living bacteria and discover the existence of
spermatozoids.

In his second article, Brown then writes:

“I shall conclude these supplementary remarks to my former Observations, by noticing the

degree in which I consider those observations to have been anticipated.

That molecular was sometimes confounded with animalcular motion by several of the

earlier microscopical observers, appears extremely probable from various passages in the writings

of Leeuwenhoek, as well as from a very interesting Paper by Stephen Gray, published in the 19th

volume of the Philosophical Transactions.”24

21It has been sometimes believed that Brown’s attention was directed to the movement of
pollen grains themselves, and it has been even claimed that his microscope was not sufficiently
developed for the observation of such a diminutive phenomenon [D. H. Deutsch, Did Brown
observe Brownian Motion: probably not, Bulletin of the APS 36, 1374 (1991). Reported in Sci-
entific American, 265, 20, August 1991]. The first observations by Brown were then recreated
in 1992 by Brian J. Ford with Brown’s original microscope, pollen grains of Clarkia pulchella,
and also carried out in the month of June! The phenomenon of Brownian motion was indeed
well resolved by the original microscope lens. See Brownian Movement in Clarkia Pollen: A
Reprise of the First Observation, The Microscope, 40, pp. 235-241 (1992) [available online at:
http://www.brianjford.com/wbbrowna.htm].

22R. Brown, Additional Remarks on Active Molecules, op. cit.
23Although no document exists testifying a relationship between Vermeer and van Leeuwen-

hoek, it seems impossible that they did not know one another. The two men were born in Delft
the same year, their respective families were involved in the textile business and they were both
fascinated by science and optics. A commonly accepted and probable hypothesis is that Anthony
van Leeuwenhoek was in fact a model for Vermeer, and perhaps also the source of his scientific
information, for the two famous scientific portraits, The Astronomer, 1668, (Louvre Museum,
Paris), and The Geographer, 1668-69, (Städelsches Kunstinstitut am Main, Frankfurt). (See Jo-
hannes Vermeer, B. Broos et al., National Gallery of Art, Washington, Mauritshuis, The Hague,
Waanders Publishers, Zwolle (1995).)

24S. Gray, Microscopical observations and experiments, Phil. Trans. 19, 280 (1696).

http://www.brianjford.com/wbbrowna.htm
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Next, one meets Needham, Buffon and Spallanzani, the 18th-century protag-
onists of the debate on spontaneous generation.25 Brown continues:

“Needham also, and Buffon, with whom the hypothesis of organic particles originated, seem

to have not unfrequently fallen into the same mistake. And I am inclined to believe that Spallan-

zani, notwithstanding one of his statements respecting them, has under the head of Animalculetti

d’ultimo ordine included the active Molecules as well as true Animalcules.”

Brown further cites Gleichen, “the discoverer of the motions of the Particles
of the Pollen,” Wrisberg and Müller, who, having “adopted in part Buffon’s hy-
pothesis, state the globules, of which they suppose all organic bodies formed, to be
capable of motion;” and Müller, who “distinguishes these moving organic globules
from real Animalcules, with which, he adds, they have been confounded by some
very respectable observers.” Lastly, he cites a “very valuable Paper” published in
1814 by Dr. James Drummond, of Belfast, which “gives an account of the very
remarkable motions of the spicula which form the silvery part of the choroid coat
of the eyes of fishes,” and where “The appearances are minutely described, and
very ingenious reasoning employed to show that, to account for the motions, the
least improbable conjecture is to suppose the spicula animated.”

However, all these works had confined themselves to the examination of the
particles of some organic bodies. Only Bywater, of Liverpool, is cited by Brown,
in the same second article Additional Remarks on Active Molecules, for having
stated in 1819 that “not only organic tissues, but also inorganic substances, consist
of what he terms animated or irritable particles,” and therefore are subject to
“Brownian motion.” However, Brown adds:

“I believe that in thus stating the manner in which Mr. Bywater’s experiments were con-

ducted, I have enabled microscopical observers to judge of the extent and kind of optical illusion

to which he was liable, and of which he does not seem to have been aware.”

As pointed out by R. M. Mazo,26 when citing the work by Van der Pas,27 there
was, however, one predecessor that Brown overlooked. In July of 1784, Jan Ingen-
Housz published a short article entitled Remarks on the use of the microscope,28

that contains the following lines:29

“ ... one must agree that, as long as the droplet lasts, the entire liquid and consequently

everything which is contained in it, is kept in continuous motion by the evaporation, and that

this motion can give the impression that some of the corpuscles are living, even if they have not

the slightest life in them. To see clearly how one can deceive one’s mind on this point if one is not

25Jean Perrin, in his book Les Atomes (Atoms, translated by D. Ll. Hammick, Ox Bow Press,
Woodbridge (1990)), writes: “Buffon and Spallanzani knew of the phenomenon but, possibly
owing to the lack of good microscopes, they did not grasp its nature and regarded the “dancing
particles” as rudimentary animalculae (Ramsey: Bristol Naturalists’ Society, 1881).”

26R. M. Mazo, op. cit.
27P. W. Van der Pas, The discovery of Brownian motion, Scien. Historiae 13, 17 (1971).
28J. Ingen-Housz, in Vermischte Schriften physisch-medizinschen Inhalts, C. F. Wappler, Vi-

enna (1789).
29Van der Pas’ translation from the original French.
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careful, one has only to place a drop of alcohol at the focal point of a microscope and introduce

a little finely ground charcoal therein, and one will see these corpuscles in a confused continuous

and violent motion as if they were animalcules which move violently around.”

However, although Ingen-Housz doubtless observed the motion, he ascribed it to
evaporation and did not follow up his observation with any investigation of it.

Lastly, in 1827, one year before the publication by Brown, similar observations
were also alluded to in France by the young Adolphe Brongniart (1801-1876), in
a long Memoir30 for which he won a Prize in experimental physiology from the
French Academy of Sciences.31 Brongniart’s findings about the motion of particles
appear in a particular paragraph, followed by a note later annexed to his memoir.32

The note below reproduces the original passages.33

It is interesting to notice that Brown actually discussed Brongniart’s work in
detail in the last two pages of his famous 1828 article. There Brown first acknowl-
edges that he was acquainted, before he engaged in his own inquiry in 1827, with

30Adolphe Brongniart, Mémoire sur la Génération et le Développement de l’Embryon dans
les végétaux phanérogames, Ann. Sci. Naturelles (Paris) 12, pp. 41-53, pp. 145-172, pp. 225-296
(1827).

31Ann. Sci. Naturelles (Paris) 12, pp. 296-298 (1827).
32Ann. Sci. Naturelles (Paris), loc. cit., see pp. 42-46 and the added footnote (B) therein.
33In the original text, on p. 44, Brongniart writes:
“N’ayant pu découvrir ce mouvement dans l’intérieur des globules de pollen ou dans leur

appendice, j’ai cherché à l’observer dans les granules répandus dans l’eau après la rupture des
grains de pollen. J’avoue que dans plusieurs cas j’ai cru voir de légers mouvemen[t]s dans les
granules du pollen du Potiron, des mauves, etc. ; mais ces mouvemen[t]s étaient si lents, si peu
suivis, que [...] je n’ai jamais pu avoir la certitude qu’ils fussent spontanés. Le mouvement de ces
petits corps n’était pas une sorte de tournoiement et de translation comme celui des Monades et
autres animalcules infusoires ; mais un simple rapprochement ou un léger changement de position
relative, fort lent, qui cessait bientôt pour reprendre quelques temps après.”

But in the added footnote (B) one reads:
“J’ai fait cette année de nouvelles observations sur ce sujet, au moyen du microscope d’Amici, et

ces observations me paraissent lever presque tous les doutes à l’égard du mouvement des granules
spermatiques. [...] ce même grossissement permet de reconnâıtre dans les granules spermatiques
de plusieurs plantes des mouvemen[t]s très-appréciables, et qu’il parâıt impossible d’attribuer à
aucune cause exrérieure. [...]

Dans le Potiron, le mouvement des granules consiste dans une oscillation lente, qui les fait
changer de position respective ou qui les rapproche et les éloigne comme par l’effet d’une sorte
d’attraction et de répulsion. L’agitation du liquide dans lequel ces granules nagent, ne parâıt pas
pouvoir influer en rien sur ce mouvement [...].

Les mouvemen[t]s de ces granules deviennent bien plus distincts, et ne peuvent plus laisser de
doute, lorsqu’on les observe sur les Malvacées [...] ; dans ces plantes, les granules spermatiques,
beaucoup plus gros, sont oblongs, et ce qui prouve que les mouvemen[t]s très-distincts ne sont
pas dus au mouvement du liquide environnant, c’est qu’on les voit souvent changer de forme, se
courber soit en arc, soit même en S, comme les Vibrio. Ces mouvemen[t]s étaient quelquefois si
marqués, qu’il m’était impossible de suivre avec la pointe du crayon les contours de ces granules,
que je voulais dessiner à la Camera lucida, et que je fus obligé pour y parvenir d’attendre que
l’eau fût presque complètement évaporée, ou de saisir des momen[t]s où le mouvement cessait;
ce qui a souvent lieu pendant des intervalles assez longs.

Dans une espèce de Rose (Rosa bracteata), ces mouvemen[t]s étaient d’autant plus distincts,
que les granules, de forme elliptique et lenticulaire, se présentaient successivement sous leurs
diverses faces.”
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the abstract of Brongniart’s work that was given to him by the author himself.34

He nevertheless stresses the lack in this work of observations of importance on the
motion or form of the particles:

“Neither in the abstract referred to, nor in the body of the memoir which M. Brongniart has

with great candour given in its original state, are there any observations, appearing of importance

even to the author himself, on the motion or form of the particles [...]”

But Brown adds about the note annexed by Brongniart in his article:

“Late in the autumn of 1827,35 however, M. Brongniart having at his command a micro-

scope constructed by Amici, the celebrated professor of Modena, he was enabled to ascertain

many important facts on both these points, the result of which he has given in the notes annexed

to his memoir. On the general accuracy of his observations on the motions, form, and size of the

granules, as he terms the particles, I place great reliance.”

This is followed by some criticism of more physiological relevance, to which Brong-
niart himself replied in a note added to the French translation of the same article
by Brown in the Annales de Sciences Naturelles!36

1.1.2 “Active Molecules” or Brownian motion?

Brown’s first publication on the erratic motion of the granules of pollen grains
garnered much attention, but the use of the ambiguous terms “active molecules”
by Brown brought him criticisms based on some misunderstanding. Indeed, under
the influence of Buffon, the similar expression “organic molecules” represented
hypothetical entities, elementary bricks all living beings would be made of. Such
theories were still around at the beginning of the 19th century. In his famous first
paper, Brown writes:

“ Reflecting on all the facts with which I had now become acquainted, I was disposed to

believe that the minute spherical particles or Molecules of apparently uniform size, first seen in

the advanced state of the pollen [...] and lastly in bruised portions of other parts of the same

plants, were in reality the supposed constituent or elementary Molecules of organic bodies, first

so considered by Buffon and Needham, then by Wrisberg with greater precision, soon after and

still more particularly by Müller, and, very recently, by Dr. Milne Edwards, who has revived the

doctrine and supported it with much interesting detail.”

34In Microscopical Observations of Active Molecules, op. cit., Brown writes: “Before I engaged
in the inquiry in 1827, I was acquainted only with the abstract given by M. Adolphe Brongniart
himself, of a very elaborate and valuable memoir, entitled “Recherches sur la Génération et
le Développement de l’Embryon dans les Végétaux Phanérogames,” which he had then read
before the Academy of Sciences of Paris, and had since published in the Annales des Sciences
Naturelles.”

35Hence after Brown’s own observations during the Summer of the same year [Note of the
author].

36R. Brown, Ann. Sci. Naturelles (Paris) 14, pp. 341-362 (1828); see pp. 361-362.
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However, one of the substances he examined, silicified wood, once bruised
still produced spherical particles, or molecules, in all respect like those mentioned
before, and in such quantity, that, according to Brown,

“the whole substance of the petrifaction seemed to be formed of them. But hence I inferred

that these molecules were not limited to organic bodies, not even to their products.

To establish the correctness of the inference, and to ascertain to what extent the molecules

existed in mineral bodies, became the next body of inquiry. The first substance examined was a

minute fragment of window-glass, from which, when merely bruised on the stage of the micro-

scope, I readily and copiously obtained molecules agreeing in size, form, and motion with those

which I had already seen. [...]

Rocks of all ages, including those in which organic remains have never been found, yielded

the molecules in abundance. Their existence was ascertained in each of the constituent minerals

of granite, a fragment of the Sphinx being one of the specimens examined.”

In a word, in every mineral which I could reduce to a powder, sufficiently fine to be

temporarily suspended in water, I found these molecules more or less copiously ...”

His emphasis leads one to think that Brown’s opinion was that the observed parti-
cles themselves were animated. Faraday himself had to defend him during a Friday
night lesson he gave at the Royal Society on February 21, 1829, about Brownian
motion.37

This led Brown in his Supplement Additional Remarks on Active Molecules
to an apology:

“In the first place, I have to notice an erroneous assertion of more than one writer, namely,

that I have stated the active Molecules to be animated. This mistake has probably arisen from

my having communicated the facts in the same order in which they occurred, accompanied by

the views which presented themselves in the different stages of the investigation; and in one case,

from my having adopted the language, in referring to the opinion, of another inquirer into the

first branch of the subject.

Although I endeavoured strictly to confine myself to the statement of the facts observed,

yet in speaking of the active Molecules, I have not been able, in all cases, to avoid the introduction

of hypothesis; for such is the supposition that the equally active particles of greater size, and

frequently of very different form, are primary compounds of these Molecules, –a supposition

which, though professedly conjectural, I regret having so much insisted on, especially as it may

seem connected with the opinion of the absolute identity of the Molecules, from whatever source

derived.”

Brown’s merit was in gradually emancipating himself from this misconception
and in making a systematic study of the ubiquity of “active molecules,” hence of
the movement named after him, with grains of pollen, dust and soot, pulverized
rock, and even a fragment from the Great Sphinx! This served to eliminate the
“vital force” hypothesis, where the movement was reserved to organic particles.

As for the nature of Brownian motion, even if Brown could not explain it,
he eliminated easy explanations, like those linked to convection currents or to

37S. G. Brush, The Kind of Motion We Call Heat, Book 2, p. 688, North Holland (1976).
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evaporation, by showing that the Brownian motion of a simple particle stayed
“tireless” even in a isolated drop of water in oil! On the same occasion he eliminated
as well the hypothesis of movements created by interactions between Brownian
particles, a hypothesis that would nevertheless reappear later. He wrote in his
Additional Remarks on Active Molecules:

“I have formerly stated my belief that these motions of the particles neither arose from

currents in the fluid containing them, nor depended on that intestine motion which may be

supposed to accompany its evaporation.

These causes of motion, however, either singly or combined with others, –as, the attractions

and repulsions among the particles themselves, their unstable equilibrium in the fluid in which

they are suspended, their hygrometrical or capillary action, and in some cases the disengagement

of volatile matter, or of minute air bubbles,– have been considered by several writers as sufficiently

accounting for the appearances. [...] the insufficiency of the most important of those enumerated

may, I think, be satisfactorily shown by means of a very simple experiment.

The experiment consists in reducing the drop of water containing the particles to micro-

scopic minuteness, and prolonging its existence by immersing it in a transparent fluid of inferior

specific gravity, with which it is not miscible, and in which evaporation is extremely slow. If to

almond-oil, which is a fluid having these properties, a considerably smaller proportion of water,

duly impregnated with particles, be added, and the two fluids shaken or triturated together,

drops of water of various sizes [...] will be immediately produced. Of these, the most minute nec-

essarily contain but few particles, and some may be occasionally observed with one particle only.

[...] But in all the drops thus formed and protected, the motion of the particles takes place with

undiminished activity, while the principal causes assigned for that motion, namely, evaporation,

and their mutual attraction and repulsion, are either materially reduced or absolutely null.”

This ingenious experimental set-up gave him some hope of getting closer to
the real cause of Brownian motion:

“By means of the contrivance now described for reducing the size and prolonging the

existence of the drops containing the particles, which, simple as it is, did not till very lately

occur to me, a greater command of the subject is obtained, sufficient perhaps to enable us to

ascertain the real cause of the motions in question.”

Still, this real cause always eluded him. The theoretical picture formed per-
haps by Brown, which however he always carefully avoided presenting as the con-
clusion of his studies, was that the particles of matter were animated into a rapid
and irregular movement whose source was in the particles themselves and not in
the surrounding fluid.

It is nevertheless fascinating to observe that in some instances he came close
to the truth. One reads indeed in Microscopical Observations of Active Molecules
the following striking remark:

“In Asclepiadeæ, strictly so called, the mass of pollen filling each cell of the anthera is in

no stage separable into distinct grains; but within, its tesselated or cellular membrane is filled

with spherical particles, commonly of two sizes. Both these kinds of particles when immersed in
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water are generally seen in vivid motion; but the apparent motions of the larger particle might

in these cases perhaps be caused by the rapid oscillation of the more numerous molecules.”

This is precisely the correct explanation of the cause of the movement, if one
mentally replaces the latter “numerous molecules,” i.e., the smaller granules as
observed by Brown in this pollen, by the invisible numerous real molecules of the
surrounding fluid!

In the same Princeps article, Brown also wondered whether the mobility of
the particles existing in bodies was in any degree affected by the application of
intense heat to the containing substance:

“... and in all these bodies so heated, quenched in water, and immediately submitted to

examination, the molecules were found, and in as evident motion as those obtained from the

same substances before burning.”

After heating of the substance, instead of a “quenching” of the latter in the fluid,
had an “annealing” of the whole system been performed, which would have trans-
ferred heat to the surrounding fluid at equilibrium, an additional increase of Brow-
nian activity with temperature would indeed have occurred!

The outstanding scientific stature of Brown brought him elogious comments.
Before leaving Robert Brown, I cannot refrain from quoting first Mrs Charles
Darwin, who said about a dinner party in 1839:38

“Mr. Brown, whom Humboldt calls ‘the glory of Great Britain’ looks so shy, as if forced

to shrink into himself, and disappear entirely.”

Finally, Charles Darwin gave, in his famous autobiographical notes written for his
children, his own recollection from Brown in the late 1830’s:39

“During this time [March 1837-January 1839] I saw also a good deal of Robert Brown;

I used often to call and sit with him during his breakfast on Sunday mornings, and he poured

forth a rich treasure of curious observations and acute remarks, but they almost always related

to minute points, and he never with me discussed large or general questions in science. [...]”

and40

“I saw a good deal of Robert Brown, “facile Princeps Botanicorum,” as he was called by

Humboldt. He seemed to me to be chiefly remarkable by the minuteness of his observations, and

their perfect accuracy. His knowledge was extraordinarily great, and much died with him, owing

38E. J. Browne, Charles Darwin: Voyaging, Volume 1 of a biography, Knopf, New York (1950);
quoted by R. M. Mazo, in Brownian Motion, Fluctuations, Dynamics and Applications, op. cit.

39Charles Darwin: His Life told in an autobiographical Chapter, and in a selected se-
ries of his published letters, ed. by his son, Francis Darwin, London (1892); D. Ap-
pleton & Co., New York (1905), vol. I, chapter 2, pp. 56-57 & pp. 60-61, avail-
able online at: http://pages.britishlibrary.net/charles.darwin/texts/letters/letters1−02.html ;
see also The autobiography of Charles Darwin, 1809-1882: with original omissions re-
stored, Nora Barlow, ed., W. W. Norton, New York (1969), available online at:
http://pages.britishlibrary.net/charles.darwin3/barlow.html ; see also Schuman (1950), p. 46;
quoted by S. G. Brush in The Kind of Motion We Call Heat, op. cit.

40The slight repetition here observable is accounted for by these notes having been added in
April, 1881, a few years after the rest of the ’Recollections’ were written.

http://pages.britishlibrary.net/charles.darwin/texts/letters/letters1$_-$02.html
http://pages.britishlibrary.net/charles.darwin3/barlow.html
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to his excessive fear of ever making a mistake. He poured out his knowledge to me in the most

unreserved manner, yet was strangely jealous on some points. I called on him two or three times

before the voyage of the Beagle [1831-1836], and on one occasion he asked me to look through

a microscope and describe what I saw. This I did, and believe now that it was the marvellous

currents of protoplasm in some vegetable cell. I then asked him what I had seen; but he answered

me, “That is my little secret.”

He was capable of the most generous actions. When old, much out of health, and quite unfit for

any exertion, he daily visited (as Hooker told me) an old man-servant, who lived at a distance

(and whom he supported), and read aloud to him. This is enough to make up for any degree of

scientific penuriousness or jealousy.”

1.2 The period before Einstein

Between 1831 and 1857 it seems that one can no longer find references to Brown’s
observations, but from the 1860’s forward his work began to draw large interest.
It was noticed soon thereafter in literary circles, if we are to judge by a passage
of “Middlemarch” published by George Eliot in 1872, where Rev. M. Farebrother
offers to make an exchange to the surgeon Lydgate: “I have some sea-mice – fine
specimens – in spirits. And I will throw in Robert Brown’s new thing – Microscopic
Observations on the Pollen of Plants – if you don’t happen to have it already.”

Jean Perrin wrote in his famous 1909 memoir Brownian Motion and Molec-
ular Reality:41

“The singular phenomenon discovered by Brown did not attract much attention. It re-

mained, moreover, for a long time ignored by the majority of physicists, and it may be supposed

that those who had heard of it thought it analogous to the movement of the dust particles, which

can be seen dancing in a ray of sunlight, under the influence of feeble currents of air which set up

small differences of pressure or temperature. When we reflect that this apparent explanation was

able to satisfy even thoughtful minds, we ought the more to admire the acuteness of those physi-

cists, who have recognised in this, supposed insignificant, phenomenon a fundamental property

of matter.”

1.2.1 Brownian motion and the kinetic theory of gases

It became clear from experiments made in various laboratories that Brownian
motion increases when the size of the suspended particles decreases (one essentially
ceases to observe it when the radius is above several microns), when the viscosity
of the fluid decreases, or when the temperature increases. In the 1860’s, the idea
emerged that the cause of the Brownian motion has to be found in the internal
motion of the fluid, namely that the zigzag motion of suspended particles is due
to collisions with the molecules of the fluid.

41J. Perrin, Mouvement brownien et réalité moléculaire, Ann. de Chim. et de Phys. 18, pp.
1-114 (1909). Translated by Frederick Soddy in Brownian Motion and Molecular Reality, Taylor
and Francis, London (1910); facsimile reprint in David M. Knight, ed., Classical scientific papers:
chemistry, American Elsevier, New York (1968).
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The first name worth citing in this regard is probably that of Christian
Wiener, holder of the Chair of Descriptive Geometry at Karlsruhe, who in 1863
reaffirmed in the conclusions to his observations that the motion could be due
neither to the interactions between particles, nor to differences in temperature,
nor to evaporation or convection currents, but that the cause must be found in
the liquid itself.42 That being so, his theory on atomic motion anticipated those of
Clausius and Maxwell, implicating not only the motion of molecules but also the
motion of “ether atoms”. The Brownian motion was thus bound to the vibrations
of the ether, to the wavelength corresponding to that of red light and to the size of
the smallest group of molecules moving together in the liquid. Such an explanation
was criticized by R. Mead Bache, who showed that the motion was insensitive to
the color of light, whether it was violet or red.43 Christian Wiener is neverthe-
less credited by some authors as the first to discover that molecular motion could
explain the phenomenon.44

At least three other people proposed the same idea: Giovanni Cantoni of
Pavia, and two Belgian Jesuits, Joseph Delsaulx and Ignace Carbonelle. The Italian
physicist attributed Brownian movement to thermal motions in the liquid:

“ In fact, I think that the dancing movement of the extremely minute solid particles in a
liquid can be attributed to the different intrinsic velocities at a given temperature of both such
solid particles and of the molecules of the liquid that hit them from every side.

I do not know whether others have already attempted this way of explaining Brownian

motions...”

He concluded that :
“In this way Brownian motion, as described above, provides us with one of the most

beautiful and direct experimental demonstrations of the fundamental principles of the mechanical

theory of heat, making manifest the assiduous vibrational state that must exist both in liquids

and solids even when one does not alter their temperature.”45

The Belgian physicists published in the Royal Microscopical Society and in
the Revue des Questions scientifiques, from 1877 to 1880, various Notes on the
Thermodynamical Origin of the Brownian Movement. In a Note by Father Del-
saulx, for example, one may read:46

“The agitation of small corpuscles in suspension in liquids truly constitutes a general

42Chr. Wiener, Erklärung des atomischen Wessens des flüssigen Körperzustandes und
Bestätigung desselben durch die sogennanten Molekularbewegungen, Ann. d. Physik 118, 79
(1863).

43R. Mead Bache, Proc. Am. Phil. Soc. 33, 163 (1894).
44J. Perrin, Mouvement brownien et réalité moléculaire, op. cit.
45G. Cantoni, Il Nuovo Cim. 27, pp. 156-167 (1867); quoted by G. Gallavotti in Statistical

Mechanics, a Short Treatise, p. 233, Springer-Verlag, Heidelberg (1999); English translation
available from G. Gallavotti. See also the reprint with notes by J. Thirion in Revue des Questions
Scientifiques 15, 251 (1909).

46“See for this bibliography an article which appeared in the Revue des Questions Scientifiques,
January 1909, [op. cit.], where M. Thirion very properly calls attention to the ideas of these
savants, with whom he collaborated.” [original citation and note by J. Perrin in Brownian Motion
and Molecular Reality, op. cit.]



214 B. Duplantier Poincaré Seminar 2005

phenomenon,” that it is “henceforth natural to ascribe a phenomenon having this universality to

some property of matter,” and that “in this train of ideas the internal movements of translation

which constitute the calorific state of gases, vapours and liquids, can very well account for the

facts established by experiment.”

Such a point of view, parallel to that of the kinetic theory of gases, faced
strong opposition. One opponent, cytologist Karl von Nägeli of Switzerland, fa-
miliar with the kinetic theory of gases and the orders of magnitude involved,
likewise the British chemist William Ramsey (the future Nobel laureate in Chem-
istry), commented that the particles in suspension have a mass several hundreds
of millions of times larger than that of the molecules in the fluid. Each random
collision with a molecule of the surrounding fluid produces therefore an effect far
too small to displace the suspended particle. Nägeli wrote for example about a
supposedly similar motion of micro-organisms in the air:

“The motion which a sun-mote, and on the whole any particle found in the air, can acquire

by the collisions of an individual gas molecule or a multitude of such molecules is therefore so

extraordinarily small, and the number of simultaneous collisions against the particle from all

sides so extraordinarily large, that the particle behaves as if it were completely at rest.”

He believed instead that the cause of the motion was not the thermal molec-
ular motion but some attractive or repulsive forces.

Nevertheless, the second part of his proposition about the frequency of such
collisions held the principle of the solution. Because it is a collective statistical
effect, as described in perspicacious manner by Father Carbonelle:

“In the case of a surface having a certain area, the molecular collisions of the liquid, which

cause the pressure, would not produce any perturbation of the suspended particles, because

these, as a whole, urge the particles equally in all directions. But if the surface is of area less

than necessary to insure the compensation of irregularities, there is no longer any ground for

considering the mean pressure; the inequal pressure, continually varying from place to place, must

be recognised, as the law of large numbers no longer leads to uniformity; and the resultant will

not now be zero but will change continually in intensity and direction. Further, the inequalities

will become more and more apparent the smaller the body is supposed to be, and in consequence

the oscillations will at the same time become more and more brisk...”

Perrin mentions these authors to conclude:

“These remarkable reflections unfortunately remained as little known as those of Wiener.

Besides it does not appear that they were accompanied by an experimental trial sufficient to

dispel the superficial explanation indicated a moment ago; in consequence, the proposed theory

did not impress itself on those who had become acquainted with it.”

He continues:

“On the contrary, it was established by the work of M. Gouy (1888), not only that the

hypothesis of molecular agitation gave an admissible explanation of the Brownian movement,

but that no other cause of the movement could be imagined, which especially increased the
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significance of the hypothesis.47 This work immediately evoked a considerable response, and it

is only from this time that the Brownian movement took a place among the important problems

of general physics.”

Indeed in 1888 the French physicist Louis-Georges Gouy made the best ob-
servations on Brownian motion, from which he drew the following conclusions:

- The motion is extremely irregular, and the trajectory seems not to have a
tangent.

- Two Brownian particles, even close, have independent motion from one
another.

- The smaller the particles, the livelier their motion.

- The nature and the density of the particles have no influence.

- The motion is most active in less viscous liquids.

- The motion is most active at higher temperatures.

- The motion never stops.

Gouy seemed, however, to claim again that one cannot explain Brownian
motion by disordered molecular motion, but only by the partially organized move-
ments over the order of a micron within the liquid.

But somehow he became known as the “discoverer” of the cause of Brownian
motion, as Jean Perrin wrote about his experimental conclusions:

“ Thus comes into evidence, in what is termed a fluid in equilibrium, a property eternal

and profound. This equilibrium only exists as an average and for large masses; it is a statistical

equilibrium. In reality the whole fluid is agitated indefinitely and spontaneously by motions

the more violent and rapid the smaller the portion taken into account; the statical notion of

equilibrium is completely illusory.”48

1.2.2 Brownian motion and Carnot’s principle

Brownian agitation continues indefinitely. It does not contradict the principle of
energy conservation, because any increase in the velocity of a grain, for instance,
is accompanied by a local cooling of the surrounding fluid, and the thermal equi-
librium is statistical.

Gouy was the first to note the apparent contradiction between Brownian
motion and Carnot’s principle. The latter states that one cannot extract work
from a simple source of heat. However, it really seems that some work is made, in
a fluctuating manner, by the thermal motion of the molecules of the fluid. Gouy
mentioned the theoretical possibility to extract work by a mechanism attached
to a Brownian particle, and he concluded that Carnot’s principle perhaps was no
longer valid for dimensions of the size of a micron, in that echoing Helmholtz’s
reservations about the validity of such principle for living tissues.

47L.-G. Gouy, J. de Physique 7, 561 (1888); C. R. Acad. Sc. Paris, 109, 102 (1889); Revue
générale des Sciences, 1 (1895).

48J. Perrin, Mouvement brownien et réalité moléculaire, op. cit.
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These questions sparked the interest of Poincaré, who announced at the fol-
lowing lecture of the Congress of Arts and Sciences in St. Louis in 1904, about the
“Present Crisis of Mathematical Physics”49:

“But here the stage changes. Long ago the biologist, armed with his microscope, noticed

in his specimens disorganized movements of small particles in suspension; that is the Brownian

motion. He believed at first that it is a vital phenomenon, but soon he saw that inanimate bodies

did not dance with less fervor than the others, so he handed it over to physicists. Unfortunately,

physicists have been uninterested for a long while in this question; one concentrates light to

enlighten the microscopic specimens, they thought; light does not go without heat, from which

inhomogeneities of temperature, and then internal currents in the liquid that produce the motion

we are speaking about..M. Gouy had the idea to look closer and he saw, or believed he saw that

this explanation is unsustainable, that the motion becomes more lively the smaller the particles,

but that they are not influenced by light. So, if the motion never stops, or more exactly is

continually reborn without end, without an external source of energy, what are we to believe?

We must not, without any doubt, renounce the conservation of energy because of this, but we see

before our own eyes both motion transform into heat by friction, and inversely heat transform

into motion; and all that while nothing is lost, as the motion lasts forever. This is the opposite

of Carnot’s principle. If this is the case, to see the world develop in reverse, we no longer have

need of the infinitely subtle eye of Maxwell’s demon, a microscope will suffice. The largest of

bodies, those that have for example, a tenth of a millimeter, collide with atoms in motion from

all sides, but they do not move at all as the shocks are so numerous that the law of chance

says they compensate one another; however the smallest particles do not receive enough shocks

for the compensation to be exact and they are unendingly tossed around. And voilà, one of our

principles already in danger.”

It is rather subtle to prove that the Brownian phenomenon does not infringe
on the impossibility of creating perpetual motion (called of the second kind),
where work is extracted in a coherent manner by the observer (recalling Maxwell’s
famous demon). One had to wait for Leo Szilard, who hinted in 1929 that, because
of the amount of information required by such an attempt, the total produced
entropy would compensate the apparent entropy reduction due to the coherent
use of fluctuations. We shall briefly return to this question later, after having
described Smoluchowski’s contributions.

1.2.3 The kinetic molecular “hypothesis”

Nowadays it seems evident to us that the world is made up of particles, of atoms
and of molecules. However, it was not always the case, and the hypothesis of
a continuous structure of matter was relentlessly defended until the end of the
nineteenth century by famous names such as Duhem, Ostwald, and Mach.

49Henri Poincaré, La valeur de la science, Bibliothèque de philosophie scientifique, Flammar-
ion, Paris (1905); in Congress of Arts and Sciences, Universal Exposition, St. Louis, 1904,
Houghton, Mifflin and Co., Boston and New York (1905).
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The intuition or the idea that gases are composed of individual molecules was
already present in the eighteenth century, and in 1738 David Bernoulli was proba-
bly the first to affirm that the pressure of a gas on its container is due to collisions
of molecules with the walls. Avogadro made the radical affirmation in 1811 that
equal volumes of two gases at the same pressure and same temperature contain
the same number of molecules. When such conditions are of one atmosphere and
of 25o Celsius, the number contained in a volume of 22.412 liters is noted as N ,
and called Avogadro’s number.

To understand the stakes surrounding the determination of Avogadro’s num-
ber, one must recall that the constant R in the perfect gas law has been exper-
imentally accessible since the eighteenth century, thanks to the work of Boyle,
Mariotte, Charles, and later Gay-Lussac. It is in fact associated to the number
of moles, N/N , which is an experimental macroscopic parameter, contrary to the
total number of particles N , and Avogadro’s number N , that are microscopic
quantities.

The study of Brownian motion played an essential role in establishing the
“molecular hypothesis” definitively. As Jean Perrin observed, the “hypothesis”
that bodies, despite their homogeneous appearance, are made up of distinct mole-
cules, in unending agitation which increases with temperature, is logically sug-
gested by the phenomenon of Brownian motion alone, even before providing an
explanation.

In fact, according to Perrin, what is really strange and new in Brownian
motion, is, precisely, that it never stops, contrary to our every-day experience
with friction phenomena. If, for example, we pour a bucket of water into a tub, the
initial coherent motion possessed by the liquid mass disappears, de-coordinated by
the multiple rebounds on the boundaries of the tub, until an apparent equilibrium
settles within the fluid at rest. Does such a de-coordination of the motion of the
particles proceed indefinitely, as it would in an ideal continuous medium? The
answer by Perrin is exceptionally convincing:50

“To have information on this point and to follow this de-coordination as far as possible

after having ceased to observe it with the naked eye, a microscope will be of assistance, and

microscopic powders will be taken as indicators of the movement. Now these are precisely the

conditions under which the Brownian motion is perceived: we are therefore assured that the de-

coordination of motion, so evident on the ordinary scale of our observations, does not proceed

indefinitely, and on the scale of microscopic observation, we establish an equilibrium between

coordination and de-coordination. If, that is to say, at each instant, certain of the indicating

granules stop, there are some in other regions at the same instant, the movement of which is

re-coordinated automatically by their being given the speed of granules which have come to rest.

So that it does not seem possible to escape the following conclusion:

Since the distribution of motion in a fluid does not progress indefinitely, and is limited by

a spontaneous re-coordination, it follows that the fluids are themselves composed of granules or

molecules, which can assume all possible motions relative to one another, but in the interior of

50Translation by Frederick Soddy, op. cit.
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which dissemination of motion is impossible. If such molecules had no existence it is not apparent

how there would be any limit to the de-coordination of motion [...] In brief, the examination of

Brownian movement alone suffices to suggest that every fluid is formed of elastic molecules,

animated by perpetual motion.”

In 1905 Albert Einstein was the first, actually along with (but independently
from) William Sutherland from Melbourne, to propose a quantitative theory of
Brownian motion. This theory will allow Perrin to determine the precise value
of Avogadro’s number N , in his famous experiments of 1908-1909. Sutherland
and Einstein succeeded where many others failed, because they used an ingenious
and global reasoning of statistical mechanics, that we will explain here. Marian
von Smoluchowski made at the same time an analysis according to a different
“Gedankenweg,” more probabilistic, which led him to similar conclusions. We will
came back to this point later in the paper.

1.3 William Sutherland, 1904-05

In his famous biography of Einstein, Subtle is the Lord... (1982), Abraham Pais
noted, while describing Einstein’s route to his well-known diffusion relation, that
the same relation had been discovered “at practically the same time” by the Mel-
bourne theoretical physicist William Sutherland, following similar reasoning to
Einstein’s, and had been submitted for publication to the Philosophical Magazine
in March 1905, shortly before Einstein completed the doctoral thesis in which he
first announced the relation. Pais, therefore, proposed that the relation be called
the “Sutherland-Einstein relation”.

We follow here the introduction of the essay, Speculating about Atoms in
Early 20th-century Melbourne: William Sutherland and the ‘Sutherland-Einstein’
Diffusion Relation, written recently by the Australian historian of science Rod W.
Home.51 In this section we shall briefly discuss Sutherland’s work, and the factors
that may have led to his work having been over-shadowed by Einstein’s, and soon
forgotten. When the Einstein International Year of Physics commemorates the
hundredth anniversary of the Annus Mirabilis papers’ release, focusing also on W.
Sutherland’s achievements seems to be just fair!

1.3.1 Sutherland’s papers

Sutherland’s paper to which Pais refers was actually published in June 1905,52

after Einstein completed his thesis, but shortly before he submitted it for examina-

51Most of the material presented in this section originates from the 2005 essay by R. W.
Home, Speculating about Atoms in Early 20th-century Melbourne: William Sutherland and
the ‘Sutherland-Einstein’ Diffusion Relation, Sutherland Lecture, 16th National Congress, Aus-
tralian Institute of Physics, Canberra, January 2005. See also the interesting note by Bruce H.
J. McKellar, The Sutherland-Einstein Equation, AAPPS Bulletin, February 2005, 35.

52W. Sutherland, A Dynamical Theory for Non-Electrolytes and the Molecular Mass of Albu-
min, Phil. Mag. S.6, 9, pp. 781-785 (1905).
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tion. We seem to be looking here at a perfect example of effectively simultaneous
discovery. However, as Rod Home notes, the story is still a little more compli-
cated, for Sutherland had already reported his derivation over a year earlier, at
the congress of the Australasian Association for the Advancement of Science held
in Dunedin, New Zealand, in January 1904, and his paper had been published in
the congress proceedings in early 1905!53 Unfortunately, there was a misprint in
the crucial equation giving the diffusion coefficient of a large molecular mass in
terms of physical parameters: Avogadro’s constant was missing!54

The correct and extended equation, finally published in the Philosophical
Magazine, is

D =
RT

N
1

6πη a

1 + 3η/βa

1 + 2η/βa
, (1)

where R is the perfect gas constant, T the absolute temperature, N Avogadro’s
number, η the fluid viscosity, a the radius of the (spherical) diffusing molecule, and
β the coefficient of sliding friction if there is slip between the diffusing molecule and
the solution.55 To deal with the available empirical data, Sutherland had indeed
to allow for a varying coefficient of sliding friction between the diffusing molecule
and the solution. By taking β to infinity, so there is no slip at the boundary, one
recovers the usual form of the equation:

D =
RT

N
1

6πη a
. (2)

Since in a fluid the molecules are close packed the molecular radius a should be
proportional to the cube root of the molar volume B, the volume occupied by
Avogadro’s number of particles. Hence, from the constancy of the product aD
in relation (2), should follow that of B1/3D. After having estimated this constant
from experimental data on the diffusion of various dissolved substances, Sutherland
could obtain the molar volume of albumin, and got an estimate of its atomic mass56

as 32814 Da.57

1.3.2 Sutherland, Einstein and Besso

In 1903, Einstein and his friend Michele Besso discussed a theory of dissociation
that required the assumption of molecular aggregates in combination with water,

53W. Sutherland, The Measurement of Large Molecular Masses, Report of the 10th Meeting
of the Australasian Association for the Advancement of Science, Dunedin, pp. 117-121 (1904).

54As R. W. Home remarks, it is clear that one is looking at a genuine misprint in the proceed-
ings, since the preceding line was given correctly.

55Sutherland uses the version of Stokes’ law, F = 6πη a
1+2η/βa
1+3η/βa

V , relating the viscous friction

force F to the velocity of the particle. This relation is generalized here to the case where slip
occurs at the boundary between the fluid and the moving sphere. For a derivation, see H. Lamb,
Hydrodynamics, pp. 601-602, Cambridge University Press (1932).

56The dalton (Da) is the atomic mass unit; it honors the English chemist John Dalton (1766-
1844), who revived the atomic theory of matter in 1803.

57The present-day value is 43 kDa for ovalbumin.
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the “hypothesis of ionic aggregates,” as Besso called it. This assumption opens the
way to a simple calculation of the sizes of ions in solution, based on hydrodynamical
considerations. In 1902, Sutherland had considered in Ionization, Ionic Velocities,
and Atomic Sizes58 a calculation of the sizes of ions on the basis of Stokes’ law, but
criticized it as in disagreement with experimental data.59 The very same idea of
determining sizes of ions by means of classical hydrodynamics occurred to Einstein
in his letter of 17 March 1903 to Besso,60 where he proposed what appears to be
just the calculation that Sutherland had performed:

“Have you already calculated the absolute magnitude of ions on the assumption that they

are spheres and so large that the hydrodynamical equations for viscous fluids are applicable?

With our knowledge of the absolute magnitude of the electron [charge] this would be a simple

matter indeed. I would have done it myself but lack the reference material and time; you could

also bring in diffusion in order to obtain information about neutral salt molecules in solution.”

As the editors of Einstein’s Collected Papers remark, “This passage is re-
markable, because both key elements of Einstein’s method for the determination
of molecular dimensions, the theories of hydrodynamics and diffusion, are already
mentioned, although the reference to hydrodynamics probably covers only Stokes’
law”.61

It is also striking that an earlier letter of 11-17 February 1903, this time from
Besso to Einstein, clearly indicates that they had been discussing Sutherland’s
work together. This letter contains two parts. The first deals with experimental
data in connection to the dissociation of bi-ionic molecules. The second discusses
what Besso calls “Sutherland’s hypothesis,” in connection to dissociation or dis-
solution. He states that the theory of “ionic hydrates,” as he calls it, rescues
temporarily this hypothesis with regard to Ostwald’s dilution law. Since Besso
also discusses the role of imperfect semi-permeable membranes as a possible ex-
perimental test of Sutherland’s hypothesis, P. Speziali, in the French edition of
the Einstein-Besso correspondence, has indicated that Besso would have been dis-
cussing in this letter another of Sutherland’s papers, entitled “Causes of osmotic
pressure and of the simplicity of the laws of dilute solutions.”62

However, upon reading these letters of 1903, one cannot refrain from won-

58W. Sutherland, Ionization, Ionic Velocities, and Atomic Sizes, Phil. Mag. S.6, 4, pp. 625-645
(1902).

59He wrote: “Now this simple theory must have been written down by many a physicist and
found to be wanting, for it makes the ionic velocities of the different atoms at infinite dilution
stand to one another inversely as their radii, a result which a brief study of data as to ionic
velocities and relative atomic sizes shows to be not verified”. Sutherland did not use the assump-
tion of ionic hydrates, which can avoid such disagreement by permitting ionic sizes to vary with
temperature and concentration.

60Albert Einstein, Michele Besso, Correspondance 1903-1955, translation, notes and introduc-
tion by Pierre Speziali, Herrmann, Paris (1979).

61The Collected Papers of Albert Einstein, volume 2, The Swiss Years: Writings, 1900-

1909, John Stachel ed., pp. 170-182, Princeton University Press (1989).
62Causes of Osmotic Pressure and of the Simplicity of the Laws of Dilute Solutions, Phil.

Mag., S.5, 44, pp. 52-55 (1897).
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dering whether Besso and Einstein were not also acquainted with and discussing
Sutherland’s 1902 paper on ionic sizes. In that case, Sutherland suggestion to use
hydrodynamic Stokes’ law to determine the size of molecules would have been
a direct inspiration to Einstein’s dissertation and subsequent work on Brownian
motion!

1.3.3 Sutherland’s legacy

That Sutherland, in spite of his isolation in Melbourne, was well-known in physics
circles is also evidenced by the fact that he was invited to contribute to the
Boltzmann Festschrift in 1904 –the only other non-European contributor being
J. Willard Gibbs!– If so, why did Einstein and not Sutherland become famous?

Sutherland had assumed the existence of atoms, and attacked a practical
question, the measurement of large molecular masses. He was interested in these
masses because of their role in the chemical analysis of organic substances. While
that is what everyone now uses the Sutherland-Einstein equation for, it was per-
haps not of so widespread interest at the time. However, we have just seen from the
Einstein-Besso correspondence how extremely important Sutherland’s idea was of
determining the sizes of ions or molecules by means of classical hydrodynamics.

On the other hand, as stressed by the editors of The Collected Papers:

“In developing in his dissertation a new method for the determination of molecular di-

mensions, Einstein was concerned with several problems on different levels of generality. An

outstanding current problem of the theory of solutions was whether molecules of the solvent are

attached to the molecules or ions of the solute. Einstein’s dissertation contributed to the solution

of this problem. He recalled in 1909:

“At the time I used the viscosity of the solution to determine the volume of sugar dissolved

in water because in this way I hoped to take into account the volume of any attached water

molecule.”

The results obtained in his dissertation indicate that such an attachment does occur.

Einstein’s concerns extended beyond this particular question to more general problems of the

foundations of the theory of radiation and the existence of atoms. He later emphasized:

“A precise determination of the size of the molecules seems to me of the highest importance

because Planck’s radiation formula can be tested more precisely through such a determination

than through measurements on radiation.”

The dissertation also marked the first major success in Einstein’s effort to find further

evidence for the atomic hypothesis, an effort that culminated in his explanation of Brownian

motion.”

To conclude, it is probably most appropriate to cite R. W. Home:

“Of course, the diffusion-viscosity relation is generally known as the Einstein relation, not

the Sutherland-Einstein relation. Why? In part, I think, this happened because in the early 20th

century, theoretical physics was a largely German affair. In so far as the relation was taken up,

and initially it was not taken up much at all, it was taken up by Continental researchers who

had read Einstein’s work but failed to notice that the relation was also buried in a paper in
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the Philosophical Magazine entitled “A dynamical theory for non-electrolytes and the molecular

mass of albumin.” In the English-speaking world, where the Philosophical Magazine was one

of the leading journals in the field, there were very few people pursuing theoretical physics in

the German style. There is plenty of testimony that experimentally orientated British physicists

were at something of a loss as how to assess Sutherland’s work. His obituary in Nature makes

the point very clearly:63

“His papers are well known to the scientific world. They are distinguished by great width

of reading in the latest phases of the subjects he treated, combined with very bold speculation

always brought into ample comparison with experimental knowledge. His generalisations were,

indeed, so numerous that it was often a difficult task to try to estimate their value.”

So in Britain, Surtherland didn’t have a readership likely to be alert to the significance

of his announcement of a relationship between diffusion and viscosity, in the way some Conti-

nental readers of Einstein’s work were. And, finally, Sutherland’s own presentation surely would

not have helped, with the relation itself being almost submerged by his lengthy computations

relating to the molecular mass of albumin. He would have done much better to highlight the

relation, alone, in a paper to itself. But that was not his style! His mind was firmly fixed on the

problem of determining molecular masses of large molecules, and he clearly saw the diffusion-

viscosity relation as an incidental result arrived at on the way to achieving that larger goal, not

as something of particular value in its own right.”

In this year 2005, it is definitely time, I think, for the physics community
to finally recognize Sutherland’s achievements, and following Pais’ suggestion, to
re-baptize the famous relation (2) with a double name!

1.4 Albert Einstein, 1905

Mens agitat molem

1.4.1 Einstein’s Dissertation

One finds nowadays in the literature excellent descriptions of Einstein’s disserta-
tion. An outstanding presentation is given in the Editorial Notes of the Collected
Papers of Albert Einstein.64 Their presentation is closely followed in this section,
which incorporates some material of the editorial notes of the chapter entitled
“Einstein’s dissertation on the determination of molecular dimensions.”65 The in-
terested reader can also find a detailed scientific study of Einstein’s doctoral thesis
in a recent article by Norbert Straumann.66

Einstein completed his dissertation on “A New Determination of Molecular
Dimensions” on 30 April 1905, and submitted it to the University of Zürich on 20

63“Nature, 23 November 1911, p. 116. The obituary is signed “J. L.” [Joseph Larmor?].”[original
note]

64Editorial notes of the chapter “Einstein’s dissertation on the determination of molecular
dimensions,” in The Collected Papers of Albert Einstein, volume 2, op. cit., pp. 170-182; see also
John Stachel, Einstein’s Miraculous Year, op. cit., pp. 31-43.

65With kind permission of John Stachel, Editor.
66Norbert Straumann, On Einstein’s Doctoral Thesis, arXiv:physics/0504201.

http://arXiv.org/abs/physics/0504201
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July.67 Shortly after being accepted there, the manuscript was sent for publication
to the Annalen der Physik, where it would be published in 1906.68 On 11 May
1905, eleven days after finishing his thesis, Einstein had also sent the manuscript
of his first paper on Brownian motion to the Annalen, which would publish it on
18 July 1905.

Einstein’s central assumption is the validity of using classical hydrodynamics
to calculate the effect of solute molecules, treated as rigid spheres, on the viscosity
of the solvent in a dilute solution. His method is well suited to determine the size
of solute molecules that are large compared to those of the solvent, and he applied
it to solute sugar molecules. As we have seen above, Sutherland published in 1905
a method for determining the masses of large molecules, with which Einstein’s
method shares many important elements. Both methods make use of the molecular
theory of diffusion that Nernst69 developed on the basis of van ’t Hoff’s analogy
between solutions and gases, and of Stokes’ law of hydrodynamic friction.

The first of the results in the dissertation is a relation between the coeffi-
cients of viscosity of a liquid with and without suspended molecules (η∗ and η,
respectively),

η∗ = η (1 + [5/2]ϕ) , (3)

where ϕ is the fraction of the volume occupied by the solute molecules. [The correct
coefficient [ 52 ] appeared later (see below).]

The second result is the famous expression (2) for the coefficient of diffusion
D of the solute molecules. Like Loschmidt’s method based on the kinetic theory of
gases, the expressions obtained by Einstein give two equations for two unknowns,
Avogadro’s number N , and the molecular radius a of the suspended particles,
hence providing a possible determination of molecular dimensions!

The derivation of eq. (3) represents the technically difficult part of Einstein’s
dissertation. It rests on the assumption that the motion of the fluid can be de-
scribed by the hydrodynamical equations for stationary flow of an incompressible
homogeneous fluid, even in the presence of solute molecules; that the inertia of
these molecules can be neglected; that they do not interact; and that they can
be treated as rigid spheres moving in the liquid without slipping, under the sole
influence of hydrodynamical stress.

Eq. (2) follows from the conditions of dynamical and thermodynamical equi-
librium in the fluid. Its derivation, as does Sutherland’s, requires the identification
of the force on a single large molecule, which appears in Stokes’ law, with the
apparent force due to the osmotic pressure. We shall return to this derivation in

67Einstein had already submitted a dissertation in 1901, on “a topic in the kinematic theory of
gases”. By February 1902, he had withdrawn the dissertation, possibly at his advisor’s suggestion
to avoid a controversy with Boltzmann. (For a detailed analysis, see the Editorial Notes of The
Collected Papers of Albert Einstein, volume 2, op. cit., pp. 174-175). Nevertheless, there is no
doubt that Einstein was a great admirer of Boltzmann. (For a biography of the latter, see C.
Cercignani, Ludwig Boltzmann, The Man Who Trusted Atoms, Oxford University Press (1998).)

68Eine neue Bestimmung der Moleküldimensionen, Ann. d. Phys. 19, pp. 289-306 (1906).
69W. Nernst, Z. Phys. Chem. Stöchiometrie Verwandschaftslehre, 2, pp. 613-639 (1888).
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detail in the next section, when describing the content of Einstein’s first paper
on Brownian motion. In the dissertation, Einstein’s derivation of eq. (2) does not
involve yet the theoretical tools he developed in his work on the statistical founda-
tions of thermodynamics in the preceding years. Here he simply states the osmotic
pressure law, while in his first paper on Brownian motion, he will instead derive
from first principles the validity of van ’t Hoff’s law for large suspended particles.

In 1909, Einstein drew Perrin’s attention to his method for determining the
size of solute molecules, which allows one to take into account the volume of
any water molecule attached to the latter, and he suggested its application to the
suspensions studied by Perrin in relation to Brownian motion. In the following year,
an experimental study of formula (3) for the viscosity coefficient was performed
by a pupil of Perrin, Jacques Bancelin. Using the same aqueous emulsions of gum-
resin (“gamboge”), he confirmed that the increase in viscosity does not depend on
the size of the solute molecules, but only on their volume fraction. However, the
coefficient of ϕ in eq. (3) was found to be close to 3.9, instead of the predicted
value 1. That prompted Einstein, after an unsuccessful attempt to find an error,
to ask his student and collaborator Ludwig Hopf to check his calculations and
arguments:

“I have checked my previous calculations and arguments and found no error in them. You

would be doing a great service in this matter if you would carefully recheck my investigation.

Either there is an error in the work, or the volume of Perrin’s substance in the suspended state

is greater than Perrin believes.”70

Hopf did find an error in the dissertation, namely in the derivatives of some
velocity components, and obtained for ϕ a corrected coefficient 2.5. The remaining
discrepancy between this corrected theoretical factor and the experimental one led
Einstein to suspect that there might be also an experimental error.71

In early 1911 Einstein submitted his correction for publication, and recalcu-
lated Avogadro’s number. He obtained a value of 6.56 × 1023 per mole, a value
that is close to those derived from kinetic theory and Planck’s black-body radiation
theory.

The paper published in 1911 by Bancelin in the Comptes rendus de l’Académie
des Sciences gave an experimental value of 2.9 as the coefficient of ϕ in eq. (3). Ex-
trapolating his results to sugar solutions, Bancelin recalculated Avogadro’s num-
ber, and found a value of 7.0 × 1023 per mole.

Einstein’s dissertation was at first overshadowed by his more spectacular work
on Brownian motion, and it required an initiative by Einstein to bring it to the
attention of the scientists of his time. The paper on Brownian motion, the first of
several on this subject that Einstein published over the course of the next couple

70The Collected Papers of Albert Einstein, volume 2, op. cit., pp. 180-181.
71He asked Perrin: “Wouldn’t it be possible that your mastic particles, like colloids, are in a

swollen state? The influence of such a swelling 3.9/2.5 would be of rather slight influence on
Brownian motion, so that it might possibly have escaped you”, Einstein to Perrin, 12 January
1911, in The Collected Papers of Albert Einstein, volume 2, op. cit., p. 181.
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of years, actually included his first published statement of the famous relationship
linking diffusion with viscosity, that he had derived in his thesis.

As Abraham Pais points out in Subtle is the Lord..., this equation has found
widespread applications, as a result of which Einstein’s January 1906 paper in
the Annalen der Physik, the published version of his dissertation, later became
his most frequently cited paper!72 As stressed by R. H. Home in his essay on
Sutherland, Pais also goes on to argue that the thesis was also one of Einstein’s
“most fundamental papers”, of comparable intrinsic significance to the other papers
Einstein wrote in that year of 1905. “In my opinion,” Pais writes, “the thesis is
on a par with [Einstein’s] Brownian motion article”: indeed, “in some if not all
respects, his results are by-products of his thesis work.”

It is now time to turn to this famous 1905 Brownian motion article.

1.4.2 The 1905 article on Brownian motion

The 1905 article is entitled: “On the Motion of Small Particles Suspended in Liq-
uids at Rest, Required by the Molecular-Kinetic Theory of Heat.”73 There, Einstein
tried to establish the existence and the size of molecules, and to determine a theo-
retical method for computing Avogadro’s number precisely, by using the molecular
kinetic theory of heat. In fact, he concluded:

“Möge es bald einem Forscher gelingen, die hier aufgeworfene, für die Theorie
der Wärme wichtige Frage zu entscheiden !”74

Astonishingly enough, he was not yet certain that one could apply it to Brow-
nian motion. In fact, his introduction opens with: “In this paper it will be shown
that, according to the molecular-kinetic theory of heat, bodies of a microscopically
visible size suspended in liquids must, as a result of thermal molecular motions,
perform motions of such magnitude that they can be easily observed with a micro-
scope. It is possible that the motions to be discussed here are identical with so-called
Brownian molecular motion; however the data available to me on the latter are so
imprecise that I could not form a judgement on the question.”

Einstein relied on the results of his thesis, that he completed eleven days
before submitting his famous article on the suspensions of particles. Only later
would his predictions be progressively confirmed by refined experimental data on
Brownian motion.75

72According to R. W. Home, op. cit., it became the paper most widely cited in the period
1961-75, the period surveyed for the citation analysis of any scientific article published by any
author before 1912. According to B. H. J. McKellar, op. cit., the 1905 citation count is as follows
(from World of Science, Dec. 2004): Ann. d. Phys. 17, 132 (1905): 325 (photoelectric effect);
Ann. d. Phys. 17, 549 (1905): 1368 (Brownian motion); Ann. d. Phys. 17, 891 (1905): 664 (special
relativity); Ann. d. Phys. 18, 639 (1905): 91 (E = mc2); Ann. d. Phys. 19, 289 (1906): 1447
(molecular dimensions, Einstein’s thesis).

73A. Einstein, Ann. d. Physik 17, pp. 549-560 (1905).
74“Let us hope that a researcher will soon succeed in solving the problem presented here, which

is so important for the theory of heat!”
75This led J. Renn, op. cit., to speak of “Einstein’s invention of Brownian motion”.
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1.4.3 The Einstein-Sutherland derivation

The demonstration is based on two distinct elements from apparently contradicting
domains.

It seemed initially natural to use a hydrodynamic representation for parti-
cles in suspensions with size much greater than that of the liquid’s molecules. A
substantial amount of knowledge on the subject was available, in particular the
famous “Stokes’ formula,” which gives the force of friction opposing to a sphere
moving in the liquid.

But at the same time it was necessary for Einstein to exploit the kinetic
theory of heat, pulling it away from the original context of the theory of gases
and bringing it closer to the context of liquids, where the state of the theory was
much less advanced. It was the crucial notion of osmotic pressure, developed by
van ’t Hoff, that made the passage possible. It is based on the concept of kinetic
molecular disorder, where solute molecules, with a size comparable to that of the
liquid’s molecules, participate to the general motion like in a dilute gas.

Einstein was in possession of two theories about particles in a fluid. The first:
Stokes’ hydrodynamic theory, based on the hypothesis that a liquid is a continuous
medium which adheres to a large solid surface moving through it, without any
turbulence, and where the molecular agitation does not seem to play any role.
The other: van ’t Hoff’s osmotic theory, based on the hypothesis that a particle
in solution is similar to any other fluid molecule, and therefore is subjected to the
same laws of molecular agitation.

One needed Einstein’s perspicacity and his profound knowledge of statistical
mechanics to understand and to prove that the two points of view were simulta-
neously valid for particles as big as Brownian particles.

Einstein first studied the osmotic pressure created in the solution by solute
molecules. This notion was developed by J. H. van ’t Hoff76 who, for dilute solu-
tions, showed the identity between the pressure exerted on semi-permeable walls
by molecules in solution and the partial pressure exerted by a gas. For sufficiently
dilute solutions, this additional pressure p due to the molecules in solution satisfies
the law of perfect gases

p =
n

N RT, (4)

where R is the ideal gas constant, T is the absolute temperature, and n is the
number of solute particles per unit volume, or particle density.

In his thesis, Einstein considered the effect of the density of such molecules
on the viscosity, such as in the case of sugar in water. This time the particles in
suspension are much larger so as to be observable under a microscope. Einstein
right away affirms that the difference between solute molecules and particles in
suspension is only a matter of size, and that van ’t Hoff’s law must be applied

76J. H. van ’t Hoff, Kongliga Svenska Vetenskaps-Academiens Handlingar, Stockholm, 21, 1
(1884).
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as well to particles in suspension. Next, he proves this fact and formula (4), by
determining the free energy of an ensemble of such particles in suspension. In fact,
he calculates the associated partition function by the phase space method.

Einstein then imagines that the numerous particles of the suspension are
subjected to an external force F , which may depend on their positions but not
on time.77 This force, acting along the x axis for instance, moves each particle
of the solute, and generates a gradient of concentration. Let n(x, y, z; t) be the
number of particles in suspension per unit volume around the point x, y, z at the
instant t. From (4), a non-uniform osmotic pressure corresponds to a gradient
of concentration of particles in suspension. By considering the resultant of all
pressure forces on an elementary interval dx, one also obtains the force of the
osmotic pressure per unit volume:

Π = − ∂p

∂x
= −gradp = −R

N T gradn(x, y, z; t), (5)

where here the gradient is the spatial derivative in the direction x of the force.
In addition, the quantity ΠF = nF represents the total external force per unit

volume acting on the Brownian particles in suspension. From both a hydrostatic
and thermodynamic point of view, one imagines a priori that the equilibrium of a
unit of volume of the suspension is established when the force ΠF is balanced by
the osmotic pressure force Π. In fact, by using arguments of equilibrium invariance
of the free energy with respect to virtual displacements, Einstein demonstrates that
actually the sum of the external and osmotic forces per unit volume cancels:

ΠF + Π = 0, (6)

nF =
R

N T gradn. (7)

One notices that he directly obtained the explicit formula (7) from the free energy
of the particles in suspension, without relying on the result (4), which shows the
two results come from the same approach.

The second part of this argument focuses on the dynamics of the flux equilib-
rium. Equilibrium in the fluid is actually just an apparent effect: while the force
F moves the particles in suspension, these are also subjected to Brownian motion
which reflects the kinetic nature of heat.

By moving in the liquid under the force F , each particle in suspension ex-
periences an opposing force of viscous friction. This brings the particle to a limit
velocity V = F/µ, where µ is the coefficient of viscous friction for each particle
in suspension. The result is a flux of particles

ΦF = nV = nF/µ, (8)

77This force can be, for example gravitational, as in the sedimentation experiments by Jean
Perrin, but the beauty of the argument is that the result does not depend on the nature of
the force, that can even be virtual, as in the notion of “virtual work” of the eighteenth century
Mechanics.
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that is the number of particles crossing a unit surface perpendicular to the direction
x of the force.

The particle density n(x, y, z; t) satisfies the local diffusion equation

∂n

∂t
= D∆n, (9)

where ∆ is the Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , and where D is a coefficient,
called the coefficient of diffusion, measured in square meters per second units.
To this equation is naturally associated a diffusion flux ΦD, which is the number
of particles diffusing across a unit surface per unit of time. This flux is directly
connected to the concentration gradient by78

ΦD = −D gradn. (10)

At equilibrium, here both local and dynamic, the force-driven flux ΦF (8)
and the flux of diffusion ΦD (10), cancel:

ΦF + ΦD = 0, (11)

nF/µ = D gradn. (12)

By comparing the static equation (7) and the dynamic equation (12), one
sees that they have identical structures for the dependence on n and its gradient,
from which we obtain the required identity between the coefficients:

D =
1

µ

RT

N . (13)

By supposing that the particles in suspension are all spheres of radius a, Einstein
uses at last Stokes’ relation which gives the coefficient of friction µ of a sphere
immersed in a (continuous) fluid with viscosity η:

µ = 6πη a, (14)

from which he finally deduced:

D =
RT

N
1

6πη a
. (15)

78Einstein, like Sutherland, writes this equation directly, without passing through the diffusion
equation he will prove farther along. This is indeed the celebrated Fick’s law (A. Fick, Über Dif-
fusion, Ann. Phys. Chem. 4, 59-86 (1855)). For mathematically inclined readers, let us recall that
the Laplacian is also ∆ = div(grad), where the divergence is the operator of derivation of a vector
~A: div ~A = ~∇. ~A = ∂Ax

∂x
+

∂Ay

∂y
+ ∂Az

∂z
, and where the gradient is the vector operator of derivation

grad =
“

∂
∂x
, ∂

∂y
, ∂

∂z

”

. From the diffusion equation, ∂n
∂t

= D∆n, by counting the number of

particles crossing an arbitrary closed surface and by applying the Green-Ostrogradski theorem,
one immediately finds the existence across the surface of a diffusion flux ΦD = −D gradn.
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This is Einstein’s famous relation, which is already in his thesis. In fact, as men-
tioned above, the same relation was discovered earlier in Australia and, by a re-
markable coincidence, published at practically the same moment as Einstein was
working on his thesis. William Sutherland published his Philosphical Magazine
article in March of 1905. One should therefore definitely call this relation the
Sutherland-Einstein relation.

In the 1905 article, Einstein completes these results by means of mathemat-
ical and probabilistic considerations. Let P (x, y, z; t) be the probability density of
finding a Brownian particle at a point x, y, z at the time t. This density satisfies
the diffusion equation:

∂P

∂t
= D∆P. (16)

Let us follow Einstein in his demonstration.
He starts by introducing a time interval τ , small compared to the duration

of the observation, but large enough for the motions made by a particle during
two consecutive intervals of time τ to be considered as independent events. Let us
suppose then that in a liquid suspension there is a total number of particles N .
During the time interval τ , the coordinates of each particle along the x axis will
change by an amount ∆, where ∆ takes a different value (positive or negative) for
each particle. A probability distribution governs ∆: the number dN of particles
with a displacement between ∆ and ∆ + d∆ is:

dN = Nϕτ (∆)d∆,

where
∫ +∞

−∞

ϕτ (∆)d∆ = 1, (17)

and where, for small τ , ϕτ (∆) differs from zero only for very small values of ∆.
This function also satisfies the symmetry condition

ϕτ (∆) = ϕτ (−∆). (18)

Einstein tries then to determine how the coefficient of diffusion depends on ϕ,
once again by considering only the unidimensional case where the particle density
n depends only on x and t. We can thus write n = f(x, t) (the number of particles
per unit volume) and we calculate the particle distribution at the time t+ τ given
the distribution at the time t. From the definition of the function ϕτ (∆), we obtain
the number of particles between two planes in x and x+ dx at the time t+ τ :

f(x, t+ τ)dx = dx

∫ +∞

−∞

f(x+ ∆, t)ϕτ (∆)d∆. (19)

Since τ is very small, we can assume that

f(x, t+ τ) = f(x, t) + τ
∂f

∂t
. (20)
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Moreover, expand f(x+ ∆, t) in powers of ∆:

f(x+ ∆, t) = f(x, t) + ∆
∂f(x, t)

∂x
+

∆2

2

∂2f(x, t)

∂x2
+ · · ·

We can then substitute such an expansion inside the integral in (19) as only very
small values of ∆ contribute to the latter. We obtain:

f+τ
∂f

∂t
= f×

∫ +∞

−∞

ϕτ (∆)d∆+
∂f

∂x
×
∫ +∞

−∞

∆ϕτ (∆)d∆+
∂2f

∂x2
×
∫ +∞

−∞

∆2

2
ϕτ (∆)d∆+· · ·

On the right side, the second term, fourth term, etc., cancel out because of the
parity property (18), while each of the other terms is very small in relation to the
preceding one. From this equation, taking into account the conservation property
(17), defining

1

τ

∫ +∞

−∞

∆2

2
ϕτ (∆)d∆ = D (21)

and keeping only the first and the third terms on the right hand side, we obtain

∂f

∂t
= D

∂2f

∂x2
. (22)

This is the famous diffusion equation, where the diffusion coefficient D is given by
(21).

We comment now on the method of Einstein. The definition (21) of the
diffusion coefficient D can be rewritten as

〈∆2〉τ ≡
∫ +∞

−∞

∆2ϕτ (∆)d∆ = 2Dτ, (23)

which is the average quadratic variation produced by the thermal agitation during
the time τ . Formally identical to formula (28) (see below), which gives the law of
the average quadratic displacement as a function of time, it somehow contains the
latter tautologically. Moreover, as τ is assumed to be small, this definition implies
the existence of the limit (21) for τ → 0, if one requires D to be independent of
τ .79

Einstein continues by noting that until then all particles have been considered
with respect to a common origin on the x axis, but that their independence also
allows us to consider each particle with respect to the position it occupied at the
time t = 0. Therefore f(x, t) dx is also the number of particles (per unit area)

79For a discussion of the range involved for this auxiliary time parameter τ , its physical meaning
and the logical and mathematical intricacies related to its formal limit τ → 0, see: C. W. Gardiner,
Handbook of Stochastic Methods, 2nd ed., Springer, Berlin (1985); N. G. van Kampen, Stochastic
Processes in Physics and Chemistry, North-Holland, Amsterdam (1992); D. T. Gillespie, Markov
Processes, Academic, Boston (1992); and in particular G. Ryskin, Phys. Rev. E 56, pp. 5123-5127
(1997).
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whose abscissa x has changed by an amount comprised between x and x+dx, over
the time interval from 0 to t. The function f then obeys the diffusion equation
(22). Einstein also says that evidently one must have, for t = 0,

f(x, t = 0) = 0, ∀x 6= 0 ; and

∫ +∞

−∞

f(x, t)dx = N.

The problem thus coincides with that of diffusion from a given point (neglect-
ing the interactions between diffusing particles), and is now entirely determined
mathematically; its solution is:

f(x; t) =
N

(4πDt)1/2
exp

(

− x2

4Dt

)

. (24)

The probability density P (x, t) = f(x, t)/N for a Brownian particle to be
within dx of x, assuming it was at x = 0 at the instant t = 0, is thus the normalized
Gaussian distribution

P (x; t) =
1

(4πDt)1/2
exp

(

− x2

4Dt

)

. (25)

In three dimensions, if the Brownian particle is at ~0 at the instant t = 0 then
the solution of equation (16) is still Gaussian and written as:

P (x, y, z; t) =
1

(4πDt)3/2
exp

(

−x
2 + y2 + z2

4Dt

)

. (26)

One clearly finds the previous density P (x, t) by integrating over the variables y
and z.

From these results one can evaluate the integral of the average quadratic
displacement along, say, the x axis. One finds

〈x2〉t =

∫ +∞

−∞

x2P (x; t) dx =
1

(4πDt)1/2

∫ +∞

−∞

x2 exp

(

− x2

4Dt

)

dx

= 2Dt. (27)

As already pointed out above, this result for 〈x2〉t is absolutely identical to the
result (23) for 〈∆2〉τ , which is just a reflection of the scale invariance of Brownian
motion, a notion perhaps not yet appreciated in 1905!

From the Sutherland-Einstein relation (15), one finally obtains the average
Brownian displacement as a function of time

〈x2〉t = 2Dt =
RT

N
1

3πη a
t. (28)

This is the first appearance of a fluctuation-dissipation relation, linking position
fluctuations and a property of dissipation (the viscosity). As stressed by Ryogo
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Kubo in his essay Brownian Motion and Nonequilibrium Statistical Mechanics,80

fluctuation-dissipation relations are at the heart of the so-called linear response
theory, which is, in a sense, the most natural extension of the Sutherland-Einstein
theory of Brownian motion. In particular, the so-called Green81–Kubo82 formulae
there provide the generalizations of relation (28).

In this fundamental equation for Brownian motion, 〈x2〉, t, a and η are mea-
surable quantities and thus Avogadro’s number can be determined. This is an
astonishing result: first prepare a suspension of small spheres, but large how-
ever with respect to molecular dimensions, then take a chronometer and a mi-
croscope, and finally measure N ! Einstein gave this example: for water at 17oC,83

a ≈ 0.001 mm = 1µm, N ≈ 6 × 1023, one finds a displacement of
√

〈x2〉 ≈ 6µm
for t = 1 mn.

One can ask to what extent does the Sutherland-Einstein formula (13) or
(15) prove the existence of molecules. In other words, what would be the limit
of the diffusion coefficient D = RT

µN if Nature were continuous, i.e., if Avogadro’s
number was infinite? Then D would cancel out, and the displacement of Brownian
diffusion (28) would simply disappear in this limit, but one should verify, for the
sake of rigour, the simultaneous existence of a finite continuous limit of the friction
coefficient µ or of the viscosity η when N → ∞. We will come back to this point
in section (1.7.4) where the study of a microscopic model allows for an explicit
calculation of µ, and for concluding that Brownian motion is surely a manifestation
of the existence of molecules!

1.4.4 Einstein, 1906, general theory of Brownian motion

In another article written in December 1905 and received on the 19th of the same
month by Annalen der Physik,84 this time entitled: “On the Theory of Brownian
Motion,” Einstein mentions that “Soon after the appearance of my paper on the
movements of particles suspended in liquids required by the molecular theory of
heat, Siedentopf (from Jena) informed me that he and other physicists –firstly,
Prof. Gouy (of Lyons)– had been convinced by direct observation that the so-called
Brownian motion is caused by the irregular thermal movements of the molecules
of the liquid.

Not only the qualitative properties of Brownian motion, but also the order of
magnitude of the paths described by the particles correspond completely with the

80R. Kubo, Brownian Motion and Nonequilibrium Statistical Mechanics, Science 233, pp. 330-
334 (1986).

81M. S. Green, J. Chem. Phys. 20, 1281 (1952); ibid. 22, 398 (1954).
82R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
83According to John Stachel in Einstein’s Miraculous Year (Princeton University Press, New

Jersey, 1998), the data Einstein uses on the viscosity of water is taken from his thesis, and in
fact corresponds to the temperature 9.5oC.

84A. Einstein, Ann. d. Physik 19, pp. 371-381 (1906); translated in A. Einstein, Investiga-
tions on the Theory of the Brownian Movement, R. Fürth Ed., A. D. Cowper Transl., Dover
Publications, pp. 19-35 (1956).
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results of the theory.”

This time Einstein is convinced that Brownian motion is the phenomenon he
just described. He then gives another, more general, theoretical approach. It can be
applied not only to the translational, but also rotational diffusion motion of par-
ticles in suspension, or to charge fluctuations in an electric resistance. We briefly
describe such a general and, from our standpoint, very enlightening approach. It
shows the central role of the Boltzmann’s distribution at thermodynamic equilib-
rium, and shows that its stationarity in time requires the existence of Brownian
motion and its link to the molecular nature of heat.

Einstein considers a quantity α, which has a Boltzmann distribution

dn = Ae−
N

RT
Φ(α)dα = F (α)dα, (29)

where A is a normalization coefficient and Φ(α) is the potential energy associated
to the parameter α. Here dn is proportional to the probability density of α and
gives the number of systems (à la Gibbs) identical to the present system taken in
the same state.

Einstein uses that relation for determining the irregular changes of the pa-
rameter α produced by thermal phenomena. He states that the function F (α) does
not change during a time interval t under the combined effect of the force corre-
sponding to the potential Φ and the irregular thermal phenomena; t is so small
that all changes of the variable α can be considered as infinitesimally small in the
arguments of the function F (α).

We consider the real line representing all α values and take an arbitrary point
α0 on it. During the time interval t, the same number of systems must pass through
the point α0 in one direction as in the other. The force −∂Φ

∂α corresponding to the
potential Φ induces a change of the parameter α per unit of time:

dα

dt
= −B∂Φ

∂α
, (30)

where B is, according to Einstein’s words, the “mobility of the system with respect
to α”. This is an equation of viscous-friction type, like equation (8) with B = 1/µ.
According to (29), the variation of the number of systems passing through the
point α0 during the time interval t is:

n1 = −B
(

∂Φ

∂α

)

α=α0

× tF (α0), (31)

where the number of systems is counted algebraically (positive or negative) ac-
cording to the side of α0 they are moving from, i.e., according to the sign of the
velocity (30).

Let us suppose that the probability that the parameter α changes of an
amount between ∆ and ∆ + d∆, during the time t and under the effect of the
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irregular thermal processes, is equal to ψt(∆)d∆, where ψt(∆) = ψt(−∆) is inde-
pendent of α. This last assumption reflects the intrinsic nature of thermal agita-
tion. The number of systems passing through the point α0 during the time t in
the positive direction is given by

n2 =

∫ +∞

0

F (α0 − ∆)χt(∆)d∆, (32)

where χt(∆) is the cumulative probability that the system makes a jump to the
right of size at least ∆ during the time t:

χt(∆) =

∫ +∞

∆

ψt(∆
′)d∆′. (33)

Analogously, the number of systems that, under the effect of thermal fluctuations,
pass through the value α0 in the negative direction during the same time is (taking
into account the algebraic sign),

n3 = −
∫ +∞

0

F (α0 + ∆)χt(∆)d∆, (34)

where we have used the symmetry property

χt(∆) =

∫ +∞

∆

ψt(−∆′)d∆′. (35)

The equation which mathematically states the invariance of the equilibrium
distribution F (α) is thus the law of algebraic conservation of the number of en-
sembles

n1 + n2 + n3 = 0. (36)

By substituting the expressions for n1, n2, and n3, by remembering that t is
infinitesimally small, as well as the values of ∆ for which ψt(∆) is different from
0, and by performing a first order expansion, one finds the essential equation85:

B

(

∂Φ

∂α

)

α=α0

× tF (α0) +
1

2
F ′(α0)〈∆2〉t = 0. (37)

85In fact, we find that for the part concerning the thermal fluctuations

n2 + n3 =

Z +∞

0
d∆ [F (α0 − ∆) − F (α0 + ∆)]χt(∆) = −2F ′(α0)

Z +∞

0
d∆∆χt(∆),

where the integral is explicitly written

2

Z +∞

0
∆ d∆

Z +∞

∆
ψt(∆

′)d∆′ =

Z +∞

0
(∆′)2ψt(∆

′)d∆′ =
1

2
〈∆2〉t,

after having exchanged the order of integrations or again integrated by parts.
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Here

〈∆2〉t =

∫ +∞

−∞

∆2ψt(∆)d∆

represents the average quadratic variation of the quantity α due to thermal agita-
tion during time t.

Then, by using Boltzmann’s distribution F (α) ∝ exp
[

− N
RT Φ(α)

]

which au-
tomatically satisfies equation (37) for any potential, Einstein obtains the average
quadratic fluctuation

〈∆2〉t = 2B
RT

N t. (38)

Here, as before, R is the perfect gas constant, N is Avogadro’s number, B is the
system mobility with respect to the parameter α, T is the absolute temperature,
and t is the time interval during which α changes due to thermal agitation.

Einstein’s study shows that Boltzmann’s equilibrium distribution, dynam-
ically interpreted as in the conservation equation (36), implies the existence of
Brownian diffusion for any physical quantity α for which the system possesses a
mobility.

This idea is so rich that one can reverse the point of view and consider the
equilibrium equation (37) as an equation for F (α), where 〈∆2〉t is independent of
α and where t is arbitrary. It is then remarkable that the solution of (37) neces-
sarily has the exponential form of Boltzmann’s distribution (29), where RT

N ap-
pears as a parameter connected with Brownian diffusion, according to the identity
(38). In other words, Einstein’s study of the general dynamics of Brownian mo-
tion implies equally well the particular form of the Boltzmann-Gibbs equilibrium
distribution86.

Einstein applies the result (38) to translational and rotational Brownian mo-
tions. For translational motions, the parameter α is any spatial coordinate x, and
one needs to insert the corresponding value of the mobility B. For a sphere of
radius a in suspension in a liquid of viscosity η, Stokes’ formula, for which he cites
Kirchhoff’s course87, gives

B =
1

µ
=

1

6πηa
,

86This strongly suggests introducing, in courses on Statistical Physics, Einstein’s demonstration
of Brownian motion, in order to clarify the statistical and dynamical nature of thermodynamic
equilibrium. In fact, in the usual approach, Brownian motion is not taught at first, and even
when it is, it appears more as a curiosity. The approach that one usually takes consists in
introducing Boltzmann’s distribution, either via the microcanonical ensemble and the associated
Boltzmann entropy, and by evaluating the latter for a small system in contact with a thermostat,
or via Shannon statistical entropy and the canonical ensemble. In these formal approaches, the
emphasis is put on the probabilities and one does not see the necessity of the thermal agitation
process for keeping the equilibrium distribution dynamically. After all, molecules or particles in
suspension, even when initially distributed according to Boltzmann’s statistics, will always fall
to the bottom of the container under the effect of gravity in the absence of thermal agitation!

87G. Kirchhoff, Vorlesungen über Mechanik, 26. Vorl., S 4, Teubner, Leipzig (1897); available
on http://gallica.bnf.fr/.

http://gallica.bnf.fr/
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and we find the famous formula (28) again:

〈x2〉t =
RT

N
1

3πη a
t. (39)

Next, Einstein considers for the first time the Brownian motion of the rotation
of a sphere suspended in a liquid, and he considers the squared fluctuations 〈ϑ2〉
of any rotation angle ϑ resulting from the thermal agitation.

If one then defines Γ = −∂Φ
∂ϑ the moment of the forces acting on a sphere

suspended in a liquid with viscosity η, then the associated angular limit velocity
is (again from Kirchhoff):

dϑ

dt
=

Γ

8πηa3
, (40)

and in this case, one has:

B =
1

8πηa3
.

One deduces

〈ϑ2〉t =
RT

N
1

4πη a3
t. (41)

The angular motion produced by the molecular thermal agitation decreases with
the radius of the sphere much faster than the translational motion does.

For a = 0.5 mm, and with water at 17o C, the formula gives, for t = 1 s, an
angular shift of roughly 11 seconds of an arc, while for a = 0.5µm it gives for the
same time duration roughly 100o of arc.

Finally Einstein mentions that the same formula (38) for 〈∆2〉t can be ap-
plied to other situations. For example, if B is chosen as the inverse of the electric
resistance ρ of a closed circuit, the formula indicates the average squared total
charge

〈e2〉t = 2
RT

N
1

ρ
t

which moves through any section of the circuit during time t.

Einstein concludes his article by assessing the limits of applicability of his
formula at very short time scales, for which memory effects can occur. He ar-
rives thereby at the estimate that the formula is valid for t large compared to a
characteristic time τ ′ = m′B, where m′ is the mass of the fluid displaced by the
sphere.

1.4.5 The problem of measuring the velocity

In subsequent articles, published in 1907 and 1908 in the Zeitschrift für Elektro-
chemie, Einstein tries to draw experimenters’ attention to his results and to explain
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them in a simpler manner. He comes back to the average velocity of a particle in
suspension, which must follow the equipartition law

1

2
m〈v2〉 =

3

2

RT

N .

For Svedberg’s colloid solutions of platinum, of mass m ≈ 2.5 × 10−15 g,
it gives an average velocity of 8.6 cm/s. However Einstein says that there is no
possibility to observe such a velocity because of the effectiveness of viscous friction,
which reduces the velocity to 1/16 of its initial value in 3.3×10−7 s. He continues:88

“But, at the same time, we must assume that the particle gets new impulses to movement
during this time by some process that is the inverse of viscosity, so that it retains a velocity
which on average is equal to

p

〈v2〉. But since we must imagine that direction and magnitude of
these impulses are (approximately) independent of the original direction of motion and velocity
of the particle, we must conclude that the velocity and direction of motion of the particle will
be already very greatly altered in the extraordinarily short time θ [= 3.3 × 10−7 s] and, indeed,
in a totally irregular manner.

It is therefore impossible –at least for ultra-microscopic particles– to ascertain
p

〈v2〉 by

observation.”

According to Einstein’s result (28), the apparent velocity in a time interval
τ is inversely proportional to

√
τ and therefore grows without limit when this

time interval becomes shorter. Any attempt to measure the instantaneous velocity
of a particle brings one to erratic results. This explains experimenters’ repeated
failures to obtain well defined conclusions for the velocity of particles in suspension.
They simply were not measuring the correct quantity, and they had to wait for
Einstein to show that only the ratio of the quadratic displacement over time has
a theoretical limit for the experiments to connect to the theory.

As Brush remarked,89 it was not the first time that the particular nature
of a motion governed by a diffusion equation pointed out something right under
one’s nose. In 1854, William Thomson (who would go on to become Lord Kelvin)
applied the diffusion equation (i.e., Fourier’s equation for heat conduction) in his
study of motion of electricity in telegraph lines. After having carried out almost
exactly the same mathematical analysis that Einstein would do fifty years later,
Thomson wrote:

“We may infer that the signal delays are proportional to the squares of the distances,

and not to the distances simply; and hence different observers, believing they have found a

“velocity of electric propagation,” may well have obtained widely discrepant results; and the

apparent velocity would, caetaris paribus, be the less, the greater the length of wire used in the

observation.”

A better estimate of the very short time behavior of particles in suspension

88A. Einstein, Zeit. f. Elektrochemie, 13, pp. 41-42 (1907); translated in A. Einstein, Investi-
gations on the Theory of the Brownian Movement, op. cit.

89S. G. Brush, op. cit., pp. 682-683.
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follows from subsequent work made by many physicists,90 among which those of
Langevin, through his stochastic equation that we will see later, and that culmi-
nated with the Ornstein-Uhlenbeck analysis.91

A more complete formula is actually

〈∆2〉t = 2D
[

t−mB
(

1 − e−
t

mB

)]

, (42)

where D = BRT
N is the diffusion coefficient, and m this time is the mass of the

particle. Therefore we clearly get the formula (38) for t large compared to the
microscopic time

τ = mB =
m

µ
, (43)

of the same order of magnitude as the time τ ′ estimated by Einstein.

For t smaller than τ , we find a ballistic regime

〈∆2〉t = D
t2

mB
=
RT

N
1

m
t2, τ ≫ t, (44)

independent of the viscosity of the medium, and which remarkably can be in-
terpreted as corresponding to the energy equipartition theorem, this time in the
form:

1

2
m
〈∆2〉t
t2

=
1

2

RT

N τ ≫ t.

1.4.6 Einstein’s third derivation of Brownian motion

A third approach to Brownian motion was incidentally offered by Einstein in
a lecture given in front of the Zürich Physical Society, on 2 November 1910,
which was entitled: “On Boltzmann’s Principle and Some Immediate Consequences
Thereof.”92 This text seems not to have appeared in print before, so an English
translation, followed by a commentary, is included in this volume.

In this fascinating lecture, Einstein describes his point of view on Statistical
Physics at that time. He illustrates it by stressing the role of fluctuations, in rela-
tion to Boltzmann’s formula for the entropy. This text is of particular importance,

90P. Langevin, C. R. Ac. Sci. Paris 146, 530 (1908); L. S. Ornstein, Proc. Amst. 21, 96 (1918);
L. de Haas-Lorentz, The Brownian Mouvement and some Related Phenomena, Sammlung Wis-
senschaft, B. 52, Vieweg (1913); R. Fürth, Zeit. f. Physik 2, 244 (1920).

91G. E. Uhlenbeck and L. S. Ornstein, On the Theory of Brownian Motion, Phys. Rev. 36, pp.
823-841 (1930).

92Über das Boltzmann’sche Prinzip und einige unmittelbar aus demselben fliessende Folgerun-
gen, Vorlesungen für die Physikalische Gesellschaft Zürich, 2 November 1910, Zangger Nachlaß,
Zentral Bibliothek Zürich. English translation by B. Duplantier & E. Parks: On Boltzmann’s
Principle and Some Immediate Consequences Thereof, in: Einstein, 1905-2005, Poincaré Semi-
nar 2005, Eds. T. Damour, O. Darrigol, B. Duplantier and V. Rivasseau, pp. 183-199 (Birkhaüser
Verlag, Basel, 2006).
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since Einstein asks more generally whether a complete causal connection can al-
ways be found between physical events; this epistemological interrogation takes
place at the dawn of Quantum Mechanics.

Among other examples, Einstein considers the case of a suspended particle
in a gravitational field, and performs a calculation of the mean square position of
the particle. From the simple assumption of the stationarity of that average, he
rederives the famous Sutherland-Einstein formula (15). This is perhaps the most
direct and illuminating derivation of the Brownian diffusion formula!

1.5 Marian von Smoluchowski

“A throw of the dice never will abolish chance.” (Stéphane Mallarmé, 1897)

1.5.1 Probabilities and stochasticity

Smoluchowski’s name is closely attached to Brownian motion and the theory of dif-
fusion, as we will show here. Moreover, as Marc Kac wrote about Smoluchowski,93

the latter showed through a true intellectual tour de force, that the notion of a
game of chance lies at the heart of our comprehension of physical phenomena.
We are indebted to him for his original and bold introduction of the calculus of
probability in statistical physics, and he deserves a place beside the great names
of Maxwell, Boltzmann, and Gibbs.

Marian von Smoluchowski was born in 1872, the same year as Paul Langevin,
and the year Boltzmann published the great memoir containing the equation that
bears his name, as well as the famous “H theorem”. There, Boltzmann derives the
irreversible increase of entropy linked to the second principle of thermodynamics, in
the area of classic Newtonian mechanics, with the help of a hypothesis of molecular
chaos, which Smoluchowski thought should have been instead a consequence in
this framework. This brought about serious paradoxes (Loschmidt,94 Zermelo95),
because the equations of classical mechanics are reversible and have recurring
cycles, called Poincaré recurrence cycles. So this forbade a priori the monotonic
growth of a function of positions and the momenta, as seen for Boltzmann’s H
function which is directly connected to entropy. Each time on the defensive,96
97 Boltzmann had to introduce probabilistic and statistical arguments to justify
his results, often by completely changing his point of view about the true nature
of the probabilities involved. The situation became so confused that Paul and
Tatyana Ehrenfest, for example, tried to clarify Boltzmann’s ideas by banishing

93Marian Smoluchowski, His Life and Scientific Work, S. Chandrasekhar, M. Kac, R. Smolu-
chowski, Polish Scientific Publishers, PWN, Warszawa (2000).

94J. Loschmidt, Wien. Ber. 73, 139 (1876); 75, 67 (1877).
95E. Zermelo, Ann. d. Physik 57, 485 (1896); 59, 793 (1896).
96L. Boltzmann, Wien. Ber. 75, 62 (1877); 76, 373 (1877); see also Nature 51, 413 (1895) and

Vorlesungen über Gas Theorie I, 42, Leipzig (1895) (or the reprinted edition of 1923).
97L. Boltzmann, Ann. d. Physik 57, 773 (1896); 60, 392 (1897).
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the term (but not the concept) “probability” from their famous 1911 Encyclopedia
memoir!98

As S. G. Brush noted,99 the research line of the kinetic theory of gases
that Smoluchowski pursued was a continuation of that of Clausius, Maxwell, O.E.
Meyer, Tait and Jeans, according to which one describes the effects of collisions on
the trajectory of a molecule, and therefore on the properties of the gas. Einstein,
on the contrary, followed the path opened by Boltzmann, Maxwell (in his subse-
quent articles) and Gibbs, where the objective was to obtain more general laws
starting from statistical distributions postulated for molecular ensembles, without
making any assumption about intramolecular forces and collision mechanisms. It
is thus extremely interesting to see these two “Gedankenwege,” kinetic theory and
statistical mechanics, meet up in relation to Brownian motion, terra incognita for
both theories.

In this context, by working in the same pragmatic spirit as Maxwell, Smolu-
chowski courageously showed how to use the theory of probability in physics as an
efficient instrument, during an era when mathematicians looked down on it, and
physicists mostly ignored it. Without knowing it, Smoluchowski opened a new sub-
field of statistical physics, that nowadays bears the name Stochastic Processes.100

1.5.2 Brownian motion and random walks

This probabilistic point of view is clearly present in Smoluchowski’s first article on
Brownian motion, “Essay on the theory of Brownian motion and disordered me-
dia”101 published in 1906 (very likely under the pressure of Einstein’s publication
of his first two articles), as well as in another article, about the mean free path
of molecules in a gas.102 In these remarkable articles he was seemingly the first to
establish the relation between random walks and Brownian diffusion, even though
in 1900 Louis Bachelier had already introduced the model of a random walker in
his thesis The Theory of Speculation. We shall return to this later.

98P. and T. Ehrenfest, Begriffliche Grundlagen der statistischen Auffassung in der Mechanik,
Encyklopädie der mathematischen Wissenschaften 4, 4 (1911).

99S. G. Brush, loc. cit.
100From the Greek word στoχαστικóς (stokhastikos), “to aim well,” “capable of making con-

jectures,” already used by Jacob Bernoulli in 1713 in Ars Conjectandi: “We define the art of
conjecture, or stochastic art, as the art of evaluating as exactly as possible the probabilities of
things, so that in our judgments and actions we can always base ourselves on what has been
found to be the best, the most appropriate, the most certain, the best advised; this is the only
object of the wisdom of the philosopher and the prudence of the statesman.”
101M. R. von Smolan Smoluchowski, Rozprawy Kraków 46 A, pp. 257-281 (1906); French trans-

lation: “Essai d’une théorie du mouvement brownien et de milieux troubles,” Bull. International
de l’Académie des Sciences de Cracovie, pp. 577-602 (1906); German translation: Ann. d. Physik
21, pp. 755-780 (1906).
102M. R. von Smolan Smoluchowski, Sur le chemin moyen parcouru par les molécules d’un

gaz et sur son rapport avec la théorie de la diffusion, Bulletin International de l’Académie des
Sciences de Cracovie, pp. 202-213 (1906).
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Smoluchowski begins by citing Einstein’s work from 1905 and writes that
the latter’s results “completely agree with those I obtained a few years ago by an
entirely different path of reasoning, and that since then I have considered an im-
portant argument in favor of the kinetic nature of these phenomena.” However, he
adds further along that his own method “seems more direct, simpler, and perhaps
more convincing than that of Einstein.”

While Einstein (like Sutherland) avoids all treatment of collisions in favor of
a general thermodynamic approach, Smoluchowski has a clear kinetic vision and
treats the Brownian motion as a random walk or a game of heads or tails (see
figure 2).

0

a

R

Figure 2: Random walk on a square lattice with elementary lattice step a. We
choose each step at random. In two dimensions, two equivalent methods exist. In
the first one, we draw heads or tails (with a probability of 1/2) for a direction,
vertical or horizontal, and next the orientation along the chosen direction. In the
second method, we draw with the same probability (with probability of 1/4) one of
the four possible directions. In the continuous limit where the lattice step goes to
0, a very long random walk will take the appearance of the Brownian motion of
figure 1.

The newness and the originality of Smoluchowski’s approach is in the replace-
ment of an incredibly difficult problem (a Brownian particle which collides within
a gas or liquid) by a relatively simple stochastic process. Each dynamic event like
a collision is considered as a random event similar to a game of heads or tails, or
to the throw of a dice, where the elementary probabilities are (to a certain extent)
determined by underlying mechanical laws. This way of reasoning plays a funda-
mental role in mechanics and statistical physics today and, as Marc Kac noticed,
it is difficult for us today to imagine the degree of Smoluchowski’s intellectual
boldness in starting this subject during the early years of the last century.
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1.5.3 Smoluchowski’s contributions

Smoluchowski103 knew about the most recent studies on Brownian motion and in
particular the work of Felix Exner. The latter sent Smoluchowski diagrams made
from memory, called “Krix-Krax” because of the several inter-crossing “jumps”
apparently made by a Brownian particle observed under a microscope over a set
of discrete instants of time.

Smoluchowski began by criticizing Nägeli’s arguments which claimed that a
collision of a molecule of water with a sphere 0.001 mm in diameter would give a
velocity of 3×10−6 cm/s, which would be impossible to observe under a microscope,
and that the collision effects would cancel out on average. He compared this way
of thinking to that of a player who believed himself never to be able to lose more
than a single bet, despite repeated draws! By continuing the analogy further, he
calculated for the heads or tails game how the positive (or negative) cumulated
gains grow with the number n of draws (“time”).

Let pn,m be the probability to have met m favorable outcomes in the total
of n draws, with a net gain of m − (n −m) = 2m − n. This probability can be
written as

pn,m =
1

2n

n!

m!(n−m)!
=

1

2n

( n

m

)

, (45)

where the number of combinations
(

n
m

)

is the number of ways of choosing m out
of n objects.

The positive or negative mean deviation from zero, δn, i.e., the average of
the absolute value of a gain or of a loss after n turns, can be calculated as

δn = 〈|2m− n|〉 = 2

n
∑

m=n/2

(2m− n)pn,m = 2

n
∑

m=n/2

(2m− n)
1

2n

( n

m

)

=
n

2n

(

n
n
2

)

,

where n is supposed an even number, to simplify the notation. For large n, we
then use Stirling’s formula n! ≃ nne−n

√
2π, to evaluate δn:

δn ≃
√

2n

π
, n≫ 1.

The (arithmetical) average of successive gains (or losses) with respect to 0 increases
as

√
n, even when the total (algebraic) average is zero. The analogous number n of

molecular collisions per second on a sphere was estimated by Smoluchowski as 1016

in a gas and 1020 for a liquid. If the gain in velocity is of the order 10−6 cm/s at
each collision, one obtains a mean cumulated velocity of from 102 to 104 cm/s per
second. However Smoluchowski immediately reduces this conclusion, remarking
that each individual gain of velocity will fluctuate, and that a high velocity value
decreases the probability of one more positive gain.

103In this section we follow Brush’s presentation of Smoluchowski’s work.
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He shows next that a “true” velocity could be obtained from the equipartition
of kinetic energy, which gives a velocity of 0.4 cm/s, again much too large in
relation to experimental observations! In fact, Exner’s diagrams in “Krix-Krax”
gave a velocity of about 3×10−4 cm/s, an apparently irreconcilable disagreement.
As Smoluchowski says, “this contradiction, already seen by F. Exner, seems at
first to be a decisive objection to kinetic theory. Nevertheless the explanation is
very simple.”

He presents the following simple and clear explanation: such a velocity is too
large to be observed with a microscope magnifying 500 times. What one observes is
the average position of a particle having this velocity, but hit 1020 times per second,
each time in a different direction, such that one cannot observe the instantaneous
velocity. Each zig-zag displacement is incomparably smaller than the particle’s size,
and it is only when the geometric sum of these elements reaches a certain value
that one can observe a displacement. This is clearly the substance of Einstein’s
argument, here supported by the concrete image of kinetic theory: the average
displacement is the observable physical quantity, while velocity is not.

After such qualitative, but illuminating, considerations, Smoluchowski de-
velops his model of random collisions. Let m and v (m′ and v′ respectively) be
the mass and the velocity of a particle in suspension (of molecules in the liquid,
respectively). From the equipartition of energy, one has on average:

v

v′
=

√

m′

m
. (46)

He affirms that from “the laws of collision of elastic spheres,” the change of velocity
of the sphere in suspension is, at a collision, on average given by a small transverse
component αm′v′/m, where α = 3/4. The result is a random change of the velocity
direction of a small angle ε = αm′v′/mv. (According to (46), one also has ε =
αv/v′ on average.) He assumes also that the molecular impacts occur after equal
intervals of time, which makes the particle trajectory a chain made of constant-
length segments.

In other words, Smoluchowski adapts the idea of the mean free path of a
molecule in a gas, even though here the persistence of motion is shortened by the
presence of numerous molecules of the surrounding fluid.

The problem of Brownian motion is thus mathematically mapped onto the
one of finding the end-to-end average distance ∆2

n, of a chain of n segments, all of
length ℓ, each randomly turned by a small angle ε with respect to the preceding
one. He then obtains the general solution by a complicated recurrence relation,
containing multiple angular integrals of trigonometric functions, of the form:

∆2
n = ℓ2

{

2n

δ
+ 1 − n− 2

(1 − δ)2 − (1 − δ)n+2

δ2

}

, (47)

where δ = 1 − cos ε ≃ ε2/2.
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In the limit where nδ is small, one finds

∆n = nℓ

(

1 − nδ

6

)

, (48)

which represents a quasi-ballistic trajectory.
In the opposite case of a large number of collisions per unit of time nδ ≫ 1 ,

the first term of (47) dominates and one finds the expected result:

∆2
n = ℓ2

2n

δ
= ℓ2

4n

ε2
. (49)

If we call n̄ the number of collisions per unit of time, such that there are
n = n̄ t collisions over the time t, we have for a free path ℓ = v/n̄, and by using
ε = αv/v′, we find an average quadratic displacement at time t,

∆2
n ≡ ∆2

t =
4

α2

v′ 2

n̄
t. (50)

The momentum mv of the particle in suspension changes on average by a quantity
α′m′v per collision, where, from Smoluchowski, α′ = 2/3, which means the friction
force F = −n̄α′m′v, and thus the friction coefficient µ = n̄α′m′. Substituting

µ in n̄ one obtains: ∆2
t = 4α′

α2

m′v′ 2

µ t. From the equipartition of kinetic energy

of the molecules in the surrounding fluid: 〈m′v′ 2〉 = 3RT/N , and the result of
Smoluchowski finally becomes:

∆2
t =

2α′

α2
6
RT

µN t. (51)

One finds again the Sutherland-Einstein result (15), (28), this time in three dimen-
sions, with a supplementary numerical factor of kinetic origin 2α′/α2 = (4/3)3 =
64/27. Because of the various physical and geometrical approximations involved,
this factor should perhaps not come as a surprise! The experiments of The (Theodor)
Svedberg in 1907 seemed to support this result, but Langevin mentioned later
in 1908, in his article in the Comptes Rendus, that once these approximations
were corrected, Smoluchowski’s stochastic method gave the same formula (28) as
Einstein’s method. Smoluchowski himself adopted this formula in his subsequent
articles.

Afterwards he gave the complete theory of density fluctuations within an
ensemble of Brownian particles, as well as that of their sedimentation in a gravi-
tational field and of the coagulation of colloids.104 The content of this reference is

104M. von Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und
Koagulation von Kolloidteilchen, Physikalische Zeitschrift, Jg. 17, pp. 557-571, pp. 585-599
(1916). The English translation from German can be found in: Marian Smoluchowski, His Life
and Scientific Work, S. Chandrasekhar, M. Kac, R. Smoluchowski, Polish Scientific Publishers,
PWN, Warszawa (2000), pp. 43-127.
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described in detail by S. Chandrasekhar in his famous review article on Stochastic
Problems in Physics and Astronomy105 and praised as follows:

“In [this] reference [...] we have an extremely valuable account of the entire subject of

Brownian motion and molecular fluctuations; there exists no better introduction to this subject

than these lectures by Smoluchowski.”

He adds: “The theory of density fluctuations as developed by Smoluchowski represents

one of the most outstanding achievements in molecular physics. Not only does it quantitatively

account for and clarify a wide range of physical and physico-chemical phenomena, it also intro-

duces such fundamental notions as the ‘probability after-effect’ which are of great significance in

other connections.”

We should also mention that we owe to Smoluchowski (and to Einstein) the
theory of critical opalescence as well.

Smoluchowski’s name is traditionally attached to the generalization of the
diffusion equation (16) governing the probability density P (~r, t) in presence of a

force field ~F (~r):
∂P

∂t
= D∆~rP − 1

µ
div~r(~FP ), (52)

where µ is the same as in (14). This equation applies directly to the case of a
uniform gravitational field. In one dimension it is simply written as

∂P (x, t)

∂t
= D

∂2

∂x2
P (x, t) +

1

µ

∂

∂x

(

∂V (x)

∂x
P (x, t)

)

, (53)

for a force field F (x) derived from a potential V (x).
The passage to such a differential equation in configuration space was first

achieved by Smoluchowski in 1915.106 This equation, as the standard “free field”
diffusion equation, are valid only if we ignore effects which happen in time intervals
of the order of the viscous damping time, τ = m/µ, introduced in eq. (43).

When such effects are of interest, as in eq. (42), one should use a more general
differential equation, the so-called Fokker-Planck equation. The passage to such a
differential equation for the description in velocity space of the Brownian motion
of a free particle was indeed achieved by Fokker,107 while a more general discussion
of this problem is due to Planck.108 Let us also mention the pionnering work by
Rayleigh in one dimension as early as 1891!109

The Fokker-Planck equation is a differential equation governing the time
evolution of the probability density P(~p, t) in velocity (~v) or momentum (~p = m~v)

105S. Chandrasekhar, Rev. Mod. Phys. 15, pp. 1-89 (1943), see in Chap. III the enlightening
discussion of Smoluchowski’s theory of fluctuations and its experimental verification, as well as
of the limits of validity of the Second Law of Thermodynamics.
106M. von Smoluchowski, Ann. d. Physik 48, pp. 1103-1112 (1915).
107A. D. Fokker, Thesis, Leiden (1913); Ann. d. Physik 43, 810 (1914).
108M. Planck, Sitzungsber. Preuss. Akad. Wissens. p. 324 (1917); in Physikalische Abhandlun-

gen und Vorträge II, p. 435, Vieweg, Braunschweig (1958).
109J. W. S. Rayleigh, Phil. Mag. 32, pp. 424-445 (1891); in Scientific Papers by Lord Rayleigh,

Vol. III, 183, pp. 473-490, Dover Publications, New-York (1964).
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space, valid for all time intervals. In the absence of an external force field, it has
the form

∂P
∂t

= µ2D∆~pP + µ div~p

(

~p

m
P
)

. (54)

This is fully equivalent to the description of Brownian motion by the stochastic
Langevin equation, described in S 1.7.1 below.

Their solution gives the full Ornstein-Uhlenbeck process. For times shorter
than the damping time τ , a ballistic regime dominates, while asymptotically one
recovers the so-called “overdamped” regime, i.e., standard diffusion. [See eqs. (42-
44) and S 1.7.3.]

When an external force field is present, a more general probabilistic descrip-
tion in phase space, involving the probability density function P(~p,~r, t) for both
the momentum ~p and the position ~r of the Brownian particle, is required. Its time
evolution, valid for all time intervals, is then given by

∂P

∂t
+

~p

m
· ~∇~rP + ~F · ~∇~pP = µ2D∆~pP + µ div~p

(

~p

m
P

)

. (55)

The foregoing equation represents the complete generalization of the Fokker-Planck
equation (54) to the phase space. At the same time eq. (55) represents also the
generalization of Liouville’s equation of classical mechanics to include Brownian
motion; more particularly, on the right-hand side of eq. (55) we have the terms
arising from Brownian motion while on the left-hand side we have the usual Stokes
differential operator D/Dt acting on P.

The earliest attempts to generalize Liouville’s equation of classical mechanics
to include Brownian motion were made by O. Klein110 and H. A. Kramers,111

culminating with the work by S. Chandrasekhar.112

1.5.4 Brownian motion and the second principle

Another aspect of Smoluchowski’s work concerns the correct statistical formulation
of the second principle of thermodynamics.113 With The Svedberg’s recent data
on Brownian motion,114 Smoluchowski had experimental results which permitted
him, armed with his own theory of fluctuations near-to-equilibrium, to estimate
the persistence and recurrence times of a system slightly out of equilibrium, and to

110O. Klein, Arkiv for Matematik, Astronomi, och Fysik 16, No. 5 (1921).
111H. A. Kramers, Physica 7, 284 (1940).
112S. Chandrasekhar, Rev. Mod. Phys. 15, pp. 1-89 (1943), Chap. II.
113For a recent discussion of the physics and mathematics behind the Second Law, see: E.

Lieb and J. Yngvason, Phys. Today 53-4, pp. 32-37 (2000); The physics and mathematics of the
Second Law of Thermodynamics, Phys. Rep. 310, pp. 1-96 (1999); Erratum 314 (1999); arXiv:
cond-mat/9708200. See also: G. Gallavotti, Statistical Mechanics, a Short Treatise, Springer-
Verlag, Heidelberg (1999).
114The Svedberg, Zeits. f. physik. Chemie 77, 147 (1911).

http://arXiv.org/abs/cond-mat/9708200
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check these results against experiments.115 He used neither phase space, nor Liou-
ville’s theorem as in classical statistical mechanics à la Boltzmann. He introduced
simply the calculus of probability. By incorporating the theory of fluctuations he
gave a correct formulation of the second principle of thermodynamics, where this
principle appeared valid only in a statistical sense, and was therefore susceptible
to multiple twists at the microscopic level.116 These considerations are relevant to
and bear on Loschmidt’s reversibility paradox and Zermelo’s recurrence paradox.
Discussing these paradoxes in the context of Boltzmann’s views, Smoluchowski
concludes that “a process appears irreversible if the initial state is characterized
by a long average time of recurrence compared to the times during which the system
is under observation.”

Further precision experiments carried out with expressed intention of verify-
ing Smoluchowski’s theory are those of A. Westgren,117 as described in the survey
article by S. Chandrasekhar.118

A modern discussion of Smoluchowski’s ideas was given by Richard Feynman
in his famous elementary physics lectures.119 He compared Maxwell’s demon with
a ratchet and pawl and an electric rectifier, neither of which can systematically
transform internal energy from a single reservoir to work. He wrote:

“If we assume that the specific heat of the demon is not infinite, it must heat
up. It has but a finite number of internal gears and wheels, so it cannot get rid of
the extra heat that it gets from observing the molecules. Soon it is shaking from
Brownian motion so much that it cannot tell whether it is coming or going, much
less whether the molecules are coming or going, so it does not work.”

Modern day computer simulations strikingly reveal the fluctuation phenom-
ena envisaged by Smoluchowski and Feynman.120

Smoluchowski’s observation suggested that Maxwell’s demon ought to be
buried and forgotten.121 But that did not happen, apparently because Smolu-

115M. von Smoluchowski, Wien. Ber. 123, pp. 2381-2405 (1914); see also Phys. Z. 16, pp. 321-327
(1915) and Kolloid Z. 18, pp. 48-54 (1916).
116M. von Smoluchowski, Phys. Z. 13, pp. 1069-1080 (1912); Göttinger Vorträge über die kinetis-

che Theorie der Materie u. Elektrizität, Leipzig, pp. 89-121 (1914).
117A. Westgren, Arkiv for Matematik, Astronomi, och Fysik 11, Nos. 8 and 14 (1916) and 13,

No. 14 (1918).
118S. Chandrasekhar Rev. Mod. Phys. 15, pp. 1-89 (1943), Chap. III, S S 2-3.
119R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics I, Chap.

46, Addison-Wesley, Reading MA (1963).
120See, e.g., P. A. Skordos and W. H. Zurek, Am. J. Phys. 60, 876 (1992).
121In his contribution to Marian Smoluchowski, His Life and Scientific Work, by S. Chan-

drasekhar, M. Kac & R. Smoluchowski [Polish Scientific Publishers, PWN, Warszawa (2000)],
Smoluchowski’s son Roman recalls the interesting following anecdote. In his book Inferno [Mer-
cure de France, Paris (1898)], August Strindberg recalls an instance that occurred when he lived
at the Hotel Orfila in Paris. On the day after his arrival the addresses of several letters waiting
by the board of room keys caught his eye. He mused on one from Vienna which was of particular
interest because it bore what he referred to later as the Polish pseudonym “Smulachowsky” and
he wrote that he considered the name to be a disguise and that it was the devil himself that
now interfered in his affairs. Strindberg’s speculation was certainly inspired by the simultaneous
presence of Smoluchowski at the same Hotel Orfila. The later indeed stayed there from 1895 to
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chowski’s approach left open the possibility that somehow, a perpetual motion
machine operated by an “intelligent” being might be achievable.122 It was this
fascinating idea of using intelligence that captured Leo Szilard’s interest, in his
classic 1929 paper, “On the decrease of entropy in a thermodynamic system by the
intervention of intelligent beings.”123

The feature associated with intelligence that is needed by a demon is memory:
it must remember what it measures, even if only briefly. Notably, Szilard discovered
with his heat engine, with a one-molecule working fluid, the idea of a “bit” of
information with entropy kB ln 2, now central in computer science, and established
the connection between entropy and information.

At this stage, rather than fully opening Pandora’s box which contains the
Protean Maxwell’s demons, we prefer to recommend the survey, Maxwell’s Demon
2, by H. S. Leff and A. F. Rex and in particular the thoughtful introduction of
the second edition.124 Let us only mention a few historical landmarks that are
described in their presentation.

After a hiatus of 20 years, Léon Brillouin, assuming the use of (quantum)
light signals in the demon’s attempts to defeat the second law, concluded that
information acquisition, like measurement, is dissipative. This led him to break new
ground by developing an extensive mathematical theory connecting measurement
and information. The impact of Brillouin’s and Szilard’s work was far reaching
and the result was a proclaimed, but temporary, “exorcism” of the demon.

A new life began for the demon when Rolf Landauer made the important
discovery that memory erasure in computers feeds entropy to the environment.125

This is now called “Landauer’s principle”. It states that the erasure of one bit of
information stored in a memory device requires sending an amount of entropy of
at least kB ln 2 to the environment, i. e., a minimal heat generation of kBT ln 2.

Charles Bennett, after his important demonstration in 1973 that reversible
computation, which avoids the erasure of information, is possible in principle,
argued in 1982 that erasure of a demon’s memory is the fundamental act that

early 96 when he worked in Lippmann’s laboratory in Paris, while Strindberg’s stay extended
from February to July 1896. Nowadays there are two tablets on that house (60-62 rue d’Assas,
Paris 6) commemorating separetely Smoluchowski’s and Strindberg’s stays!
122Max Jammer points out in The Conceptual Development of Quantum Mechanics, New York

(1966), that Smoluchowski’s 1913 Wolfskehl lectures in Göttingen influenced decisively Leo Szi-
lard in his well-known 1929 paper about entropy and information. Jammer writes: “Smolu-
chowski’s conception of an intellect that is constantly cognizing of the intantaneous state of
a dynamical system and thus able to invalidate the Second Law of Thermodynamics without
performing work was probably the earliest logically unassailable speculation about a physical
intervention of mind on matter.” [Quoted by R. S. Ingarden, ed., in Marian Smoluchowski, His
Life and Scientific Work, Polish Scientific Publishers, PWN, Warszawa (2000).]
123L. Szilard, Z. Phys. 53, pp. 840-856 (1929); transl. reprinted in The Collected Works of Leo

Szilard, Scientific Papers, B. T. Feld and G. Weiss Szilard, eds., The MIT Press, Cambridge,
Mass. (1972).
124H. S. Leff and A. F. Rex, Maxwell’s Demon 2, Adam Hilger, Bristol (2003).
125R. Landauer, IBM J. Res. Dev. 5, pp. 183-191 (1961).
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saves the second law because of Landauer’s principle.126 This was a turning point
in the history of Maxwell’s demon.

In his 1970 book Foundations of Statistical Mechanics, Oliver Penrose in-
dependently recognized the importance of “resetting” operations that bring all
members of a statistical ensemble to the same observational state. Applied to
Szilard’s heat engine, this is nothing else than memory erasure, which sends an
amount of entropy of at least kB ln 2 to the environment.

Among recent proofs of Landauer’s principle we cite here, somehow arbitrar-
ily, the one by K. Shizume, who uses a solvable model of memory based on a
Brownian particle in a time-dependent potential well;127 the one by M. Magnasco
with a detailed analysis of Szilard’s heat engine;128 and the one by B. Piechocinska,
who assumes the decoherence of the states of the thermal reservoir129.

Let us finally mention that, despite several attempts to argue against its
validity, the Landauer-Penrose-Bennett framework seems to be generally accepted
as providing the solution to the Maxwell’s demon–second principle puzzle, at least
in classical mechanics, and in a thermodynamical limit of some sort.130

However, there are now indications that Landauer’s principle, as well as the
second principle, might not hold in the (strong) quantum regime. The source
of the violation is quantum entanglement between the system and the constant-
temperature reservoir, which then act as a single entity.131

In close relation to Brownian motion and the second principle, the topic
of Brownian motors has recently received considerable attention.132 C. Van den
Broeck et al.133 were able to find a solvable model for a thermal Brownian motor.
They show that immersed in two different thermal baths, two rigidly coupled
Brownian particles with a geometrical asymmetry can function as a microscopic
engine able to rectify Brownian fluctuations. As expected, when the temperatures
of the two baths are equal, the drift motion ceases, and one is left only with a
standard Brownian displacement, which obeys Gauss’ distribution law. The drift
speed can be computed exactly for convex bodies, in the limit of dilute gases.
Extremely precise molecular dynamics simulations with hard disks confirm the

126C. H. Bennett, Int. J. Theor. Phys. 21, pp. 905-940 (1982).
127K. Shizume, Phys. Rev. E 52, pp. 3495-3499 (1995).
128M. O. Magnasco, Europhys. Lett. 33, pp. 583-588 (1996).
129B. Piechocinska, Phys. Rev. A 61, 062314 (2000).
130For possible violations of Thompson’s formulation of the second principle for a mesoscopic

work source, see A. Allahverdyan, R. Balian and T. M. Nieuwenhuizen, Entropy 6, pp. 30-37
(2004); see also Europhys. Lett. 67, pp. 565-571 (2004).
131A. Allahverdyan and T. M. Nieuwenhuizen, Phys. Rev. Lett. 85, pp. 1799-1802 (2000); Phys.

Rev. E 64, 056117 (2001); T. M. Nieuwenhuizen and A. Allahverdyan, Phys. Rev. E 66, 036102
(2002); T. D. Kien, Phys. Rev. Lett. 93, 140403 (2004). See also M. O. Scully, Phys. Rev. Lett.
88, 050602 (2002); L. S. Schulman and B. Gaveau, Physica E 29, pp. 289-296 (2005).
132P. Reimann, Phys. Rep. 361, 57 (2002); R. D. Astumian and P. Hänggi, Physics Today 55,

33 (2002); H. Linke (ed.), Ratchets, Experiments and Applications, Appl. Phys. A 75 (2002).
133C. Van den Broeck, R. Kawai and P. Meurs, Phys. Rev. Lett. 93, 090601 (2004); C. Van

den Broeck, P. Meurs and R. Kawai, From Maxwell Demon to Brownian Motor, New Journal
of Physics 7, 10 (2005).
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theory. In effect, this is a microscopic and soluble Feynman’s ratchet.
In a recent work,134 Van den Broeck and Kawai propose a model for a Brow-

nian refrigerator, with a cooling mechanism based on such a Brownian motor
submitted to an external force. A heat flow is generated between the two com-
ponents of the motor. Such a marvellously simple microscopic model would have
certainly greatly pleased Einstein, Smoluchowski and Sutherland!

It is necessary to note here that these discussions are current research top-
ics of intense interest. In fact today there exist new theoretical results, known as
the Gallavotti-Cohen fluctuation theorem,135 Jarzynski’s equality,136 or Crooks’
fluctuation theorem.137 They quantify the spontaneous average work provided by
a source of heat during irreversible phenomena. The manipulations of single bi-
ological molecules like DNA and RNA, which are mesoscopic objects, allow the
experimental testing of these relations. The interpretations of these results and
experiments are currently the topic of a lively debate,138 just as at the dawn of
Brownian motion!139

1.5.5 Brownian motion and the mathematical aspects of irreversibility

Let us open here a brief mathematical parenthesis.140 Einstein’s and Smoluchowski’s
theories, based upon a Newtonian dynamics of the particles, in fact postulated the
emergence of Brownian motion from a classical non-dissipative reversible dynam-
ics, a point of view which was far from being physically obvious or, a fortiori,
mathematically rigorous. This led to the heated controversy about the second
principle. The key difficulty is similar to the justification of Boltzmann’s molec-
ular chaos assumption (“Stosszahlansatz”) standing behind the derivation of the
Boltzmann equation. Mathematically, the dissipative character can only emerge in
a scaling limit, as the number of degrees of freedom goes to infinity.

As we shall see below, the first mathematical definition of Brownian motion
was given only in 1923 by Wiener. But the derivation of Brownian motion from

134C. Van den Broeck and R. Kawai, Phys. Rev. Lett. 96, 210601 (2006).
135D. J. Evans and D. J. Searles, Phys. Rev. E 50, pp. 1645-1648 (1994); G. Gallavotti and E.

G. D. Cohen, Phys. Rev. Lett. 74, pp. 2694-2697 (1995); J. Stat. Phys. 80, pp. 931-970 (1995);
see also D. J. Evans, E. G. D. Cohen and G. P. Morris, Phys. Rev. Lett. 71, pp. 2401-2404 (1993);
G. M. Wang, E. M. Sewick, E. Mittag, D. J. Searles and D. J. Evans, Phys. Rev. Lett. 89, 050601
(2002).
136C. Jarzynski, Phys. Rev. Lett. 78, pp. 2690-2693 (1997).
137G. E. Crooks, Phys. Rev. E 60, pp. 2721-2726 (1999).
138See, e.g, E. G. D. Cohen and D. Mauzerall, J. Stat. Mech. Theor. Exp. P07006 (2004), and

the reply by C. Jarzynski, J. Stat. Mech. Theor. Exp. P09005 (2004), arXiv:cond-mat/0407340.
139 The interested reader can consult the texts by Ch. Maes and F. Ritort in the Poincaré

Seminar on Entropy (2003), available on the website www.lpthe.jussieu.fr/poincare/, and pub-
lished in: J. Dalibard, B. Duplantier & V. Rivasseau, eds., Poincaré Seminar 2003, Progress in
Mathematical Physics, Vol. 38, Birkhäuser, Basel (2004). See also C. Bustamante, J. Liphard
and F. Ritort in Physics Today, July 2005, pp. 43-48.
140The material of this section is borrowed from the introduction of the recent paper by L. Erdös,

M. Salmhofer and H.-T. Yau, Towards the quantum Brownian motion, arXiv:math-ph/0503001
(2005).

http://arXiv.org/abs/cond-mat/0407340
http://arXiv.org/abs/math-ph/0503001
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Hamiltonian dynamics was not seriously investigated until the end of the seventies.
Kesten and Papanicolaou141 proved that the velocity distribution of a particle
moving in a random scatterer environment (the so-called Lorenz gas with random
scatterers) converges to Brownian motion in dimension d ≥ 3. The same result was
obtained in d = 2 dimensions by Dürr, Goldstein and Lebowitz.142 A very recent
work establishes the convergence to Brownian motion in position space as well.143

Bunimovich and Sinai proved the convergence to Brownian motion of the
periodic Lorenz gas with a hard-core interaction.144 The only source of randomness
there is the distribution of the initial conditions. Finally, Dürr, Goldstein and
Lebowitz145 established rigorously that the velocity process of a heavy particle in
an ideal gas converges in three (actually an arbitrary number of) dimensions to
the Ornstein-Uhlenbeck process, that is the version of Brownian motion described
by Langevin’s equation (see below). The same result in one dimension was first
established by R. Holley.146

Brownian motion was discovered and theorized in the context of classical
mechanics, and it postulates a microscopic reversible Newtonian world for atoms
and molecules. Nowadays, it is thus natural to replace Newtonian dynamics with
Schrödinger dynamics and investigate if Brownian motion still correctly describes
the motion of a quantum particle in a random environment. For a discussion of
this fundamental and difficult question, we refer the reader to a recent work by
Erdös, Salmhofer and Yau147 and to the references therein.

1.5.6 Smoluchowski’s legacy

With Einstein, Smoluchowski shares the credit for having shown the importance
of microscopic fluctuations in statistical physics, at the same time promoting the
probabilistic approach. In this sense he appears as a great master inheritor in
physics of the Doctrine of Chance of Abraham de Moivre.

In 1917, Marian von Smoluchowski had just been elected rector of the Jag-
ellonian University in Kraków (Cracow) University, but he was never to fulfill his
new task. During the summer he succumbed to an epidemic of dysentery. During
his illness he complained to his wife that he could have done so much more. He
died prematurely in September of 1917 at the age of forty five.

In 1973 Chandrasekhar was awarded the Marian von Smoluchowski Medal of
the Polish Physical Society in appreciation of his contributions to stochastic meth-

141H. Kesten, G. Papanicolaou, Commun. Math. Phys. 78, pp. 19-63 (1980).
142D. Dürr, S. Goldstein, J. Lebowitz, Commun. Math. Phys. 113, pp. 209-230 (1987).
143T. Komorowski, L. Ryzhik, Diffusion in a weakly random Hamiltonian flow,

arXiv:math-phys/0505082 (2005); The stochastic acceleration problem in two dimensions,
arXiv:math-phys/0505083 (2005).
144L. Bunimovich, Y. Sinai, Commun. Math. Phys. 78, pp. 479-497 (1980).
145D. Dürr, S. Goldstein, J. Lebowitz, Commun. Math. Phys. 78, pp. 507-530 (1981).
146R. Holley, Z. Warscheinlichkeitstheorie verw. Geb. 17, pp. 181-219 (1971).
147L. Erdös, M. Salmhofer and H.-T. Yau, op. cit.; see also arXiv:math-ph/0502025,

math-ph/0512014, math-ph/0512015, and L. Erdös, M. Salmhofer, math-ph/0604039.

http://arXiv.org/abs/math-phys/0505082
http://arXiv.org/abs/math-phys/0505083
http://arXiv.org/abs/math-ph/0502025
http://arXiv.org/abs/math-ph/0512014
http://arXiv.org/abs/math-ph/0512015
http://arXiv.org/abs/math-ph/0604039
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ods in physics and astrophysics and, especially, the Review of Modern Physics 1943
article which covered Smoluchowski’s contributions. In his speech at the award
ceremony, Chandrasekhar noted that the Nobel prizes in chemistry awarded to R.
Zsigmondy in 1925 and to T. Svedberg in 1926 were for experimental confirmation
of Smoluchowski’s theoretical predictions on colloidal and disperse systems and
that if Smoluchowski had been still alive he would certainly have been a Nobel
laureate himself.148

1.6 Louis Bachelier

1.6.1 Bachelier and mathematical finance

Louis Bachelier is nowadays considered as having laid the foundations for math-
ematical finance, and is further credited with the first mathematical study of the
continuous Brownian process, including a random walk approach to the latter. A
detailed and very interesting presentation of Bachelier’s life and scientific achieve-
ments was given in 2000 in an essay, entitled Louis Bachelier on the Centenary
of Théorie de la Spéculation, for the centenary of the publication of his thesis.149

This section is essentially based on this presentation, and a significant part of it
incorporates material in the cited article.

The importance of Bachelier’s work was not properly recognized during his
time. As Benôıt Mandelbrot writes in The Fractal Geometry of Nature,150 it was
Kolmogorov in 1931 who re-discovered his name in an article in Mathematische
Annalen.151

Bachelier was interested in the theory of speculation at the Paris stock mar-
ket. He successfully defended his thesis, entitled Théorie de la spéculation, on 29
March 1900 at the Sorbonne, in front of a jury composed of Paul Appell, Joseph
Boussinesq and Henri Poincaré, his thesis advisor. As a work of exceptional merit,
stongly supported by Poincaré, his thesis was published in the Annales Scien-
tifiques de l’École Normale Supérieure.152

1.6.2 The Thesis

Bachelier begins with the mathematical modeling of stock price movements, and
formulates the principle that “the expectation of the speculator is zero,” by which
he means that the conditional expectation given the past information is zero. In

148Marian Smoluchowski, His Life and Scientific Work, S. Chandrasekhar, M. Kac, R. Smolu-
chowski, Polish Scientific Publishers, PWN, Warszawa (2000), see the preface by the editor R.
S. Ingarden.
149J.-M. Courtault, Y. Kabanov, B. Bru, P. Crépel, I. Lebon and A. Le Marchand, Louis

Bachelier on the Centenary of Théorie de la Spéculation, Mathematical Finance, Vol. 10, No. 3,
pp. 341-353 (2000).
150B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New-York (1982).
151A. N. Kolmogorov, Über die analytischen Methoden in der Warscheinlichkeitsrechnung,

Math. Annalen 104(3), pp. 415-458 (1931).
152L. Bachelier, Ann. Sci. École Normale Supérieure 17, pp. 21-86 (1900).
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other words, he assumes that the market evaluates assets according to a martingale
measure. The further hypothesis is that the price evolves as a continuous Markov
process (with no memory), homogeneous in time and space. Bachelier then shows
that the density of one-dimensional distributions of this process satisfies an integral
relation, now known as the Chapman-Kolmogorov equation. Bachelier, without
addressing the question of uniqueness, shows that the Gaussian density, with a
linearly increasing variance, solves this equation.

He also considers a discrete version of the problem, where the price process
is the continuum limit of random walks, and where the binomial formula (45)
appears. He then proceeds to show that the distribution functions of the process
satisfy Fourier’s heat equation, as in the similar eq. (22) in Einstein’s article.
Bachelier then introduces a novel expression: “the radiation of the probability”.

One finds indeed many of the well-known results for Brownian motion: On p.
37 of his memoir, one reads that: “On voit que la probabilité est régie par la loi de
Gauss déjà célèbre dans le Calcul des probabilités;” on p. 38, that “ L’espérance
mathématique

∫ ∞

0

pxdx = k
√
t

est proportionnelle à la racine carrée du temps.” Bachelier also calculates the
probability that the Brownian motion does not exceed a fixed level and finds the
distribution of the supremum of that motion.

He therefore developed in his first thesis a theory of continuous stochastic pro-
cesses close to the modern mathematical theory of Brownian motion. As stressed
by the authors of the essay Louis Bachelier on the Centenary of Théorie de la
Spéculation, “more than one hundred years after the publication of the thesis, it
is quite easy to appreciate the importance of Bachelier’s ideas. The thesis can be
viewed as the origin of mathematical finance, and of several branches of stochas-
tic calculus such as the theory of Brownian motion, Markov processes, diffusion
processes, and even weak convergence in functional spaces.”

It is also quite interesting to read Poincaré’s original report, translated in
the essay cited above. Poincaré’s report shows that Bachelier’s thesis was highly
appreciated by the outstanding mathematician. In contrast to the legend that the
evaluation note “honorable” means somehow that the examiners were dissatisfied
with the thesis, it can perhaps be argued that it might have been the highest grade
possible for a thesis which was addressing a problem not in the realm of standard
mathematics, and that in addition had a number of non-rigorous arguments.

The official report of the Thesis Committee states:

In the presentation of his First Thesis, M. Bachelier showed mathematical
intelligence and insight. He has added some interesting results to those already
contained in the printed version of the thesis, in particular an application of the
image method.
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As for the Second Thesis, he proved to possess a complete knowledge of
Boussinesq’s work on the motion of a sphere in an indefinite fluid.

The Faculty gave him the degree of Doctor with honors.
Paul Appell, President

It is indeed very intriguing that the “Proposal given by the Faculty,” subject
of his Second Thesis, was entitled: Resistance of an indefinite liquid mass with in-
ternal frictions, described by the formulae of Navier, to small translational motions
of a solid sphere, submerged inside the fluid and adhering to it.

But there is of course no mention in his first thesis, published in 1900, about
any link between the speculation problem and the motion of a sphere in a viscous
fluid! However, we saw above Poincaré’s early interest in Brownian motion in re-
lation to Carnot’s principle. We also saw that Einstein’s (as well as Sutherland’s)
application of hydrodynamical laws to the motion of a sphere suspended in a fluid,
was key to the solution of Brownian motion. We now observe the amazing coinci-
dence that the thesis subject proposed by the Faculty, if joined with the subject of
the first thesis, could have led Poincaré and Bachelier to establish the quantitative
theory of Brownian motion, before any of Einstein, Sutherland or Smoluchowski!
All necessary mathematical equations were indeed present for that, if only a little
spark of physical intuition would have struck these eminent mathematicians!

1.6.3 Further Studies

Louis Bachelier continued to develop the mathematical theory of diffusion pro-
cesses in a series of memoirs and books. In his 1906 memoir on the Théorie des
probabilités continues,153 he defined new classes of stochastic processes, which are
now called processes with independent increments and Markov processes, and he
derived the distribution of the Ornstein-Uhlenbeck process.

He was aware of the importance of his contributions. He wrote in his 1924
“Notice de Travaux” that “this theory has no relation to the geometrical theory of
probability, the range of application of which is quite limited. We are concerned here
with a science of a different order of generality, compared to classical probability
calculus. Among the new concepts, one can cite the assimilation to an energy of
the probability which is an abstraction. That original concept was noticed by Henri
Poincaré, and it made much progress possible.” One also reads about his 1912
book Calcul des probabilités,154 that “it is the first that surpassed the great treatise
by Laplace.”

We shall not describe in detail here the very unfortunate misunderstanding
with Paul Lévy, which in 1926 prevented Bachelier from becoming a full professor
at the University of Dijon. We refer the interested reader to the essay mentioned
above for a thorough and well-documented analysis of this dramatic event.

153Théorie des probabilités continues, J. Math. Pures et Appl., pp. 259-327 (1906).
154L. Bachelier, Calcul des probabilités, Gauthier-Villars, Paris (1912).
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Later, Lévy, under the influence of Kolmogorov’s fundamental paper (1931)
on diffusion processes, which referred to Bachelier’s work, realized that a number
of properties of Brownian motion had been discovered by Bachelier several decades
earlier. He revised his opinion, and wrote him a letter with apologies.

Bachelier’s ideas receive nowadays a widespread recognition. Famous proba-
bility treatises, like the ones by W. Feller, An Introduction to Probability Theory
and its Applications (1957), or by K. Itô and H. McKean, Diffusion Processes and
their Sample Paths (1965), refer to Bachelier’s seminal work.

In the literature written by economists, one finds reference to him in Keynes
(1921), and more recently in the work of other famous economists, like that of the
1997 Nobel laureates in Economic Sciences, Robert Merton and Myron Scholes. It
is perhaps appropriate here to reproduce Merton’s tribute to Bachelier:

“ The origin of much of the mathematics in modern finance can be traced
to Louis Bachelier’s 1900 dissertation on the theory of speculation, framed as an
option-pricing problem. This work marks the twin births of both the continuous-
time mathematics of stochastic processes and the continuous-time economics of
derivative-security pricing.”

No doubt that today Bachelier would have been awarded a Nobel Prize in
Economic Sciences for his work of 1900!

1.7 Paul Langevin

Knowing the great interest in the theory of Brownian motion, signalled by the
works of Gouy, Einstein, and Smoluchowski, Langevin took the next steps in 1908.
He first said that the factor of 64/27 of Smoluchowski’s results, due to the approxi-
mations made, was erroneous and that the result coincided with Einstein’s formula
(28) after his correction. Next, he provided another demonstration of this fact, in
which was contained the first mathematical example of a stochastic equation.

1.7.1 Langevin’s equation

Langevin’s argument is enlightening and we follow his demonstration faithfully.155

The starting point is the Maxwell equipartition theorem of kinetic energy. It states
that the energy of a particle in suspension inside a fluid in thermal equilibrium
has, for instance in the x direction, an average kinetic energy 1

2
RT
N , equal to that

of any gas molecule, in a given direction, at the same temperature. This is directly
related to van ’t Hoff’s law seen above, which affirms the identity between diluted
solutions and perfect gases. If v = dx

dt is the particle velocity in a chosen direction
at a given moment, then the average over a large number of identical particles
with mass m is

1

2
m〈v2〉 =

1

2

RT

N . (56)

155P. Langevin, C. R. Ac. Sci. Paris 146, 530 (1908).
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A particle which is large compared to the molecules of a liquid, and is moving at
speed v with respect to this liquid, experiences a viscous resistance force equal
to −6πηav, according to Stokes’ formula. In reality this is only an average value,
and because of the irregular shocks of the surrounding molecules, the action of the
fluid on the particle fluctuates around the average value. The equation of motion
along the direction x, given by Newtonian dynamics, is

m
dv

dt
= m

d2x

dt2
= −6πηav +X. (57)

The complementary force X , introduced by Langevin, is random, and also called
stochastic. In reality we know little about it, apart from that it is equally likely
to be positive or negative, and that its magnitude is such that it maintains the
particle’s agitation which, without it, would end by stopping because of the viscous
resistance.

By multiplying equation (57) by x, one has156

mx
dv

dt
=

1

2
m

d2x2

dt2
−mv2

= −µxv + xX = −µ1

2

dx2

dt
+ xX, (58)

where the friction coefficient µ represents µ = 6πηa as before. If we consider a
large number of identical particles and take the average of equations (58) written
for each of them, then the average value of the term xX is “evidently” zero because
of the irregularity of the random forces X , and one finds157

1

2
m

d2〈x2〉
dt2

−m〈v2〉 = −µ1

2

d〈x2〉
dt

. (59)

One puts u = 1
2

d〈x2〉
dt , and uses the equipartition theorem of kinetic energy

(56) to get a simple differential equation of first order:

m
du

dt
− RT

N = −µu. (60)

156Since v = dx
dt

, we use the identities between derivatives xv = x dx
dt

= 1
2

dx2

dt
, and x dv

dt
=

x d2x
dt2

= 1
2

d2x2

dt2
− v2.

157One should note that the force X disappears from the calculation thanks to that observation.
The only under-lying role of X is therefore to ensure the physical possibility of a kinetic average
〈v2〉 6= 0. On the other hand, the equality 〈xX〉 = 0 does not appear as evident, because there
could have existed a subtle correlation between the position x and the stochastic force X, as it
exists between velocity and stochastic force. The existence of two types of stochastic calculations,
à la Itô and à la Stratonovitch, illustrates this difficulty. (See for example N. G. van Kampen,
Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam (1992).) Einstein made the
same hypothesis in his third demonstration of Brownian motion; see in this volume the translation
of his lecture on November 2, 1910 for the Zürich Physical Society.
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The general solution is

u =
RT

µN + C exp
(

− µ

m
t
)

, (61)

where C is an arbitrary constant.158 The exponentially decreasing term rapidly
fades away, and the result goes to the constant value of the first term, in a limiting
regime after a time τ of order m

µ or 10−8 seconds, for all Brownian particles.

Thus, we have

u =
1

2

d〈x2〉
dt

=
RT

µN , (62)

from which, for the time interval t,

〈x2〉 =
2RT

µN t =
RT

N
1

3πηa
t, (63)

if one supposes that the particle was observed at the origin x = 0 at time t = 0.
Langevin’s method indeed reproduces Einstein’s result (28). In this paper (pub-
lished in 1908 in the Comptes Rendus of the Academie de Sciences) Langevin
introduced, without knowing it, the first element (the random force X) of what
was to become stochastic calculus.159

1.7.2 Boltzmann’s constant

Boltzmann’s constant kB is obtained by dividing the molar constant R of a perfect
gas by Avogadro’s number N , such that one obtains a quantity which refers to a
single molecule:

kB =
R

N = 1.381× 10−23 J K−1. (64)

The energy kBT gives the average thermal energy at the standard temperature:
kBT = 4 × 10−21 J. The constant kB was not introduced by Boltzmann but by
Planck in his famous presentation on December 14, 1900, on black-body radiation,
at the same time he presented Planck’s constant h!

158Here, there seems to be a contradiction between the existence of an exponential term and the
hypothesis of the equipartition of energy, m〈v2〉 = RT

N
, made for every t by Langevin, because

it is only at large t that memory effects are exponentially suppressed. This hypothesis, as well as
a solution of the form (61), can however be correct for all t, provided that one imposes the same
condition for the initial velocity, which in fact fixes the value of the constant C to be equal to
C = −RT

µN
. We will come back to this point further along in a more detailed study of the solution

of Langevin’s equation.
159J. L. Doob, The Brownian Motion and Stochastic Equations, Ann. of Math., 43, pp. 351-369

(1942), reprinted in [Wax 1954, pp. 319-337], op. cit.
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1.7.3 An analysis of the solution of Langevin’s equation.

The method presented in section (1.7.1) is the one that Langevin gave in his
original paper. A more modern formulation proceeds from the time-correlation
functions of the stochastic force X in canonical form,

〈X〉 = 0, 〈X(t)X(t′)〉 = Aδ(t− t′), (65)

where A is a coefficient to be determined and δ(t − t′) is the Dirac distribution.
The generalization to d dimensions is

〈 ~X〉 = ~0,

〈Xi(t)Xj(t
′)〉 = Aδijδ(t− t′), (66)

where δij is the Kronecker symbol and i, j = 1, · · ·d.
We can easily integrate the linear equation for the velocity

m
d~v

dt
= −µ~v + ~X. (67)

The solution is

~v(t) = ~v(0) e−
µ
m

t +
1

m

∫ t

0

dt′ ~X(t′) e−
µ
m

(t−t′). (68)

Therefore by taking the square of the velocity and by using formula (66), we find
the average value of kinetic energy at time t

1

2
m〈~v 2(t)〉 =

Ad

4µ

(

1 − e−2 µ
m

t
)

+
1

2
m~v 2(0)e−2 µ

m
t. (69)

We then see that this energy relaxes towards a constant value at large time, i.e.,
at equilibrium. From the theorem of equipartition of kinetic energy,

1

2
m〈~v 2(t)〉t→∞ =

d

2
kBT, (70)

we deduce the important identity

A = 2µkBT. (71)

We then have

〈~v 2(t)〉 =
dkBT

m
+

(

~v 2(0) − dkBT

m

)

e−2 µ
m

t. (72)

A second stage consists in integrating equation (68) to obtain the displace-
ment ~r(t)− ~r(0). Then taking the square, and the stochastic average by means of
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formulae (66), we obtain after some calculation,

〈[~r(t) − ~r(0)]2〉 = 2dD

[

t− m

µ

(

1 − e−
µ
m

t
)

]

+

(

~v 2(0) − dkBT

m

)(

m

µ

)2
(

1 − e−
µ
m

t
)2

, (73)

where D = kBT/µ, as before. The derivative u considered by Langevin is then
given by

u =
1

2

d

dt
〈[~r(t) − ~r(0)]

2〉

= d
kBT

µ
− ~v 2(0)

m

µ
e−

µ
m

t +

(

~v 2(0) − dkBT

m

)

m

µ
e−2 µ

m
t. (74)

Notice first that these results at large t, or t≫ τ = m/µ, go asymptotically to
those of thermal equilibrium and to the associated motion of diffusion, as expected.
One remarks then the role played by the initial velocity in memory effects and in
the approach to equilibrium. A very special value of ~v 2(0) is that of equipartition
dkBT

m . For this value only, the average quadratic velocity in (72) becomes invariant

in time, 〈~v 2(t)〉 = dkBT
m , ∀t. The average quadratic displacement (73) then takes

Ornstein’s simple form (42), and the quantity u (74) takes the form predicted
by Langevin in (61), with a determined value for C. One consistently obtains the
same result by using for ~v 2(0) its most probable value, meaning its thermal average
at equipartition. One can then understand (but only a posteriori) the consistency
of Langevin’s approach when he inserted the identity (56) in the middle of the
derivation. That amounted to chosing the peculiar boundary condition ~v 2(0) =
dkBT

m , which enforces stationary equipartition!
On the other hand, if one gives to the initial quadratic velocity ~v 2(0) a value

which is different from that of equilibrium, the relaxation will occur in a bit more
complex way, as we showed in the above results.

The regime at short times, m
µ ≫ t, also naturally depends on the initial

conditions. In fact, by developing in series (73) one finds the expected ballistic
regime

〈[~r(t) − ~r(0)]
2〉 = ~v 2(0) t2 + O(t3),

that naturally cross-checks with (44) if one takes once again the value at equipar-
tition.

1.7.4 Microscopic model

The force proposed by Langevin, −µv +X , can only be an approximation to the
underlying molecular reality, made up of innumerable collisions where multiple
correlations, due to interactions between molecules, exist at very short time scales.



260 B. Duplantier Poincaré Seminar 2005

The stochastic term X in (65,66) is a white noise without memory, i.e., it neglects
temporal correlations.

Moreover, the hydrodynamic form of the friction term, −µv, is a description
that pertains to the continuous limit, which requires extremely frequent collisions
of the particle in suspension. The massm of the particle must then be large enough
so that the characteristic time τ = m/µ is large compared to the inverse frequency
of collisions.

To give an idea of the origin of Langevin’s equation (57) and of its parameters
µ and A (71), it is natural to consider the simplest model, where the collisions of a
particle in suspension occur with a surrounding perfect gas, and thus itself without
interaction.

One can therefore consider a perfect gas of identical particles with mass m′,
a particle density n′, at temperature T , and colliding the particle of large mass
m in suspension. To simplify, we consider the gas in one dimension, where the
equations for the particle-gas elastic collisions are particularly simple.160 One then
finds that the equation for the momentum variation of the test particle is similar
to Langevin’s equation, with the explicit coefficients161

µ = 4n′

√

2m′kBT

π
, A = 8n′kBT

√

2m′kBT

π
; (75)

µ and A thus verify (71).
It is then particularly interesting to rewrite these terms as a function of molar

sizes that characterize the perfect gas. One introduces as well the gas pressure162

p′, which responds to the equation of perfect gases p′ = n′kBT , which gives

µ = 4p′
√

2M
πRT

, A =
2RT

N 4p′
√

2M
πRT

, (76)

160J. W. S. Rayleigh was apparently the first to address this problem in one dimension, in
Dynamical Problems in Illustration of the Theory of Gases, Phil. Mag. 32, pp. 424-445 (1891);
in Scientific Papers by Lord Rayleigh, Vol. III, 183, pp. 473-490, Dover Publications, New-York
(1964). He establishes in particular the evolution equation for the velocity distribution of the
large particle and its solution, as well as the convergence of the latter in the steady state to a
Maxwellian.

In The Motion of a Heavy Particle in an Infinite One Dimensional Gas of Hard Spheres, Z.
Warscheinlichkeitstheorie verw. Geb. 17, pp. 181-219 (1971), R. Holley establishes rigorously the
(weak) convergence of the velocity or position distributions of the heavy particle to the respective
Ornstein-Uhlenbeck processes, in the limit where the mass ratio m/m′ → ∞. This applies to gas
particles with a Poisson distribution in position space and an arbitrary distribution in velocity
space, provided that the latter distribution is symmetric and has four moments.
161One calculates, in the process of discrete collision, the average momentum variation 〈dp

dt
〉 =

−µ〈v〉 as well as the fluctuations 〈
dp(t)
dt

dp(t′)
dt′

〉 − 〈
dp(t)
dt

〉〈
dp(t′)
dt′

〉 = Aδ(t − t′) + · · · , and finds
by comparison the values (75) of parameters µ and A for Langevin’s equation. See the article

from B. Derrida and É. Brunet in Einstein aujourd’hui, éds. M. Leduc and M. Le Bellac, Savoirs
actuels, EDP Sciences/CNRS Éditions (2005).
162In one dimension, the pressure p′ is equivalent to a force, because the boundaries of the

“box” containing the gas are simple points.
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where M = Nm′ is the molar mass of the gas.
A similar problem can be solved in three dimensions.163 The friction coeffi-

cient µ and Brownian coefficient A are in this case

µ =
8

3
πa2n′

√

2m′kBT

π
, A = 2kBTµ, (77)

where the Brownian particle’s radius a now enters through the area term πa2. In
terms of molar parameters one therefore finds:

µ =
8

3
πa2p′

√

2M
πRT

, A =
2RT

N
8

3
πa2p′

√

2M
πRT

. (78)

1.7.5 Discontinuity in Nature and the existence of Brownian motion

The explicit results above, in their last forms (76) or (78), rigorously state that the
Sutherland-Einstein equation (13), D = RT

µN , reflects the existence of molecules.
In fact, the friction coefficients µ can be expressed independently from Avo-

gadro’s number N , and depend only on the ideal gas constant R and the macro-
scopic parameters of the surrounding gas, like the pressure p′, temperature T ,
and molar mass M (and also on the Brownian particle’s radius in space dimen-
sion d ≥ 2.). On the other hand, the variance A of the Langevin stochastic force,
which controls diffusion, continues to depend on N and vanishes when Avogadro’s
number goes to infinity.

In the same way, the limit of the diffusion coefficient D = RT
µN , when Avo-

gadro’s number goes to infinity, N → ∞, is of course zero, i.e., the Brownian
motion would cease immediately if Nature were continuous! An entire branch of
mathematics might perhaps never have seen the light of day.

1.8 Jean Perrin’s experiments

1.8.1 The triumph of the “Molecular Hypothesis”

Jean Perrin is often cited as the one who established the Einstein-Smoluchowski-
Sutherland theory by his beautiful experiments. He was also an outstanding pro-

163M. S. Green, Brownian Motion in a Gas of Noninteracting Molecules, J. Chem. Phys. 19,
pp. 1036-1046 (1951). In a bibliographic note, Green cites Smoluchowski for having discussed
the same three-dimensional case “in one of the earliest papers in which the true nature of Brow-
nian motion was understood.” Green adds: “His method was admittedly approximate and the
formula which he obtained for the friction constant was the same as ours in its dependence
on the temperature of the gas, the mass of the particle and the mass, and concentration of
the molecules, but with a different, and incorrect numerical constant.” He further cites H. A.
Lorentz, in Les Théories Statistiques en Thermodynamique, B. G. Teubner, Leipzig (1912), for
having obtained the correct formula by a method which was equivalent to his own modification
of Rayleigh’s method. See also: J. L. Lebowitz, Stationary Nonequilibrium Gibbsian Ensembles,
Phys. Rev. 114, pp. 1192-1202 (1959); D. Dürr, S. Goldstein, J. L. Lebowitz, A Mechanical
Model of Brownian Motion, Commun. Math. Phys. 78, pp. 507-530 (1981).
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motor of atomistic ideas. His book, Atoms,164 which contains a detailed description
of his experiments on Brownian motion, is highly recommended. It begins:

“Molecules: Some twenty-five centuries ago, before the close of the lyric period in Greek

history, certain philosophers on the shores of the Mediterranean were already teaching that

changeful matter is made up of indestructible particles in constant motion; atoms which chance

or destiny has grouped in the course of ages into the forms or substances with which we are

familiar. But we know next to nothing of these early theories, of the works of Moschus of Sidon,

of Democritus of Abdera, or of his friend Leucippus. No fragments remain that might enable us

to judge of what in their work was of scientific value. And in the beautiful poem, of a much later

date, wherein Lucretius expounds the teachings of Epicurus, we find nothing that enables us to

grasp what facts or what theories guided Greek thought.”

He further expounded on the idea that non-differentiable continuous func-
tions, such as the trajectory of Brownian motion, were as completely natural as
differentiable functions, objects of all prior studies. In the preface of Atoms, by
considering the very irregular surface of a colloid and by making the analogy with
the shape of Brittany’s coast, he announced with a dazzling geometric intuition the
ideas of Lewis Fry Richardson on Hausdorff anomalous dimensions, which would
later be developed by Benôıt Mandelbrot.165

Regarding Brownian motion, we find as well:

“We are still in the realm of experimental reality when, under the microscope, we observe

the Brownian movement agitating each small particle suspended in a fluid. In order to be able to

fix a tangent to the trajectory of such a particle, we should expect to be able to establish, within

at least approximate limits, the direction of the straight line joining the positions occupied by a

particle at two very close successive instants. Now, no matter how many experiments are made,

that direction is found to vary absolutely irregularly as the time between the two instants is

decreased. An unprejudiced observer would therefore come to the conclusion that he was dealing

with a function without derivative, instead of a curve to which a tangent could be drawn.”

Further along we read:

“It is impossible to fix a tangent, even approximately, to any point on a trajectory, and

we are thus reminded of those continuous functions166 without derivative that mathematicians

had imagined. It would be incorrect to regard such functions as mere mathematical curiosities,

whereas Nature suggests them as much as differentiable functions.”

These remarks would stimulate the research of the young mathematician
Norbert Wiener.167

164J. Perrin, Les Atomes, Félix Alcan, Paris (1913); réédition Champs Flammarion (1991);
English translation: Atoms, transl. by D. Ll. Hammick, Ox Bow Press, Woodbridge (1990).
165B. Mandelbrot, Fractal Objects, (3ème éd.), followed by A Survey of Fractal Language,

Flammarion, Nouvelle Bibliothèque scientifique (1989).
166“Continuous because it is not possible to regard the grains as passing from one position to

another without cutting any given plane having one of those positions on each side of it.”[original
note]
167N. Wiener, I am a Mathematician, Doubleday, Garden City, NY (1956). He writes: “The

Brownian motion was nothing new as an object of study by physicists. There were fundamental
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The beautiful experiments of 1908-1909 by Perrin and his students, on emul-
sions of gum-resin (“gamboge”) or of mastic, are described in detail in his review
article Brownian Motion and Molecular Reality, which appeared in Annales de
Chimie et Physique in 1909,168 and the results are published in several Notes aux
Comptes Rendus. The same material is also summarized in his book Atoms.

Perrin began by verifying the exponential distribution of the density of n
particles in a suspension, as a function of the height h in a gravitational field g, a
formula that generalizes the barometric formula for the atmosphere. Perrin writes
it in the form

2

3
W ln

n0

n
= φ(ρ− ρ0)gh, (79)

where φ is the volume of each grain, ρ and ρ0 are the mass per unit volume of the
grains and of the inter-granular liquid, respectively, and last but not least, W is
the average kinetic energy per particle (with W = 3

2
RT
N = 3

2kBT ).

He writes: “I indicated this equation at the time of my first experiments (Comptes

Rendus, May 1908). I have since learned that Einstein and Smoluchowski, independently, at the

time of their beautiful theoretical researches of which I shall speak later, had already seen that

the exponential repartition is a necessary consequence of the equipartition of energy. Beyond this

it does not seem to have occurred that in this sense, an experimentum crucis could be obtained,

deciding for or against the molecular theory of the Brownian movement.”

He continues: “If it is possible to measure the magnitudes other than W which enter

into this equation, one can see whether it is verified and whether the value it indicates for W is

the same as that which has been approximately assigned to the molecular energy. In the event

of an affirmative answer, the origin of the Brownian movement will be established, and the laws

of gases, already extended by van ’t Hoff to solutions, can be regarded as still valid even for

emulsions with visible grains.”

He built as well an apparatus for fractioned centrifugation to produce emul-
sions of uniform size, a key element of his success. Using three independent pro-
cesses to measure the radius of particles, one of which went via Stokes’ law, he
could verify the validity of the latter for particles in suspension. It was in fact
one of the weak points of the theoretical proofs, because the continuity conditions
required by hydrodynamics were far from being clearly fulfilled in the case of small
spheres in very active Brownian motion.

papers by Einstein and Smoluchowski that covered it, but whereas these papers concerned what
was happening to any given particle at a specific time, or the long-time statistics of many particles,
they did not concern themselves with the mathematical properties of the curve followed by a
single particle.

Here the literature was very scant, but it did include a telling comment by the French physicist
Perrin in his book Les Atomes, where he said in effect that the very irregular curves followed by
particles in the Brownian motion led one to think of the supposed continuous non-differentiable
curves of the mathematicians. He called the motion continuous because the particles never jump
over a gap and non-differentiable because at no time do they seem to have a well-defined direction
of movement.”
168J. Perrin, Ann. Chim. Phys. 18, pp. 1-114 (1909); available online at http://gallica.bnf.fr/.

http://gallica.bnf.fr/
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Finally, by ingenious and patient observations, he could verify the law of
rarefaction of density (79).169 Thanks to the value of W (independent of all exper-
imental conditions except the temperature), he verified the famous law of equiparti-
tion of energy, and obtained a first estimate of Avogadro’s number, N = 7.05×1023,
compared with the present accepted value N = 6.02 × 1023.

1.8.2 Einstein’s formulae

Perrin turned next to Einstein’s formulae for Brownian diffusion: “...another approach

was possible and was proposed by Einstein, in conclusion to his beautiful theoretical works, of

which I must now speak.” Further on, he adds: “It’s fair to recall that, almost at the same

time as Einstein and by another route, Smoluchowski arrived at a formula a bit different in

his remarkable work on A kinetic theory of Brownian motion [Bulletin de l’Acad. des Sc. de

Cracovie, July 1906, p. 577] where one finds, besides very interesting observations, an excellent

history of work before 1905.”

In Atoms he stresses that:170

Einstein and Smoluchovski have defined the activity of the Brownian movement in the

same way. Previously, we had been obliged to determine the “mean velocity of agitation” by

following as nearly as possible the path of a grain. Values so obtained were always a few microns

per second for grains of the order of a micron.171

But such evaluations of the activity are absolutely wrong. The trajectories are confused and

complicated so often and so rapidly that it is impossible to follow them; the trajectory actually

measured is very much simpler and shorter than the real one. Similarly, the apparent mean speed

of a grain during a given time varies in the wildest way in magnitude and direction, and does

not tend to a limit as the time taken for an observation decreases [...].

Neglecting, therefore, the true velocity, which cannot be measured, and disregarding the

extremely intricate path followed by a grain during a given time, Einstein and Smoluchowski

chose, as the magnitude characteristic of the agitation, the rectilinear segment joining the strart-

ing and end points; in the mean, this line will clearly be longer the more active the agitation.

The segment will be the displacement of the grain in the time considered.

He begins his review by recalling the early work of Exner, prior to the pub-
lication of Sutherland-Einstein-Smoluchowski formula for the average quadratic
displacement (28), and in which one can see “at least one presumption of partial
verification for the formula in question.”

Soon after the publication of this formula, verification was quickly tried by
The Svedberg, who thought he achieved it.172 Perrin made a sharp criticism of
these results, and declared him “a victim of an illusion,” regarding his descrip-

169J. Perrin, C. R. Acad. Sci. Paris 146, 967 (1908); 147, 475 (1908).
170Atoms, op. cit., chapter IV.
171“Incidentally this gives the grains a kinetic energy 105 times too small.” [original note]
172Th. Svedberg, Studien zur Lehre von den kolloidalen Lösungen, Nova Acta Reg. Soc. Sc.

Upsaliensis, 2, 1907.
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tion of Brownian trajectories “as regularly modulated in amplitude and with well
defined wavelength!”173

Victor Henri’s results, published in Comptes Rendus in 1908, were obtained
from a better founded cinematographic study of Brownian motion of natural la-
tex grains. The average displacement varied as the square root of time, but the
coefficient was three times too large.174

Having prepared grains with known diameter, Perrin asked his student Chaude-
saigues to verify the law of Brownian displacement by direct observation, sequenced
every thirty seconds, with gamboge grains of radius 0.212 µm.175 This was com-
pleted by similar measurements by M. Dabrowski176 on mastic grains, and gave
the famous diagrams of random positions that one can find in Jean Perrin’s book.
(See figure 3.)

The conclusion was “the rigorous exactness of the formula proposed by Ein-
stein,” and “that some unknown complication or unknown cause of systematic
error oddly affected the results of Victor Henri.” They then deduced a new aver-
age value of Avogadro’s number, N = 7.15 × 1023. A wonderful verification was
at last made of “Maxwell’s irregularity law,” that is, of the Gaussian distribution
(26) of the Brownian particle’s position in a plane orthogonal to gravity.

Jean Perrin did not stop there, but turned to rotational Brownian motion.
Einstein himself did not really think that his predictions (41) were experimentally
verifiable, because the speed of rotation seemed to be too large to be observable. In
fact, for grains of 1 µm in diameter, the rotation is about 1 degree per hundredth
of second. Perrin could then prepare spheres with larger diameter, from 10-15
µm up to 50 µm, and he succeeded in preparing them in suspension in a 27%
solution of urea. In this case the angular speed falls to a few degrees per minute.
The spheres carried inclusions of different refractive indices, which made their
rotation observable under a microscope! The result was a spectacular verification
of Einstein’s second formula (41), this time for grains 100 000 times heavier than
the small grains of gamboge first studied.177 On 11 November 1909, Einstein wrote
to Perrin: “I would not have considered a measurement of rotations as feasible. In

173One must add that The Svedberg won the Nobel Prize in Chemistry in 1926 for his invention
of the ultracentrifuge, the same year as Perrin won the Noble Prize in Physics for his work on
Brownian motion!
174Perrin then noted almost mischievously: “As far as I could judge from the conversation, a

current of opinion was produced among the French physicists community that closely followed
these questions, and which really shocked me, proving to me how much the credit that we give
to theories is limited, and at what point we see them as instruments of discovery rather than as
true demonstrations. Without hesitating, they admitted that Einstein’s theory was incomplete
or inexact. On the other hand, there was no reason to renounce placing the origin of Brownian
motion in molecular agitation, because I just showed by an experiment that a diluted emulsion
behaves as a very dense perfect gas in which the molecules had a weight equal to the grains of the
emulsion. They limited themselves to assuming that a few unjustified complementary hypotheses
slipped into Einstein’s reasoning.”
175M. Chaudesaigues, C. R. Acad. Sci. Paris, 147, 1044 (1908); Diplôme d’Études, Paris (1909).
176J. Perrin and Dabrowski, C. R. Acad. Sci. Paris, 149, 477 (1909).
177J. Perrin, C. R. Acad. Sci. Paris, 149, 549 (1909).
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Figure 3: Brownian motion. Bottom left: Strong magnification, showing the dis-
cretized aspect of sequential recordings of the position of a particle in suspension,
observed by Jean Perrin and his collaborators. Bottom right: Magnification show-
ing the self-similarity of the continuous Brownian curve.

my eyes it was only a pretty triffle”.178

Perrin received the Nobel Prize in 1926 for his work on Brownian motion.
His book, Atoms, one of the most finely written physics books of the 20th century,
contains a postmortem, in the great classic style, about the fight for establishing
the reality of molecules:

“La théorie atomique a triomphé. Encore nombreux naguère, ses adversaires enfin conquis

renoncent l’un après l’autre aux défiances qui, longtemps, furent légitimes et sans doute utiles.

C’est au sujet d’autres idées que se poursuivra désormais le conflit des instincts de prudence et

d’audace dont l’équilibre est nécessaire au lent progrès de la science humaine.”

“The atomic theory has triumphed. Its opponents, who until recently were numerous, have

been convinced and have abandoned one after the other the sceptical position that was for a

long time legitimate and likely useful. Equilibrium between the instincts towards caution and

towards boldness is necessary to the slow progress of human science; the conflict between them

will henceforth be waged in other realms of thought.”

To conclude this section, let us return for a last time to Einstein. One reads
in his autobiographical notes:179

178Quoted in J. Stachel, Einstein’s Miraculous Year (Princeton University Press, Princeton,
New Jersey, 1998).
179Albert Einstein: Philosopher-Scientist, The Library of Living Philosophers, Vol. VII,
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“The agreement of these considerations with experience together with Planck’s determi-

nation of the true molecular size from the law of radiation (for high temperatures) convinced

the sceptics, who were quite numerous at that time (Ostwald, Mach) of the reality of atoms.

The antipathy of these scholars towards atomic theory can undubitably be traced back to their

positivistic philosophical attitude. This is an interesting example of the fact that even scholars of

audacious spirit and fine instinct can be obstructed in the interpretation of facts by philosophi-

cal prejudices. The prejudice –which has by no means died out in the meantime– consists in the

faith that facts by themselves can and should yield scientific knowledge without free conceptual

construction. Such a misconception is possible only because one does not easily become aware

of the free choice of such concepts, which, through verification and long usage, appear to be

immediateley connected with the empirical material.”

Let us finally mention Ostwald’s magnanimous concession: In 1908 he refers
to the Brownian motion results and says they “entitle even the cautious scientist
to speak of the experimental proof for the atomistic constitution of space-filled
matter”. In 1910, he is the first person to nominate Einstein for the Nobel Prize
(for special relativity).

2 Measurements by Brownian fluctuations

Jumping ahead a century, we observe how the theory of Brownian fluctuations,
whose construction we just described, today finds spectacular applications in
physics applied to biology. We will give an example from the physics of DNA.

2.1 Micromanipulation of DNA molecules

2.1.1 The interest of DNA for physicists

Physicists are interested today in DNA for several reasons. First, it is a remarkable
polymer for its length, reaching several centimeters, and for its monodispersity (the
DNA of the virus bacteriophage-λ, for example, always has 48502 base pairs in
the identical sequence). DNA is an important subject in polymer physics because
it can be easily shaped by bio-molecular tools and it can be directly observed and
manipulated. A fluorescent intercalation placed between base pairs (such as ethid-
ium bromide) permits the observation, under a microscope and by fluorescence, of
single DNA molecules in solution.

2.1.2 Experimental realization of a micro-manipulation

One can also micro-manipulate molecules individually. The techniques of micro-
manipulation of isolated bio-molecules have developed considerably during the
past few years, thanks to an ever-growing number of tools: optical or magnetic
“tweezers,” atomic force microscopes, glass micro-fibers, and also hydrodynamic
flow observations.

Paul Arthur Schilpp Ed., Open Court, La Salle, Illinois, 3rd Edition (2000).
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Figure 4: Micro-manipulation of a DNA molecule by “magnetic tweezers”.

A recent example consists in pulling a single DNA molecule to measure its
extension as a function of the force, which allows one to measure various important
mechanical parameters of the DNA chain.

In “magnetic tweezers” (figure 4), a magnetic bead is placed in the field of
a magnet; the bead is attracted towards regions with a high gradient field, and
one can move the magnets or rotate them. This allows one to pull the DNA or to
twist it, creating as well torsions, or super-coilings, that are a part of topological
configurations for biological functions.

We give a brief overview of forces playing a role in biology, and of the specific
problems related to their smallness.

2.1.3 Biological interaction forces and thermal agitation forces.

The interaction forces in biological systems are typically generated by hydrogen
or ionic bonds, as well as by van der Waals interactions that shape nucleic acids
and proteins. Their order of magnitude is typically obtained by dividing kBT , the
order of magnitude of the “quantum of energy” provided by the hydrolysis of the
ATP in ADP180 (10 kBT ), by the characteristic size of biological objects, of the
order of a nanometer (nm). We then find the picoNewton:

180ATP: adenosine triphosphate, universal biological “fuel,” made of one sugar, ribose, and of
one base, adenine, and of three phosphate groups; ADP: adenosine diphosphate, is the degraded
version after losing a phosphate group under enzymatic action and release of energy.
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kBT

1nm
= 4 pN

‖

10−12 N

.

2 nm

20 ms

displacement of the extremity of the cantilever 

Figure 5: The track of the random displacement, in a liquid, of the tip of the can-
tilever in an atomic force microscope. It executes a one-dimensional Brownian
motion. (Kindly provided by Pascal Silberzan and Olivia du Roure, Curie Insti-
tute.)

Such a force is the one typically needed to stretch a DNA molecule. As it is
extremely small, it is not easy to detect with standard measuring devices.

The smallest measurable forces are in principle limited by the thermal ag-
itation of the measuring device (see figure 5). This thermal agitation generates
Langevin’s stochastic force seen above, whose value depends on the coefficient of
viscous friction of the object, and also on the temporal window of observation. We
have:

〈X2
Langevin〉 = 2kBT 6πη a δf,

where η is the medium’s viscosity, a the radius of a spherical bead taken as an
example, and δf the observed frequency range. For example, for a = 1.5 µm, in
water (viscosity η ≃ 10−2 Poise = 10−3 Pa/s), the average force over a period of
a second is XLangevin ∼ 15 fN

‖

(10−15 N)

, i.e., 15 femtoNewtons.

Astonishingly, Brownian fluctuations can be used directly to measure forces
of biological origin!
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Figure 6: Brownian cloud of a bead’s fluctuating position in the vertical plane
(Ox,Oz), for different applied forces. The larger the force, the more a molecule is
stretched, and the more the Brownian fluctuations are constrained. (Figure kindly
provided by Vincent Croquette, Statistical Physics Laboratory, ENS, Paris.)

2.2 Measurement of force by Brownian fluctuations

This technique of measuring a force is largely inspired by the method proposed by
Einstein181 for measuring the elastic constant of a spring by means of Brownian
fluctuations. When we apply a force upon a small magnetic bead in a gradient
field, the stretched molecule and the bead form a minuscule pendulum of length ℓ
(figure 4). The bead is animated by Brownian motion, connected to the thermal
agitation of surrounding water molecules. The small magnetic pendulum is thus
perturbed from its equilibrium position by Langevin’s random force. It is then
brought back towards equilibrium by the pulling force exerted by the DNA (figure

181A. Einstein, Investigations on the Theory of the Brownian Movement, R. Fürth Ed., A. D.
Cowper Transl., Dover Publications, p. 24 (1956).
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6).
As we will show in detail further along, the pendulum possesses a transverse

elastic constant k⊥ that is directly related to the pulling force F by k⊥ = F/ℓ. If
we call x the position of the bead with respect to its equilibrium position in the
direction perpendicular to the force ~F , the theory states

F = kBT ℓ/〈x2〉,

where 〈x2〉 is the average quadratic fluctuation of x. To measure the pulling force
on a DNA molecule, one simply measures the length ℓ and the average quadratic
fluctuation 〈x2〉! This is reminiscent of Einstein’s formula (28), as well as of the
surprise of being able to deduce Avogadro’s number from it.

To measure such fluctuations, one must follow the movements of the bead
during a given amount of time, just as in Jean Perrin’s experiments of 1908 on
Brownian motion. Today, a computer program analyzes in real time the images
on a video of the bead observed via a microscope, and determines its positions in
a three-dimensional space with a precision of 10 nm (figure 6). Such precision is
obtained through a technique of image correlation.

This sort of Brownian measurement has several advantages:
- One gauges the force by absolute measurement of position fluctuations;
- There is no contact with the bead, therefore it is non-invasive;
- The range of values of x is between µm to nm, the force goes from a dozen
femtoNewtons to hundreds of picoNewtons.
The drawback is its slowness: to accumulate sufficient fluctuations and to have
reliable statistics, a minute of recording is needed for a force of 1pN, and more
than an hour for 10fN.

We shall now describe the theory of measurement by Brownian fluctuations.

2.3 Theory

2.3.1 Equilibrium and fluctuations

One considers a DNA chain of length ℓ0 with one extremity fixed at the origin

0, while the other extremity M is determined by
−−→
OM = ~r (see figure 7). A force

~F acts on the extremity M along the direction of the Oz axis. At equilibrium,
the chain is parallel to the Oz axis and is elastically stretched up to a length ℓ
dependent on F . The Brownian fluctuations, originating from the shocks between
the bead that is attached to the DNA chain and the molecules of the solution,
induce small displacements (x, y, z) that one can consider as perturbations of the
macroscopic equilibrium position (0,0,ℓ). The extremity M is thus shifted from its
equilibrium position (0, 0, ℓ) (in the presence of F ) to a random position (x, y, ℓ+z).

Let r = |−−→OM | be the radial distance between the extremities of the chain. Because
of elasticity, the chain develops a restoring radial force Fr(r). At equilibrium, one
has Fr(ℓ) = F , where F is the external force given experimentally.
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Figure 7: Axis of a DNA chain fluctuating around the vertical position; the ex-
tremity M moves from the equilibrium position (0, 0, ℓ) in presence of F towards
the random position (x, y, ℓ+ z).

In the presence of fluctuations, the radial distance is written

r = [(ℓ + z)2 + x2 + y2))]1/2, (80)

and the restoring force

~Fr = −~r
r
Fr(r) =































Frx = −x
r
Fr(r)

Fry = −y
r
Fr(r)

Frz = − ℓ+ z

r
Fr(r).

(81)

2.3.2 Series expansions

One writes the series expansion of the distance r for x, y, z small compared to ℓ:

r = [(ℓ + z)2 + x2 + y2]1/2 = ℓ+ z + · · · (82)

An expansion to the first linear order in x, y, z will be sufficient, and from now on
we will denote by + · · · all second order terms (of O(x2, y2, z2)) in the expansions.

The radial force Fr(r) of the DNA on the bead, depends only on the radial
distance r; therefore, from (82), it has the series expansion:

Fr(r) = Fr [ℓ+ z + · · · ] = Fr(ℓ) + z
dFr

d r
(ℓ) + · · · . (83)
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One can now easily determine the components (81) of the radial force by using
(82) and (83):

Frx = −x
r
Fr(r) = −x

ℓ
Fr(ℓ) + · · · ,

Fry = −y
r
Fr(r) = −y

ℓ
Fr(ℓ) + · · · ,

Frz = − ℓ+ z

r
Fr(r) = −Fr(ℓ) − z

dFr

d r
(ℓ) + · · · .

We finally note that at the equilibrium point the external force, ~F = F~uz,
exactly cancels the term −Fr(ℓ)~uz of the vertical component Frz~uz. Leaving aside
terms of second order, our analysis leads us to a fluctuating resultant force on the
DNA :

~f = F~uz + ~Fr =































−x
ℓ
Fr(ℓ)

−y
ℓ
Fr(ℓ)

−z dFr

dℓ
(ℓ)

= −∇~r U. (84)

2.3.3 Elastic energy

The beauty of this approach is that one can determine the elastic energy of the
Brownian fluctuations of the DNA chain without even knowing the analytic form of
the elastic force. In these expressions, it must be understood that the equilibrium
length ℓ is determined by the external force, while the fluctuating force (84) is
linear in x, y, z, as expected from an expansion to first order. A quadratic potential
energy U is associated to the force by ~f = −∇~r U , given by the simple expression:

U =
1

2

(

x2 + y2
) 1

ℓ
Fr(ℓ) +

1

2
z2 dFr

d ℓ
(ℓ). (85)

2.3.4 Elastic constants

One can write the energy U (85) as that of a three-dimensional anisotropic har-
monic oscillator with two elastic constants, k⊥ and k‖, corresponding to the per-
pendicular and parallel directions, respectively, with respect to the force:

U =
1

2
k⊥
(

x2 + y2
)

+
1

2
k‖ z

2, (86)

with














k⊥ =
Fr(ℓ)

ℓ
,

k‖ =
dFr

d ℓ
(ℓ).

(87)
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As one can intuitively imagine, the transverse elastic constant, which opposes
lateral movements of the DNA molecule, is weaker than the longitudinal elastic
constant, which opposes mechanical stretching of the DNA.

2.3.5 Energy equipartition

In classical statistical mechanics, we have seen the historically important result
about the equipartition of energy. The theory simply states that each quadratic
degree of freedom has average energy 1

2kBT exactly, where kB is Boltzmann’s
constant and T is the absolute temperature. In the case of the harmonic energy
(86), the theorem immediately gives us:

1

2
k⊥〈x2〉 =

1

2
k⊥〈y2〉 =

1

2
k‖ 〈z2〉 =

1

2
kBT . (88)

Therefore we find, with the help of (87)



















k⊥ =
Fr(ℓ)

ℓ
=
kBT

〈x2〉 ,

k‖ =
dFr

d ℓ
(ℓ) =

kBT

〈z2〉 .
(89)

Because of the difference between the elastic constants, k⊥ < k‖, transverse
fluctuations dominate over longitudinal ones: 〈x2〉 = 〈y2〉 > 〈z2〉, as one can see in
figure 6. One sees, for instance, that the fluctuations

√

〈x2〉 and
√

〈z2〉 are of the
order of 2µm and of less than 1µm, respectively, for the second Brownian cloud
from the bottom. Such Brownian fluctuations can be directly measured optically,
as can the length ℓ, and equation (89) allows a truly ingenious direct measurement
of the elastic force Fr(ℓ) and its derivative F

′

r(ℓ)! One can then compare the
experimental results to the predictions of theoretical models for the statistical
description of the DNA configurations (see figure 8).

3 Potential theory and Brownian motion

Et ignem regunt numeri182

3.1 Introduction

3.1.1 Laplace’s equation

Potential theory concerns the equilibrium properties of continuous bodies, like the
distribution of electrostatic charges on conductors, the distribution of the Newto-
nian potential in the classic theory of gravitation, the distribution of temperature

182Joseph Fourier’s major work, La théorie analytique de la chaleur, was published in 1822,
with Et ignem regunt numeri as its motto (Numbers rule fire). See also Gaston Bachelard, Étude
sur l’évolution d’un problème de physique, la propagation thermique dans les solides, Librairie
philosophique J. Vrin, Paris (1927).
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Figure 8: Dimensionless ratio ℓkz

F =
k‖

k⊥
= 〈x2〉

〈z2〉 = ℓ
Fr(ℓ)

d Fr

d ℓ (ℓ), plotted as a function

of the length ℓ of the DNA chain (in units of maximum length ℓ0). The points cor-
respond to the ratio of experimental measurements of transverse (〈x2〉) and vertical
(〈z2〉) quadratic Brownian fluctuations. The curve is theoretically predicted from
the knowledge of Fr(ℓ), in a model of a semi-flexible DNA chain, also known as the
Worm-like Chain Model. We stress the remarkable agreement between experiment
and theory. (Figure kindly provided by Vincent Croquette.)

in Fourier’s theory of heat conduction, or in addition the distribution of positions
of a stretched elastic membrane.183

A deep relation exists between potential theory and the theory of diffusion,
and therefore also with Brownian motion.184 We will first give an intuitive illus-
tration within the framework of Fourier’s theory of heat conduction.

The temperature of a body, u(x, y, z; t) at the point x, y, z and at the instant
t, follows the equation of heat

∂u

∂t
= D∆u, (90)

where, as in the case of Brownian motion, D is the diffusion coefficient, and ∆ is

the Laplacian in three-dimensions ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . In general, the Laplacian
in d dimensions is:

∆ =

d
∑

i=1

∂2

∂x2
i

, (91)

where xi are d-dimensional Cartesian coordinates. When the temperature reaches
equilibrium, the time dependence cancels, and the temperature field is described

183One can cite O. D. Kellogg’s classic work Foundations of Potential Theory, Springer-Verlag
(1929); Dover Books on Advanced Mathematics (1969).
184See the article Brownian Motion and Potential Theory, by R. Hersch and R. J. Griego,

Scientific American, 220, March 1969; translated into French in Le mouvement brownien et la
théorie du potentiel, appearing in 1977 within the first out-of-series of Pour la Science.
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by Laplace’s equation:
∆u = 0. (92)

Any function with zero Laplacian is called harmonic.
Such a function, the potential, therefore can be seen as the equilibrium solu-

tion of a diffusion process (at infinite time), which is the first elementary relation
we meet between potential theory and Brownian diffusion. To specify in our ex-
ample the value of the temperature everywhere, we must fix the initial conditions
in case one starts from an out-of-equilibrium situation.

In the case we will consider here, we want to directly study equilibrium
and the associated harmonic functions, or more generally the potential. For that
purpose one must know either the position of the sources of the potential, or the
boundary conditions on it, in a way that will be made more precise in the following.

Giving the position of the sources is natural in the well-known theory of the
Newtonian or Coulomb potential, where the sources of the potential are masses
or electrostatic charges. Imposing boundary conditions on the potential is also
possible, as is natural in the case of heat conduction and temperature distribution,
where one gives the temperature distribution on the surface of a body to determine
the internal temperature distribution.

Such representations are mathematically equivalent. Let us first recall the
elementary properties of the Newtonian or Coulomb potential that will be useful
for obtaining the finer properties of harmonic functions. To fix the ideas, we will
adopt the familiar language of a Newton or Coulomb potential created by masses
or electrostatic charges, but the mathematical results of course will not depend on
this choice.

3.2 Newtonian potential

3.2.1 The potential created by a point source

In order to consider the potential in a universal way, as for gravitation or elec-
trostatics, the physical constants like the universal gravitational constant G, or
the electric permeability of the vacuum, ε0, are not indicated. In general, we will
adopt the electrostatic language.

The potential at a point P in three dimensions created by a unit charge or
mass placed at the origin O is

u3(r) =
1

4πr
, r = |−−→OP |, (93)

where r is the distance between O and P (figure 9).
The associated electric (or gravitational) field is

~E3(~r) = −∇~r u3(r) =
1

4π

~r

r3
, (94)

where ~r is the relative position vector ~r =
−−→
OP .
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O

P

r

3
r )=u (

r
1
π4

Figure 9: Newtonian potential in three dimensions.

In d dimensions, the potential and field generalize to

ud(r) =
1

(d− 2)Sd

1

rd−2
, (95)

and

~Ed(~r) = −∇~r ud(r) =
1

Sd

~r

rd
, (96)

where Sd = 2πd/2/Γ(d/2) is the surface of the unit sphere in Rd.
The two-dimensional case is more complicated, and leads to a logarithmic

potential,

u2(r) =
1

2π
log

1

r
, (97)

~E2(~r) = −∇~r u2(r) =
1

2π

~r

r2
. (98)

3.2.2 Laplace’s equation and the Dirac distribution

The Laplacian of the above potential ud(r) vanishes identically everywhere in
space, except at the origin: ∆ud(r) = 0, r 6= 0. At ~r = ~0 it is divergent, and its
value is given by a distribution, namely

∆ud(r) =
1

(d− 2)Sd
∆

1

rd−2
= −δd(~r), (99)

where δd(~r) is the Dirac distribution in d dimensions, zero everywhere except at
the origin ~r = ~0, where it is singular (infinite). This divergence is such that the
integral

∫

Rd

f(~r)δd(~r) ddr = f(~0) (100)

yields the value at the origin of any test function f(~r).
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Equation (99) is Poisson’s equation, where the second term represents the
mass or charge density, i.e., the source of the potential. In the case of a potential
(93), (95) or (97), such a source is a point, at which a singular density appears.

In the elementary approach that follows, we shall not use this formalism.
Rather, we will follow the elementary path that uses Gauss’ theorem.185

3.2.3 Gauss’ theorem

Gauss’ theorem says that the flux of an electric (or gravitational) field across any
closed surface Σ is equal to the total chargeQ(Σ) (or mass) enclosed by the surface:

∫

Σ

~E · d~S = Q(Σ). (101)

This theorem can be proved in two stages. By linearity, since the case of a dis-
tribution of charges can be treated by adding the fields, one can reduce it to the
case of a point charge. Actually, if each one of these fields satisfies Gauss’ theorem,
their sum will as well.

Next, for a point charge enclosed by the surface, we notice that the flux of ~E
is invariant when we deform the surface Σ without crossing the charge.186 We can
thus restrict attention to a sphere around the charge, for which Gauss’ theorem is
trivial. Actually, because of the form (94) of the 1/r2 field with spherical symmetry,
the integral (101) on a sphere of a radius r is equal to the charge.

Gauss’ theorem immediately generalizes to any number of dimensions.

3.2.4 Potential generated by a sphere

Let us consider the sphere S(a) of radius a centered at the origin O. Imagine that
it carries a charge Q uniformly distributed over its surface.

The associated field ~E(r) is radial and with spherical symmetry. It satisfies
Gauss’ theorem (101). If we choose the surface Σ as a sphere S(r) centered at
O, of radius r > a, i.e., exterior to S(a), we have Q(Σ) = Q, and the flux of
~E(r) across Σ is simply, by spherical symmetry, E(r)4πr2 = Q. We then deduce
that E(r) = Q

4πr2 is the same field that would be created by a charge as if it was
concentrated at the center of sphere. If the surface Σ is chosen like a sphere S(r)
of radius r < a, i.e., inside S(a), then Q(Σ) = 0 and the flux (101) is then zero. By

symmetry, we then deduce that the field ~E is zero everywhere inside the sphere.
Let uS(P ) now be the potential created at a point P by the same sphere

S(a) of radius a with total charge Q, uniformly distributed on the surface. This
potential has a spherical symmetry, as does its associated field. Outside the sphere,

185O.D. Kellogg, op.cit.
186We have, from the Green-Ostrogradski theorem, that

R

Σ
~E · d~S−

R

Σ′
~E · d~S =

R

D
div ~E d3v =

−
R

D
∆u d3v = 0, where D is the domain between the two surfaces Σ and Σ′, and u is the

potential. Indeed, we have the identities ~E = −~∇u and div(~∇u) = ∆u = 0, because u is
harmonic in the domain D without charges.
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the field is the same as that of a point charge Q placed at the center, while inside
the sphere the field is zero. The potential outside the sphere is therefore the one,
(93), created by a point charge placed at the center of the sphere, while inside the
sphere it is constant, and by continuity equal to its value on the boundary. One
thus has

uS(P ) =
1

4π

1

r
ϑ(r − a) +

1

4π

1

a
ϑ(a− r), r = |−−→OP |, (102)

where ϑ is the Heaviside distribution ϑ(x < 0) = 0, ϑ(0) = 1/2, ϑ(x > 0) = 1.

3.3 Harmonic functions and the Theorem of the Mean

3.3.1 Gauss’ theorem of the Arithmetic Mean

The property that two bodies or two charges attract one another with equal and
opposite forces, reflects itself in the potential. Actually the potential is symmetric
with respect to the coordinates of the two points, in such a way that the potential
at P of a charge Q at S is the same as the potential at S of a charge Q at P . From
such a simple fact follow theorems with important applications. We derive two of
them, called Gauss’ theorems of the Arithmetic Mean.187

r

a

ρ

(S)
O

P

S

Figure 10: Newtonian potential (103) created by a uniformly charged sphere of
radius a.

The potential

uS(P ) =
Q

4πa2

∫

S

d2S

4πρ
, ρ = |−→SP | (103)

is the one at point P , created by all points S on the surface of a sphere S of radius
a, and with uniform charge density Q

4πa2 (see figure 10). In (102) we just saw that

outside the sphere the potential is equal to Q
4πr , where r is the distance r = |−−→OP |,

while inside the sphere it is constant and equal to Q
4πa .

187O. D. Kellogg, op. cit.



280 B. Duplantier Poincaré Seminar 2005

But because of the exchange symmetry which we just mentioned, the poten-
tial can also be interpreted as the arithmetic mean on the surface of a sphere of
the potential created by the same charge Q, this time placed in P .

The equations (102) (103) therefore have the following interpretation:
a) The average on the surface of a sphere of the potential created by a charge
situated outside the sphere, and at a distance r from its center, is equal to the
value (varying as 1/r) of the potential at the center of the sphere;
b) The average on the surface of a sphere of the potential created by a charge
in any position inside the sphere, is equal to the value (varying as 1/a) of the
potential on the sphere, after concentrating the whole charge at the center of the
sphere.

Now let us suppose that we have a group of charges placed either entirely on
the outside of the sphere, or entirely on the inside. By adding up the above results
for each elementary charge, we find the following two generalizations:
a) Gauss’ Theorem of the Arithmetic Mean: the average on a surface of a sphere
of the potential created by charges situated entirely outside the sphere is equal to
the value of the potential at the center;
b) The Second Theorem of the Mean: the average of the potential on a surface of
a sphere, created by charges situated entirely inside the sphere, is independent of
their distribution inside the sphere, and it is equal to the total charge divided by
the radius of the sphere.188

3.3.2 Harmonic functions

Finally let us come back to harmonic functions, and consider a function u such
that ∆u = 0 in some domain D. Such a harmonic function can be represented as a
potential created inside the domain D by a distribution of charges outside D. We
can then apply the first of Gauss’ theorems, and obtain the mean-value theorem for
harmonic functions: The average of a harmonic function u on a sphere S centered
at a point P is equal to the value of u at P . For instance, in three dimensions:

u(P ) =

∫

S

u(S)
d2S

4πa2
, (104)

where a is the radius of the sphere; the theorem can be generalized to any number
of dimensions.

The reciprocal is also true: any function that fulfills the Theorem of the
Mean on every sphere inside a given domain, is harmonic inside that domain. This
theorem is going to be the key relation between potential theory and Brownian
motion.189

188One can find the first theorem in Gauss’ complete works, Allgemeine Lehrsätze, vol. V, p.
222. The second theorem, less known, can be found there too.
189A proof of the Theorem of the Mean can be obtained by vectorial analysis. We write the

average 〈u〉S of u on the surface of the (d − 1)-sphere S of radius a in Rd, as the flux of the
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3.4 The Dirichlet problem

A classic problem of potential theory is that of Dirichlet. One considers a domain
D of the Euclidean space Rd and its boundary ∂D. The potential u is given on the
boundary by means of a given continuous function f :

∆u = 0 inside D, (110)

u = f on ∂D. (111)

For instance, the Dirichlet problem in the case of heat conduction is to de-
termine the equilibrium temperature inside a conducting body D, once the distri-
bution f of the temperature along the boundary ∂D is given.

It is here that Brownian motion comes into play, to provide an entirely prob-
abilistic representation of the solution.

3.5 Relation between potential theory and Brownian motion

3.5.1 Newtonian potential and probability density

The first relation, which contains the kernel of all the others, is obtained sim-
ply by considering the Gaussian probability density (26),190 which represents the
probability density of finding a Brownian particle at a point ~r at time t, knowing

vector u(~r)~r/rd on the surface of the sphere:

〈u〉S =
1

Sd ad−1

Z

S

u(S) dd−1S =
1

Sd

Z

S

u(~r)
~r

rd
. ~n dd−1S = −

Z

S

u(~r)~∇ud(r). ~n dd−1S, (105)

where Sd is the area of the unit sphere, ~n is the unit vector normal to the surface of the sphere
(and directed towards the exterior), and where we used (96). We therefore use Green’s theorem
in the volume D inside the sphere:

Z

D

[ud(r) ∆u(~r) − u(~r)∆ud(r)] ddr =

Z

S

h

ud(r) ~∇u(~r) − u(~r)~∇ud(r)
i

. ~n dd−1S. (106)

We have ∆u(~r) = 0, because u is harmonic, and from (99) we have ∆ud(r) = −δd(~r). From the
definition (100) of Dirac distribution and by substituting (105) in (106), we have:

u(0) = 〈u〉S +

Z

S

h

ud(r) ~∇u(~r)
i

. ~n dd−1S. (107)

As the Newtonian potential is constant on the sphere, ud(r) = ud(a) = 1
(d−2)Sdad−2

, the last

flux integral is transformed into a volume integral and it yields

ud(a)

Z

S

~∇u(~r). ~n dd−1S = ud(a)

Z

D

∆u(~r) ddr = 0, (108)

because u is a harmonic function by hypothesis. We have then obtained the Theorem of the
Mean as expected:

〈u〉S = u(0). (109)

190For this subject one can consult the book of K. L. Chung, Green, Brown, and Probability &
Brownian Motion on the Line, World Scientific, Singapore (2002).
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that the particle was at the origin at time t = 0. In d dimensions, formula (26)
generalizes to

P (~r; t) =
1

(4πDt)d/2
exp

(

− r2

4Dt

)

, (112)

where r is the distance from the origin.
By integrating P (~r; t) over the time variable t one obtains

D

∫ +∞

0

P (~r; t) dt =
1

(d− 2)Sd

1

rd−2
= ud(r). (113)

For a unit diffusion coefficient D = 1, the total Brownian probability density of
arriving at ~r at any time is then exactly equal to the Newtonian potential created
at ~r by a unit charge or mass.

Let us look now at the Dirichlet problem from a more general point of view.

3.5.2 Discrete random walks and the Dirichlet problem

This problem was considered in the 1920’s with the work of Phillips and Wiener,191

and of Courant, Friedrichs and Lewy.192 They obtained a probabilistic representa-
tion of the solution of the Dirichlet problem (110, 111), in the form of an approx-
imate sequence of random walks on a d-dimensional cubic lattice εZd, of lattice
spacing ε.

More precisely, one considers random walkers w = {wn, n ∈ N} on the lattice
εZd, at discrete times n = 0, 1, 2, · · · , all starting from the initial point w0 = P in
domain D and diffusing away. When the walkers ultimately reach the boundary,
one measures the value of the function f at that point on the boundary. One
repeats the process and then takes the average of the values of the function f over
all first contact points on the boundary reached by random walkers that started
from P .

We can formally write the averaging operation as

uε(P ) =
∑

{w: w0=P}

1

(2d)τD
f(wτD ), (114)

where the sum is over all random walks w = {wn, n ∈ N} on the lattice εZd,
at discrete times n = 0, 1, 2, · · · , leaving the initial point w0 = P and diffusing
towards the boundary. In (114), τD is the first instant at which the boundary ∂D
is reached by the random walker, and wτD its position on the boundary at this
instant. The sum must be normalized by the inverse of the total number (2d)τD

of walks of length τD, in a way to be a probability measure on the set of discrete
random walkers.

191H. B. Phillips and N. Wiener, J. Math. Phys., 2, pp. 105-124 (1923).
192R. Courant, K. Friedrichs and K. Lewy, Math. Ann., 100, pp. 37-74 (1928).



Vol. 1, 2005 Brownian Motion 283

To extend the result in the continuum, one next takes the limit of the lattice
spacing ε to 0. The result limε→0 uε(P ) = u(P ) is then the value of u at point P ,
which is the solution of the Dirichlet problem in Rd.

In the language of heat theory for instance, the temperature at point P is
the average of the temperature at the boundary, evaluated after random walking
towards it! In mathematics, a standard notation of the average (114) is

uε(P ) =

∫

f(wτD)Πε
P (dw), (115)

where Πε
P is the probability measure on discrete random walks in εZd started at

P .

3.5.3 Norbert Wiener

A first attempt to define integral calculus over a function space was made by
Daniell (circa 1920).193 A few years later, Norbert Wiener introduced a measure
in function space which is rigorous from a mathematical point of view (it is a bona
fide Borel measure), and which made it possible to define and calculate an integral
over a space of functions.

Wiener had indeed known Einstein’s theory since his visit to Cambridge in
1913. At 19, he came to study logic with Bertrand Russell, who suggested that he
go listen to Hardy, the mathematician, and read Einstein!

So, motivated also by his reading of Perrin, Wiener constructed, in his funda-
mental article of 1923, “Differential Space,”194 a probability measure for Brownian
paths in R (then in Rd). The basic idea was to directly construct on the space of
continuous functions w(t) of a single real variable (representing the position as a
function of time), a probability measure such that the changes of the positions
w(ti) = xi, i = 0, · · · , n, over disjoint time intervals, [ti−1, ti], i = 1, · · · , n, have a
joint Gaussian probability distribution,

P ({xi}; {ti}) =

n
∏

i=1

1

[4πD(ti − ti−1)]1/2
exp

[

− (xi − xi−1)
2

4D(ti − ti−1)

]

. (116)

This is a direct generalization of the Brownian displacement distribution (25).
Wiener obtained his measure by using an explicit mapping of the space C

of continuous functions into the interval (0,1) (minus a set of Lebesgue measure
zero). This mapping allows to pull-back the ordinary Lebesgue measure on the
space C. In this language, the Brownian motion has the following probabilistic
interpretation: a Brownian path corresponds to the random choice of an element
of the measured set C (i.e., a continuous function), endowed with the “Wiener
measure”.

193 P.J. Daniell, Ann. Math. 21, 203 (1920).
194N. Wiener, J. Math. Phys., 2, pp. 131-174 (1923).
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Nowadays, this measure is indeed universally called Wiener measure in math-
ematical circles, while physicists prefer to speak of functional integrals, even though,
like Monsieur Jourdain, they really calculate with the Wiener measure when they
perform their formal calculations!195

The integral over such a measure is called the Wiener average. It is denoted
W(dw) here and more precisely WP (dw) for a Brownian motion w started at P . It
corresponds to the continuous limit for ε → 0 of the measure Πε(dw) on random
walks on the discrete lattice εZd, introduced in the preceding section.

Once that construction was made, Wiener verified that the measure of the
subset of differentiable functions vanishes, in agreement with Perrin’s intuition,
and that the support of the measure is given by Hölder functions (of order at
least 1/2 − ǫ, ǫ > 0). In subsequent years, he further developed the very broad
ramifications of his theory.196

In a study written in 1964 on Wiener and functional integration, Mark Kac
highlighted the profound originality of Wiener during his time, and in counterpoint,
the difficulty for mathematicians to understand his approach:197

“Only Paul Lévy, in France, who had himself been thinking along similar
lines, fully appreciated their significance.”

The next steps were indeed made by Paul Lévy, in his great work on Brown-
ian motion, Processus stochastiques et mouvement brownien (1948).198 Since then,
the blooming of the subject in mathematics was such that one can only make an
extremely limited citation list. We refer the interested reader to the introductory
article of J.-F. Le Gall for a first journey into the Brownian world of mathemat-
ics,199 and to D. Revuz and M. Yor’s book for a more thorough visit.200

The connection between the Wiener path measure for Brownian motion and
path integrals is perhaps best intuitively understood by considering the multiple
distribution (116) for a set of successive equal time intervals, ti = i

n t, i ∈ {1, n}.
One conditions the path, normalized to start at the origin x = 0 at time t = 0, to
be at times ti = i

n t, i ∈ {1, n} within intervals dxi of the set of points xi in R, and

195This is true in perturbation theory. See, e.g., in the case of polymer theory, B. Duplantier,
Renormalization and Conformal Invariance for Polymers, in Proceedings of the Seventh Interna-
tional Summer School on Fundamental Problems in Statistical Mechanics, Altenberg, Germany,
June 18-30, 1989, H. van Beijeren Editor, North-Holland, Amsterdam (1990).
196N. Wiener, Acta. Math. 55, 117 (1930); R. E. A. C. Paley and N. Wiener, Fourier Transforms

in the Complex Domain, Amer. Math. Soc. Colloq. Publ., 19, New-York (1934); N. Wiener,
Generalized Harmonic Analysis and Tauberian Theorems, MIT Press, Cambridge, Mass. (1964).
197M. Kac, Bull. Amer. Math. Soc., 72, pp. 52-68 (1964).
198Paul Lévy, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris (1965).
199J.-F. Le Gall, Introduction au mouvement brownien, Journées annuelles de la Société

Mathématique de France, 28 janvier 1989, three exposés on Brownian motion (J.-F. Le Gall:
supra, G. Ben Arous: Grandes déviations et noyau de la chaleur, B. Duplantier: Le mouvement
brownien en physique, les polymères et leur relation avec les phénomènes critiques).
200D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Berlin-Heidelberg:

Springer (1991); second edition, 1994.
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one then takes the formal limit n→ ∞:

W(dw) = lim
n→∞

n
∏

i=1

dxiP ({xi}; {ti}))

= lim
n→∞

n
∏

i=1

dxi

n
∏

i=1

1

(4πD t/n)1/2
exp

[

− (xi − xi−1)
2

4D t/n

]

= Dw exp

(

− 1

4D

∫ t

0

(

dw(t′)

dt′

)2

dt′

)

, (117)

now with a continuum “Lebesgue” measure on paths,

Dw = lim
n→∞

n
∏

i=1

dxi

(4πD t/n)1/2
.

This notation is marvellously appealing to physicists, since one recognizes in the
exponential in (117) the Boltzmann-Gibbs weight associated with the classical
kinetic energy of the particle. As Marc Kac noted,201

“The disadvantages of such an approach from the purely mathematical point
of view are obvious, although it is appealing on formal grounds”.

In d dimensions, the formal equivalence between Wiener’s measure and func-
tional integrals is simply obtained by using the d-dimensional Gauss distribution,
so that

W(dw) = Dw exp

(

− 1

4D

∫ t

0

(

d~w(t′)

dt′

)2

dt′

)

, (118)

Dw = lim
n→∞

n
∏

i=1

ddxi

(4πD t/n)d/2
.

The rigorous connection between the Wiener path integral and Brownian mo-
tion is further illuminated by the Feyman-Kac formula that allows one to write ex-
plicit path integral representations for the solutions of parabolic differential equa-
tions, corresponding to Brownian motion in presence of a general potential,202 the
case pioneered by Smoluchowski.

When formally continued to imaginary time, the Feyman-Kac formula pro-
vides an expression for the Green function of the Schrödinger equation, thus leading

201M. Kac, Probability and related Topics in the Physical Sciences, Interscience, New York
(1959).
202M. Kac, Probability and related Topics in the Physical Sciences, op. cit.; L. S. Schulman,

Techniques and Applications of Path Integration, John Wiley and Sons, New York (1981); F. W.
Wiegel, Introduction to Path Integral Methods in Physics and Polymer Science, World Scientific,
Singapore (1986); J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th Edition,
International Series of Monographs on Physics 92, Oxford University Press (2002).
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to the celebrated path integral representation of Quantum Mechanics invented by
Feynman in 1948.203

3.5.4 S. Kakutani

The existence of the Wiener measure and Wiener integral allowed for some very
important progress by S. Kakutani in 1944-1945.204 He showed that by substituting
an integral with the Wiener measure W in the formula (115) with the discrete
measure Πε indeed solved the Dirichlet problem in continuous space Rd. Thus we
have Kakutani’s formula

u(P ) =

∫

f(wτD )WP (dw). (119)

That means that the potential at any point P is given by the average of the potential
chosen at random on the boundary by a Brownian motion started at P (figure 11).

w)
w

 f(

D

D

(S)

S

�P
a

Figure 11: The Dirichlet problem in a domain D, and its Brownian representation.
The point w = wτD is the point of first contact of a Brownian motion that started
at P with the boundary ∂D, at the instant τD of first exit from the domain D. The
point S is the point of first passage across the surface of the sphere S.

In the following section we give an elementary demonstration of this result.

3.5.5 Demonstration

In probability theory, the quantity u(P ) defined by equation (119) is called the
expectation value associated to the point P , because it represents the expectation

203R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948); R. P. Feynman and A. R. Hibbs, Quantum
Mechanics and Path Integrals, McGraw-Hill, New York (1965).
204S. Kakutani, Proc. Imp. Acad. Japan, 20, pp. 706-714 (1944).
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for a random sampling of the value f on the boundary, by a process of Brownian
diffusion from P .

We want to verify that this expectation value fulfills the two conditions (110)
and (111).

The second condition is easy to verify: if the point P is on the boundary ∂D,
any Brownian motion w coming from P is immediately stopped on the boundary
at wτD = P , therefore u(P ) = f(P ) for P on ∂D, as expected.

Moreover, if the Brownian motion leaves from an internal point P , close to a
point P0 of the boundary, it is (almost) certain (in a probabilistic sense) that the
motion will meet the boundary in a neighborhood of P0, and that the expectation
value u(P ) will be close to the value f(P0) of f in P0. Kakutani’s solution has
the right properties of regularity near the boundary, under the condition that the
latter has a sufficiently regular geometry and that the “temperature” f on the
boundary is a continuous function.

The continuity of the expectation value u, with respect to point P , is equally
clear: a small displacement of P will only slightly modify the Brownian trajectories
diffusing from P , as well as their subsequent exploration of the boundary.

We will now establish the first property, (110), i.e., that the expectation
value u(P ) (119) is a harmonic function, by showing that it satisfies the equivalent
property (104) on all spheres centered in P .

We draw a sphere S of radius a centered at P and contained inside the
domain D (figure 11). The aim is to show that the Brownian expectation value
u(P ) obtained by leaving from any point P is equal to the average of Brownian
expectation values u(S) obtained from any point S on the surface of the sphere S.

In order to move beyond the boundary ∂D of the domain, a Brownian motion
must cross the sphere S at least once. Calling S the first crossing point of the sphere
(figure 11), and u(P/S) the expectation value obtained for all Brownian motions
coming from P and first crossing S at the point S.

As there is no preferential direction for Brownian motion, each point of S can
be met first with equal probability. One distinguishes the average for Brownian
motions starting at P in two steps: the choice of the point of first passage S, and
diffusion across S, with the expectation value u(P/S). By averaging the averages,
one has the result that u(P ) must be equal to the average of u(P/S) on the sphere,
i.e., in mathematical terms:

u(P ) =

∫

S

u(P/S)
d2S

4πa2
. (120)

The last thing to show is that the expectation value u(P/S), obtained by
leaving from P and passing through S, is the same as the expectation value u(S),
obtained by simply starting from S on the sphere. It is here that a very important
property of Brownian motion comes into play: the motion at an instant t only
depends on the position at that instant and not on previous motions. Somehow,
there is an absolute loss of memory, where only the present instant and position
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are important: Brownian motion is Markovian. In probability theory, one speaks
generally as well of a Markov process when the future dynamic of a process is
not influenced by its previous states. The future behavior of a Brownian particle
leaving from S, or passing through S knowing that it began at P , does not differ.
It follows that u(P/S) = u(S), which ends the proof of the Theorem of the Mean
(104).

3.6 Recurrence properties of Brownian motion

We give an illustration of a non-trivial probabilistic property of Brownian motion,
which is deduced from potential theory, that is its recurrence properties.

3.6.1 Brownian motion in one dimension

Let us consider now the one-dimensional real line R and points x of a domain
D, here the line segment D = [0, R], where R is a positive number. Let us
search for the harmonic function u(x) that satisfies the simple Dirichlet problem:
u(0) = 0, u(R) = 1. In one dimension, the Laplacian (91) is simply the second
derivative, so the harmonic equation (110) becomes d2u(x)/dx2 = 0. The solution
is simply linear in x: u(x) = x/R; it evidently satisfies the required conditions at
the boundaries.

Let us consider Kakutani’s solution for the Dirichlet problem by Brownian
mathematical expectation. The boundary ∂D of the segment D = [0, R] is made up
of two points: ∂D = {0, R}. The function f with Dirichlet conditions (111), takes
the values on the boundary: f(0) = 0, f(R) = 1. According to Kakutani’s result,
the value u(x) = x/R of the harmonic function u is the average of the function f
obtained from random sampling by means of a Brownian motion starting at x. The
case of the first Brownian exit from the segment D = [0, R] at point x = 0 gives
a value f = 0, and at point x = R the value f = 1. The Brownian expectation
of f is thus exactly the probability for the Brownian motion to first exit from the
segment [0, R] at the endpoint R rather than at 0, or else the probability, starting
from x, to attain R before 0. The complementary probability to attain 0 before R
is thus pR(x) = 1 − u(x) = 1 − x/R.

Let us now keep the point x fixed while taking the limit R → ∞, so that the
segment D extends to the positive real axis R+. We see that pR→∞(x) → 1, and
this is for all x. The probability p∞(x), for a Brownian motion started at x, to
reach the origin 0 before leaving to infinity is therefore identically equal to one.

The Brownian motion, wherever it leaves from, passes by the origin (quasi-)
certainly205. Since spatial and temporal origins were arbitrary in our demonstra-

205In continuous probability theory, an event with probability 1 is only said to be “quasi-
certain” or “almost surely true,” contrary to the common language. The reason is that in the
case of events forming a continuum, it can always exist a non-empty set of irreducible events
where the prediction is not realized, which is still of zero measure in the sense of measure theory,
and therefore of zero probability. One cannot forgo the consideration of zero-measure sets, hence
go beyond the “almost surely” (a.s.) probabilistic description.
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tion, the following property was established: a Brownian motion in one dimension
passes through all points on the real axis, infinitely many times. One says it is
recurrent in one dimension.

This property did not appear as evident a priori from the probability theory
side. Thanks to the relation to potential theory, it has been obtained by simply
solving a second order differential equation! Einstein would surely not have thought
of this in 1905, although who knows?

Now we will generalize the above study to two and then to d dimensions.

3.6.2 The two-dimensional case

This time, we consider the planar annular domain D, which is that between two
concentric circles C1 and C2 centered at the origin O, of respective radii ρ1 and
ρ2, with ρ1 < ρ2. The boundary of the domain D is then made of two circles,
∂D = C1 ∪ C2. We pose the Dirichlet problem in the annular domain D:

∆u = 0 inside D, (121)

u = 0 on C1, u = 1 on C2. (122)

By using the two-dimensional Newtonian potential u2(r) (97), it is easy to see that
the solution to the Dirichlet problem is spherically symmetric and at a distance r
from the center evaluates to:

u2(r; ρ1, ρ2) =
u2(r) − u2(ρ1)

u2(ρ2) − u2(ρ1)
=

log r − log ρ1

log ρ2 − log ρ1
, ρ1 ≤ r ≤ ρ2. (123)

Actually, this function obviously satisfies (122) and is harmonic in the annular
domain D, because the potential u2(r) (97) is harmonic too (except at the origin,
which indeed does not belong to D).

Let us come now to Kakutani’s representation of the solution to the Dirich-
let problem. In a manner similar to the one-dimensional case in the preceding
paragraph, u2(r; ρ1, ρ2) (123) represents the probability that a Brownian motion,
started at a distance r from the center, hits the outer circle C2 before hitting the
inner circle C1.

As in the preceding paragraph, let us fix the distance r and the internal circle
C1, and push the boundary of the outer circle C2 to infinity. By taking ρ2 → ∞
in formula (123), we see that by continuity the probability that the Brownian
motion goes to infinity is u2(r; ρ1,∞) = 0, for all r and ρ1 finite. It means that
the Brownian motion reaches the disk of radius ρ1 with probability 1, whatever its
point of departure outside of the disk. Since the initial departure time is arbitrary
too, likewise the origin in the plane, one then concludes that a two-dimensional
Brownian motion passes through neighboring points of any point infinitely often.
It is then recurrent in two dimensions, just as it is in one dimension.

It is equally interesting to fix r and ρ2 in (123), and to take the limit of an
infinitesimal circle around the origin, i.e., ρ1 → 0. We then find that by continuity
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u2(r; ρ1 = 0, ρ2) = 1. The probability that a Brownian motion starting at a dis-
tance r 6= 0 from the origin, moves away from the origin up to a distance ρ2 > r
without having visited the origin at ρ1 = 0, is then equal to 1. In other words,
a Brownian motion that does not leave from the origin O avoids the origin with
probability 1, without ever being able to pass through it.

We deduce an apparently paradoxical result: in two dimensions, any Brown-
ian motion passes through a given point with zero probability, but it passes through
immediate neighboring points infinitely often with probability 1!

Such a double result is due to the presence in the expectation (123) of one
function, the logarithm, that diverges both at short distance for ρ1 → 0, and
at long distance for ρ2 → ∞. This is peculiar to two dimensions and announces
exceptional properties known as conformal invariance in two dimensions, which
will be described in the following section.

In d > 2 dimensions, a simple power law controls the Newtonian potential
ud(r) (95), and only a divergence at short distance appears. We will see the con-
sequences of such a divergence on the recurrence properties of Brownian motion.

Let us mention however that these properties only constitute the “tip of the
iceberg”: the singular character of the potential at short distances is the source of
divergences in quantum field theories, which led to the creation of renormalization
theory, whose consequences have been quite fruitful in the physics of elementary
particles and in statistical mechanics.206 Actually, the intersection of Brownian
motions207 provides the random geometric mechanism that underlies any interact-
ing field theory.208 This equivalence is fundamental in the theory of polymers209

and also in the rigorous theory of second order phase transitions.210 But “Revenons
à nos moutons.”211

3.6.3 The d-dimensional case

We are now well enough equipped to pass to the d-dimensional case, for d > 2.
Let us consider two concentric hyperspheres, S1 and S2, centered at origin O, and
of respective radii ρ1 and ρ2, with ρ1 < ρ2. The boundary of the domain D is then

206For this subject, one can consult the text Renormalization from Séminaire Poincaré 2002, in
B. Duplantier & V. Rivasseau, eds., Poincaré Seminar 2002, Progress in Mathematical Physics,
Vol. 30, Birkhäuser, Basel (2003); see also the monograph by J. Zinn-Justin, Quantum Field
Theory and Critical Phenomena, 4th Edition, International Series of Monographs on Physics 92,
Oxford University Press (2002).
207G. F. Lawler, Intersection of Random Walks (Birkhäuser, Boston, 1991).
208 K. Symanzyk, in Local Quantum Theory, edited by R. Jost (Academic Press, London,

New-York (1969)).
209P.-G. de Gennes, Phys. Lett. A38, 339-340 (1972); J. des Cloizeaux, J. de Physique 36, 281-291

(1975).
210M. Aizenman, Phys. Rev. Lett. 47, 1-4, 886 (1981); Commun. Math. Phys. 86, 1-48 (1982);

D. C. Brydges, J. Fröhlich, and T. Spencer, Commun. Math. Phys. 83, 123-150 (1982); G. F.
Lawler, Commun. Math. Phys. 86, 539-554 (1982).
211From La farce de Maistre Pierre Pathelin (c. 1460), meaning “Let’s get back to our main

subject”.
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made of the two spheres ∂D = S1 ∪ S2. Let us state the Dirichlet problem (111)

∆u = 0 inside D, (124)

u = 0 on S1, u = 1 on S2. (125)

Here again, in using this time the d-dimensional Newtonian potential ud(r) (95),
it is easy to see that the spherically symmetric solution of the Dirichlet problem
at a distance r from the center, is:

ud(r; ρ1, ρ2) =
ud(r) − ud(ρ1)

ud(ρ2) − ud(ρ1)
=
r2−d − ρ2−d

1

ρ2−d
2 − ρ2−d

1

, ρ1 ≤ r ≤ ρ2. (126)

This function satisfies (125); it is harmonic in the annular d-dimensional domain
D, because the potential ud(r) (95) is harmonic too (except at the origin, which
does not belong to D).

Finally let us apply the probabilistic result: ud(r; ρ1, ρ2) (126) is the proba-
bility that a Brownian motion, starting from a given point at a distance r from
the center, meets the outer sphere before the internal sphere.

First, let us take in (126) the limit ρ2 → ∞, at r and ρ1 fixed. As the
dimension d is here greater than 2, one has ρ2−d

2 → 0. The probability for the
Brownian motion to escape to infinity, ud(r; ρ1, ρ2 → ∞), is by continuity the
limit ud(r; ρ1,∞) = 1 − (ρ1/r)

d−2, which is finite.
This result shows that in all spaces of at least three dimensions Brownian

motion is not recurrent, because the space is larger than that in one or two di-
mensions. We say that it is transient. Such a result, very important in probability
theory, was obtained in an elegant and simple manner via potential theory.

The complementary probability at a distance ρ1 ≤ r, pd(r; ρ1,∞) = 1 −
ud(r; ρ1,∞), that is, of visiting a neighborhood of the origin, is then equal to
(ρ1/r)

d−2. In the usual physical case, d = 3, one finds p3(r; ρ1,∞) = ρ1/r, for
ρ1 ≤ r.

One can generalize the definition of pd(r; ρ1,∞) to the whole space, by giving
it the value 1 inside the sphere of radius ρ1, that is for r ≤ ρ1. Such a generalized
function is called potential capacity of the sphere of radius ρ1. The potential ca-
pacity of an ensemble B is an important concept in classic potential theory; it is
a harmonic function outside B, equal to 1 inside B, and zero at infinity. It is then
the probability that a single particle, animated by Brownian motion and leaving
from a given point, will reach B.

Research in this domain allowed the discovery of important generalizations,
both for the theory of Brownian motion and potential theory. We have seen that
the equivalence between them rests on the Markovian property of Brownian mo-
tion. Similarly, a generalized potential theory can be associated to any “standard”
Markov process.

We see therefore the profound relation that exists between the mathematical
theory of potential, invented in the 17th century by Newton, then developed by
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Figure 12: Boundary or outer envelope curve of a planar Brownian path.

Laplace, Poisson and Green, and Brownian motion, observed during the same
era, but understood only in the 20th century, thanks to Sutherland, Einstein,
Smoluchowski, Perrin and Langevin in physics, Bachelier, Wiener, Lévy, Kakutani
and many others in mathematics.

4 The fine geometry of the planar Brownian curve

4.1 The Brownian boundary

In this last part, we are interested in the geometry of the Brownian curve in the
plane. By Brownian curve, or Brownian path, we mean the random curve traced
by a Brownian motion on the plane. We can see a typical representative in figure 1.
In particular, we will consider the boundary of such a curve. It is the outer envelope
of the Brownian curve. We observe that it is an extremely irregular curve, fractal
in Mandelbrot’s sense (figure 12).212

From a series of accurate numerical simulations, Mandelbrot made the con-
jecture in 1982 that such a boundary is the continuous limit of a particular random
walk, the self-avoiding walk (SAW) (figure 13). That is a process where the random
walker cannot visit any point of his own path twice. To define it, one considers
a priori the ensemble of all possible random paths of a given length (with and
without self-intersections) on, say, a square lattice, and select among them the
small subset of all the paths that do not self-intersect. Those are then weighted
with a uniform measure.213

212See the classic works of Benôıt Mandelbrot, Les objets fractals : forme, hasard et dimension,
survol du langage fractal, Champs, Flammarion (1999), and The Fractal Geometry of Nature,
Freeman, New-York (1982).
213See the monographs: P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell Uni-
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SAW in plane - 1,000,000 steps

Figure 13: A self-avoiding walk in the plane, made of 1 million steps! (Kindly
provided by T. G. Kennedy, University of Arizona.)

The resulting conjecture is that the fractal dimension or Hausdorff dimension
of the Brownian boundary is equal to DH = 4/3, like that which was calculated
by the Dutch theoretical physicist Bernard Nienhuis in 1982 for a two-dimensional
self-avoiding random walk.214 The fractal dimension DH is here defined in an non-
rigorous way, as follows. We cover the fractal object of size R by small disjoint
disks of radius ε, and we count the number n of these disks. In general, this number
grows with a power law in R and ε, n ∝ (R/ε)

DH . We then see that DH generalizes
the notion of Euclidean dimension of regular sets to the case of very irregular sets.

Nienhuis used a representation of statistical mechanics, known as the Coulomb
gas, a precursor to the methods of conformal invariance or of conformal field the-
ories that in 1984 would enter the theory of two-dimensional critical phenomena,
thanks to the work of Belavin, Polyakov, and Zamolodchikov.215

versity Press (1979); J. des Cloizeaux and G. Jannink, Polymers in Solution, their Modeling and
Structure (Clarendon, Oxford University Press, 1989).
214B. Nienhuis, Phys. Rev. Lett. 49, pp. 1062-1065 (1982); J. Stat. Phys. 34, pp. 731-761 (1984);

Phase Transitions and Critical Phenomena, edited by C. Domb et J. L. Lebowitz, (Academic
Press, London, 1987), Vol. 11; see also M. den Nijs, J. Phys. A 12, pp. 1857-1868 (1979); Phys.
Rev. B 27, pp. 1674-1679 (1983).
215A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Nucl. Phys. B241, pp. 333-380

(1984). One can find an introduction in the book by C. Itzykson and J.-M. Drouffe, Théorie

statistique des champs, tome 2, EDP Sciences/CNRS Éditions (2000); English version: Statistical
Field Theory, Vol. 2, Cambridge University Press, Cambridge (1989). For further reading, see J.
L. Cardy, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz,
(Academic Press, London, 1987), Vol. 11; J. L. Cardy, Conformal Invariance and Statistical
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u=1

0u

u=0

Figure 14: Dirichlet problem associated to a planar Brownian path. The latter
serves as an electrode where the potential vanishes.

It was already envisioned in the mid-eighties that the critical properties of
planar Brownian paths, whose conformal invariance was well-established, could
be the opening gate to rigorous studies of two-dimensional critical phenomena, as
advocated in particular by Michael Aizenman.216 A family of exponents ζn, gov-
erning the non-intersection properties of n Brownian paths, played a crucial role.
They are defined as follows: Let B1(t), B2(t), · · · be independent planar Brownian
motions started from distinct points at t = 0. Then the probability Pn(t) that
their traces, B1([0, t]), · · · , Bn([0, t]), are disjoint is scaling as t−ζn as t→ +∞ for
constant exponents ζn.

The precise values of these exponents were originally conjectured in 1988 from
conformal invariance and numerical studies.217 They correspond to a conformal
field theory with “central charge” c = 0. The planar intersection exponents ζn, for

Mechanics, in “Fields, Strings, and Critical Phenomena,” Les Houches Summer School 1988,
edited by É. Brézin and J. Zinn-Justin, North-Holland, Amsterdam (1990); Ph. Di Francesco, P.
Mathieu and D. Sénéchal, Conformal Field Theory, Springer-Verlag, New-York (1997).
216It is perhaps interesting to note that P.-G. de Gennes originally studied polymer theory with

the same hope of understanding from that perspective the broader class of critical phenomena. It
turned out to be historically the converse: the Wilson-Fisher renormalization group approach to
spin models with O(N) symmetry yielded in 1972 the polymer critical exponents as the special
case of the N → 0 limit.

Michael Aizenman, in a seminar in the Probability Laboratory of the University of Paris VI
in 1984, insisted on the importance of the ζ2 exponent governing in two dimensions the non-
intersection probability up to time t, P2(t) ≈ t−ζ2 , of two Brownian paths, and promised a good
bottle of Bordeaux wine for its resolution. A famous Château-Margaux 1982 was finally savored,
in company of M. Aizenman, by G. Lawler, O. Schramm, W. Werner and the author in 2001.
217 B. Duplantier and K.-H. Kwon, Phys. Rev. Lett. 61, pp. 2514-2517 (1988).
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n ≥ 2, are given by218

ζn =
4n2 − 1

24
. (127)

Interestingly enough, however, their analytic derivation resisted attempts by stan-
dard “Coulomb-gas” techniques, which proved successful for self-avoiding walks,
but not for simple walks. A derivation of these Brownian intersection exponents
ζn (and a heuristic demonstration of Mandelbrot’s related conjecture), inspired by
some probabilistic structure of conformal invariance obtained in the meantime by
Lawler and Werner,219 was given by the author in 1998 in the framework of theo-
retical physics, by means of the formalism of “2D quantum gravity” in conformal
field theory.220

The same results for the Brownian intersection exponents and Mandelbrot’s
conjecture were at last rigorously proved in the framework of probability the-
ory in 2000 by Greg Lawler, Oded Schramm and Wendelin Werner,221 by means
of a conformally invariant stochastic process invented by Schramm, the “SLE”
(“Stochastic Loewner Evolution”), which is itself based on Brownian motion.222

Despite the simplicity of formula (127), prior to SLE, its proof by conventional
probabilistic techniques had been out of reach.

W. Werner has been awarded the Fields Medal on August 22nd, 2006, at
the International Congress of Mathematicians in Madrid,“for his contributions to
the development of stochastic Loewner evolution, the geometry of two-dimensional
Brownian motion, and conformal field theory.”223

We are not going to describe this work in detail here,224 but we will look in-

218For n = 1 the non-trivial value ζ1 = 1/8 gives the exponent associated with the probability
P1(t) that a Brownian path B1([0, t]) does not disconnect its own tip at t, B1(t), from infinity.
219G. F. Lawler and W. Werner, Ann. Probab. 27, pp. 1601-1642 (1999).
220B. Duplantier, Phys. Rev. Lett. 81, pp. 5489-5492 (1998); ibid. 82, pp. 880-883 (1999),

arXiv:cond-mat/9812439.
221G. F. Lawler, O. Schramm, and W. Werner, Acta Math. 187, (I) pp. 237-273, (II) pp.

275-308 (2001), arXiv:math.PR/9911084, arXiv:math.PR/0003156; Ann. Inst. Henri Poincaré
PR 38, pp. 109-123 (2002), arXiv:math.PR/0005294; Acta Math. 189, pp. 179-201 (2002),
arXiv:math.PR/0005295; Math. Res. Lett. 8, pp. 401-411 (2001), math.PR/0010165.
222O. Schramm, Israel Jour. Math. 118, pp. 221-288 (2000). The SLEκ process, and its path,

are generated by the Loewner equation, describing the evolution of the Riemann’s conformal
map which maps the unit disc, slit by the random path, onto itself. This map erases the path
and maps its two sides onto the boundary of the unit disc, with the tip under the form of a
Brownian motion characterized by a diffusion coefficient κ. This is the case of the so-called radial
SLE. Another case is that of the chordal SLE, where the conformal map acts on the slit complex
half-plane. See the recent book by G. F. Lawler, Conformally Invariant Processes in the Plane,
Mathematical Surveys and Monographs, AMS, Vol. 114 (2005).
223One can find the official press release, and the laudatio given by Chuck New-

man at the International Congress of Mathematicians in Madrid, on August 22,
2006, at the web addresses: www.mathunion.org/General/Prizes/2006/WernerENG.pdf, and
http://icm2006.org/AbsDef/ts/Newman-WW.pdf/.
224For further details, see the article for the general public by Wendelin Werner, Les chemins

aléatoires, published in Pour La Science in August 2001.
For the SLE process, consult: the notes from W. Werner’s courses, Random Planar Curves
and Schramm-Loewner Evolutions, Lectures Notes from the 2002 Saint-Flour Summer School,

http://arXiv.org/abs/cond-mat/9812439
http://arXiv.org/abs/math/9911084
http://arXiv.org/abs/math/0003156
http://arXiv.org/abs/math/0005294
http://arXiv.org/abs/math/0005295
http://arXiv.org/abs/math/0010165
http://icm2006.org/AbsDef/ts/Newman-WW.pdf/
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stead at the generalization of the results on the geometry of Brownian motion, and
at the multifractal nature of its boundary. The latter actually reveals a structure
made of a continuum of fractal subsets that we will describe.

In continuity with the previous part, we will focus on the potential theory
associated with the neighborhood of a planar Brownian path. We will show how the
fine geometry of the Brownian boundary appears as an essential component of the
solution to the Dirichlet associated electrostatic problem.

4.2 Potential theory in the neighborhood of a Brownian curve

4.2.1 Brownian Dirichlet problem

Let us then consider a planar Brownian path B enclosed by a large circle, and
the associated Dirichlet problem where the potential u has the value u = 0 on
the boundary ∂B of the Brownian curve, and u = 1 on the circle (figure 14). The
Brownian path serves as an electrode creating the potential, and by electrostatic
induction, its boundary will charge itself. This a priori appears as a rather complex
problem, since the Brownian curve is completely random!

Far from the Brownian curve, the potential will depend on the global geome-
try of the system, and in particular on the presence of the outer circle that acts as

Springer L. N. Math. 1840, pp. 107-195, (2004), arXiv:math.PR/0303354; the book by G. F.
Lawler, Conformally Invariant Processes in the Plane, op. cit., as well as the article of W. Kager
and B. Nienhuis, A Guide to Stochastic Loewner Evolution and its Applications, J. Stat. Phys.
115, pp. 1149-1229 (2004), arXiv:math-phys/0312056.

For the link of SLE with quantum gravity, see: B. Duplantier, Conformal Fractal Geometry
and Boundary Quantum Gravity, in Fractal Geometry and Applications, A Jubilee of Benôıt
Mandelbrot, Proceedings of Symposia in Pure Mathematics, AMS, Vol. 72, Part 2, edited by M.
L. Lapidus and F. van Frankenhuijsen, pp. 365-482 (2004); arXiv:math-phys/0303034.
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an external electrode. Let us imagine for a moment that this circle is pushed to-
wards infinity. Seen from intermediate regions located very far from the Brownian
curve (and from the outer circle), the Brownian electrode would then appear to
be confined to a point. Its potential will then coincide with that of a point charge
equal to the total charge carried by the boundary of the Brownian curve, i.e., the
logarithmic Newtonian potential u2(r) (97).

On the other hand, close to the Brownian curve, the geometry of the boundary
is crucial. The potential vanishes exactly on the boundary ∂B, and the natural
question here is its analytic behavior in the neighborhood of ∂B, i.e., the way in
which it goes to 0. As the geometry of the boundary is particularly wild, the way
the potential vanishes is as well.

However, the random Brownian curve hides at its heart a fundamental struc-
tural regularity connected to its conformal invariance, and one can in fact describe
the potential close to the Brownian path in a way which is probabilistic, but uni-
versal.

4.2.2 Conformal invariance

A conformal map Φ of the plane is a bijection of the plane into itself that preserves
angles between curve intersections. To any analytic function Φ(z) in the complex
plane can be associated one such conformal map. Locally, i.e., infinitesimally close
to the image Φ(z) of any point z in complex coordinates, a conformal map is the
composition of a local dilation (by a factor of |Φ′(z)|), and of a rotation around
Φ(z) (by an angle arg Φ′(z)). This is why angles are locally conserved.

Let us come back for a moment to the Brownian representation of the gen-
eral Dirichlet problem in a domain D (figure 11). An auxiliary Brownian motion
issued from an arbitrary point P , stops upon touching the boundary ∂D, and
its Wiener integral represents the potential u(P ). Let us imagine the domain D
to be transformed by a conformal map Φ into a domain D′ = Φ(D), while the
Brownian trajectory B is transformed into a curve Φ(B), which is thus stopped
upon touching the boundary ∂D′ = Φ(∂D). Paul Lévy showed that Φ(B) is still
the trajectory of a Brownian motion, after a time reparameterization: this is the
property of conformal invariance of planar Brownian motion.225

Let us then consider the new potential u′(P ′) at a transformed point P ′ =
Φ(P ), i.e., the solution to the Dirichlet problem in the transformed domain D′.
Since all geometric objects that represent the potential were transformed by Φ,
and since the transformed auxiliary Brownian path is still Brownian, the result
is that its Wiener integral, u′(P ′), does not change. The potential u′(P ′) is then
equal to the potential u(P ), that is the solution to the Dirichlet problem in the
original domain D, and thus there is an invariance of potential under a conformal
map.

In the case we are focusing on here, that is of the Dirichlet problem of a

225Paul Lévy, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris (1965).
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potential u(P ) in the neighborhood of a planar Brownian curve (figure 14), the
Brownian representation of the potential introduces a second auxiliary Brownian
motion that diffuses from the point P , while avoiding the original Brownian curve
(figure 15). As we just saw, the two Brownian paths are statistically conformally
invariant and this probabilistic geometric problem is invariant under any conformal
map in the plane.

4.2.3 The role of angles

Conformal maps preserve angles in the plane, and this is why the latter will play
an essential role in the description of the potential close to the Brownian boundary.

Let us first consider the simple problem of a potential existing in an angular
sector of the plane. More precisely, let us consider an open angle θ centered at
a point w (figure 16). One easily shows, by using the singular conformal map of
the complex plane that opens the angle θ into a flat angle, Φ(z) = zπ/θ, that the
potential u(z) varies at any point z close to w like

u(z) ≈ rπ/θ, (128)

where r is the distance from w, r = |z − w|. For a flat angle, θ = π, and we again
find a linear behavior as a function of the distance, corresponding to a constant
electric field close to a straight line.

4.3 Multifractality

4.3.1 Distribution of potential

Let us come back finally to the initial question of the distribution of the potential
in the region close to a Brownian curve B (figures 14 and 15). Its boundary ∂B
is a fractal curve without a microscopic scale, and the irregularities of this curve
go down to the infinitesimally small. Among all these irregularities, it is natural,
from the point of view of potential theory and of conformal invariance, to look
for those that are locally like “angles”. Actually, such a distribution of angles and
the distribution of the associated potential are invariant under a conformal map.
They are then stable in the class of all Brownian curves which are obtained by
conformal maps of a single realization of a Brownian curve.

We can then classify the points w of the boundary ∂B according to the prop-
erties of variation of the potential u(z) when a point P with complex coordinate
z approaches w on the boundary. We say that a point w is of type α if

u (z → w) ≈ rα, (129)

in the limit where the distance r = |z − w| → 0. (Figure 17.)
By comparing the property (129) to the form (128) of the potential of an

angle, we see that an exponent α corresponds, from the point of view of the
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P

u=0

u=1

Figure 15: The Dirichlet potential u created at point P by a Brownian curve (cen-
ter), and vanishing on the boundary of the latter, is represented by a second auxil-
iary Brownian motion, that diffuses from P towards the exterior, while completely
avoiding the first motion.

θ
w

r

Figure 16: Angular sector with apex w and angle θ.

potential, to an equivalent electrostatic angle θ such that

α =
π

θ
. (130)

The behavior is as if an angle θ = π/α existed locally on the boundary.226

The angular domain being such that 0 ≤ θ ≤ 2π, the domain of the exponents α
is 1/2 ≤ α < ∞, which is rigorously supported by a theorem of A. Beurling. The
domain where α is close to 1/2 corresponds to θ close to 2π, which is a completely
open angular sector, and thus to the presence of an extremely thin needle on the
boundary. The domain where α is very large corresponds to θ close to 0, thus to
a very narrow angular sector, and one then speaks of a fjord.

226The presence of a local singularity exponent α does not necessarily mean that θ = π/α is a
geometric angle, because the surroundings of a point w on a random fractal object will in general
screen the potential, and reduce the equivalent electrostatic angle with respect to a possible
geometric angle.
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w
u~ r α

Figure 17: Singular behavior in rα of the potential close to a point w of type α.

Now, let ∂Bα be the set of points of type α on the boundary. To measure the
probability of finding such points of type α, we introduce the Hausdorff dimension
of the set ∂Bα,

f (α) = dim (∂Bα) . (131)

This defines the multifractal spectrum f (α) of the potential distribution. Such
a spectrum is conformally invariant in two dimensions, because in any conformal
map the local exponents α = π/θ of the potential are themselves invariant.227

From a historical point of view, the concept of multifractality was introduced
by B. Mandelbrot in 1974,228 in the context of the phenomenon of turbulence in
hydrodynamics, then by H. Hentschel, I. Procaccia, U. Frisch and G. Parisi.229 It

227The local definitions of the exponent α and of f(α) as given in (129) and (131) are only
heuristic, since the way of taking limits was not explained. For any given point w on the boundary
of a random fractal object, in general no stable local exponents α exist, such that they are
obtained by a “simple limit” to the point. One then proceeds in another way. Define the harmonic
measure ω(w, r) as the probability that the Brownian motion leaving from any point on the outer
circle (therefore from infinity), touches the frontier ∂B for the first time inside a ball centered
at w and of radius r. (This harmonic measure is similar to the Brownian representation of the
potential u(P ), which is just the harmonic measure of the outer boundary of D seen from a point
P ). Next, we define the set ∂Bα,η of points on the boundary ∂B, w = wα,η, for which there exists

a decreasing series of radii rj , j ∈ N tending towards 0, such that rα+η
j ≤ ω(w, rj) ≤ rα−η

j . The

multifractal spectrum f(α) is then globally defined as the limit η → 0 of the Hausdorff dimension
of the set ∂Bα,η , i.e.,

f(α) = lim
η→0

dim
n

w : ∃ {rj → 0, j ∈ N} : rα+η
j ≤ ω(w, rj) ≤ rα−η

j

o

.

228B. B. Mandelbrot, J. Fluid. Mech. 62, pp. 331-358 (1974).
229H. G. E. Hentschel and I. Procaccia, Physica D 8, pp. 435-444 (1983); U. Frisch and G.

Parisi, Proceedings of the International School of Physics “Enrico Fermi,” course LXXXVIII,
edited by M. Ghil (North-Holland, New York, 1985) p. 84.
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was then further developed at the University of Chicago by T .C. Halsey et al.230

It corresponds to the existence of a continuous set of fractal dimensions f(α), that
are functions of a continuum of exponents α.

4.3.2 The Brownian multifractal spectrum

One of the first properties is that the global Hausdorff dimension of a multifractal
object is always the maximum of its multifractal spectrum. Thus, for the boundary
of a Brownian curve,

DH = sup
α
f(α) =

4

3
, (132)

because of Mandelbrot’s conjecture, which we mentioned above.
The complete spectrum f(α) for the Brownian curve was calculated in 1998

by a method called “quantum gravity”.231 One uses a representation of the same
problem on a random surface where the metric fluctuates, instead of the normal
Euclidean plane. The geometric and probabilistic laws are largely simplified by the
“quantum” fluctuations of the metric, and the singular behavior of the Brownian
Dirichlet problem is directly accessible!

Next, one can obtain the multifractal spectrum in the plane R
2, thanks to a

fundamental relationship between critical exponents in the plane and on a random
surface, a formula known by the initials “KPZ,” discovered originally in 1988 by
three Russian physicists, V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolod-
chikov.232 We do not have space here to further develop this method.233

We find the formula

f(α) = α+ b− bα2

2α− 1
, b =

25

12
. (133)

This curve is drawn in figure 18. The definition domain is the half-line
(1/2,+∞). One verifies that the maximum of f is at 4/3, in agreement with Man-
delbrot’s conjecture (132) for the fractal dimension of the boundary. It corresponds
to a value of α = 3, or to a typical electrostatic angle of π/3.

230T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. I. Shraiman, Phys. Rev. A
33, pp. 1141-1151 (1986); ibid. 34, 1601 (1986).
231B. Duplantier, Phys. Rev. Lett. 82, pp. 880-883 (1999), arXiv:cond-mat/9812439.
232V. G. Knizhnik, A. M. Polyakov and A. B. Zamolodchikov, Mod. Phys. Lett. A 3, pp. 819-826

(1988). See also F. David, Mod. Phys. Lett. A 3, pp. 1651-1656 (1988); J. Distler and H. Kawai,
Nucl. Phys. B321, pp. 509-527 (1988).
233B. Duplantier, Conformal Fractal Geometry and Boundary Quantum Gravity, in Frac-

tal Geometry and Applications, A Jubilee of Benôıt Mandelbrot, Proceedings of Symposia in
Pure Mathematics, AMS, Vol. 72, Part 2, edited by M. L. Lapidus and F. van Frankenhui-
jsen, pp. 365-482 (2004); arXiv:math-phys/0303034; see also V. Fateev, A. Zamolodchikov, Al.
Zamolodchikov, Boundary Liouville Field Theory I. Boundary State and Boundary Two-point
Function, arXiv:hep-th/0001012; I. K. Kostov, B. Ponsot and D. Serban, Nucl. Phys. B683,
pp. 309-362 (2004), arXiv:hep-th/0307189; I. K. Kostov, Nucl. Phys. B689 pp. 3-36 (2004),
arXiv:hep-th/0312301; Proceedings of the Conference “Lie theory and its applications in physics
- 5,” Varna, Bulgaria (2003), arXiv:hep-th/0402098, and references therein.

http://arXiv.org/abs/cond-mat/9812439
http://arXiv.org/abs/math-phys/0303034
http://arXiv.org/abs/hep-th/0001012
http://arXiv.org/abs/hep-th/0307189
http://arXiv.org/abs/hep-th/0312301
http://arXiv.org/abs/hep-th/0402098
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Figure 18: Multifractal function f(α) of the Brownian frontier.

Moreover, one can calculate by the same method the multifractal spectrum
of the potential close to a self-avoiding random walk,234 and one finds a spectrum
which is identical to that of a Brownian curve, fully confirming the identity of the
Brownian frontier to a self-avoiding walk in the scaling limit.

One also predicts by this heuristic method that the spectra of a Brownian
curve and of a critical percolating cluster are identical235. It then follows that
both the Brownian frontier and the external perimeter of a critical percolation
cluster coincide with the scaling limit of a self-avoiding walk, which further extends
Mandelbrot’s conjecture.

Let us mention that the works of Lawler, Schramm, and Werner contain also
in principle the necessary information to calculate the spectrum of a Brownian
potential. In a rigorous approach using SLE, these authors identify the boundary
with that of the SLE6 process, conjectured also to be an SLE8/3 and the scaling
limit of a self-avoiding polymer.

This curve f(α), also called the harmonic measure spectrum, then solves the
problem of the potential distribution close to a Brownian path in a probabilistic
sense, since it gives the fractal dimension of the set of points where the potential
varies in a specific way, namely as rα.

Other values of b in (133) (b = 25−c
12 ≥ 2, where c ≤ 1 is the “central

charge” of the associated conformal theory) generate the multifractal spectra of
the potential or harmonic measure of conformally invariant random curves in the
plane.236 These are the SLEs describing the boundaries of critical clusters in two-

234B. Duplantier, Phys. Rev. Lett. 82, pp. 880-883 (1999), arXiv:cond-mat/9812439.
235B. Duplantier, Phys. Rev. Lett. 82, pp. 3940-3943 (1999), arXiv:cond-mat/9901008; M.

Aizenman, B. Duplantier and A. Aharony, Phys. Rev. Lett. 83, pp. 1359-1362 (1999),
arXiv:cond-mat/9901018.
236B. Duplantier, Phys. Rev. Lett. 84, pp. 1363-1367 (2000), arXiv:cond-mat/9908314; J. Stat.

Phys. 110, pp. 691-738 (2003), arXiv:cond-mat/0207743.

http://arXiv.org/abs/cond-mat/9812439
http://arXiv.org/abs/cond-mat/9901008
http://arXiv.org/abs/cond-mat/9901018
http://arXiv.org/abs/cond-mat/9908314
http://arXiv.org/abs/cond-mat/0207743


Vol. 1, 2005 Brownian Motion 303

dimensional statistical models, such as Ising or Potts models. For an SLEκ, with
0 ≤ κ <∞, one simply sets in (133)

c =
1

4
(6 − κ)

(

6 − 16

κ

)

, b = 1 +
1

8

(

κ+
16

κ

)

. (134)

4.4 Generalized multifractality

4.4.1 Logarithmic spirals

Until now we have considered variations of the potential only. We can also study
the form of the equipotential lines. As the potential follows the properties of con-
formal invariance of the Brownian curve, it is now necessary first to determine the
geometric forms that are conserved by such invariance.

These are the logarithmic spirals that play a particular role in potential the-
ory in two dimensions. One such spiral centered at the origin is defined by the
logarithmic variation of the polar angle ϕ as a function of the distance r from the
origin:

ϕ = λ ln r ,

where λ is a real positive or negative parameter.
When we apply a conformal map Φ, around the center it is equivalent to

a dilation r → |Φ′(0)| r, composed with a rotation. The dilation transforms the
angle ϕ = λ ln r into λ ln r + λ|Φ′(0)|, which thus amounts to a local rotation of
the spiral, whose geometrical shape is thereby locally conserved.

In the potential theory considered here, the Brownian frontier is equipoten-
tial by construction. There exists a multitude of points where such equipotential
boundary will locally roll onto itself in a double logarithmic spiral, as shown in
figure 19.

4.4.2 Mixed multifractal spectrum

We come then to Ilia Binder’s idea from his thesis237 in 1997 defining a generalized
multifractality. One looks for a set ∂Bα,λ of points w of the boundary ∂B, where
the potential varies like rα, and the boundary spirals at a given rate λ. These
conditions can be heuristically written for a point z close to w:

u (z → w ∈ ∂Bα,λ) ≈ rα,

ϕ (z → w ∈ ∂Bα,λ) ≈ λ ln r , (135)

in the limit r = |z − w| → 0. The Hausdorff dimension f (α, λ) = dim (∂Bα,λ)
then defines the mixed multifractal spectrum, which is conformal invariant because
under a conformal map both α and λ are locally invariant.

237I. A. Binder, Harmonic Measure and Rotation of Simply Connected Planar Domains, PhD
Thesis, Caltech (1997).
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Figure 19: Double logarithmic spiral.

With Ilia Binder, we computed such a mixed spectrum for a Brownian motion,
by the quantum gravity method.238 It satisfies an exact scaling law

f(α, λ) = (1 + λ2)f

(

α

1 + λ2

)

− bλ2 , (136)

which gives from (133)

f(α, λ) = α+ b − bα2

2α− 1 − λ2
, b =

25

12
. (137)

Its domain of definition is α ≥ 1
2 (1 + λ2), according to a theorem of Beurling.

Different spectra are represented in figure 20.
Since this function does not depend on the sign of λ, spiral rotations in

positive and negative directions are equiprobable, as expected. One recovers the
harmonic spectrum f(α) as the maximum

f(α) = f(α, λ = 0) = supαf(α, λ).

By symmetry, the most probable situation for a point on the boundary is the
absence of spiral rotation, i.e., λ = 0.

One can then also consider only the fractal dimension DH(λ) of the points
on the boundary, which are the tips of logarithmic spirals of type λ. For this, we
take the maximum of the mixed spectrum with respect to the other variable, α:

DH(λ) = supαf(α, λ) =
4

3
− 3

4
λ2.

238B. Duplantier and I. A. Binder, Phys. Rev. Lett. 89, 264101 (2002); arXiv:cond-mat/0208045.

http://arXiv.org/abs/cond-mat/0208045
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Figure 20: Universal multifractal spectrum f(α, λ) of a Brownian path for different
values of spiral rate λ. The maximum f(3, 0) = 4/3 is the Hausdorff dimension of
the Brownian frontier.
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Figure 21: Fractal dimension DH(λ) of spirals of type λ along the Brownian bound-
ary.

This fractal dimension then has the form of a parabola as a function of λ,
whose maximum is still the global Hausdorff dimension of the boundary,DH = 4/3
(figure 21).

Let us add a few final remarks.

The quantum gravity calculations can be generalized to the whole class of
conformally invariant curves on the plane, and to Schramm’s SLE process. The
spectra are given by the same formulae (133) and (137) for different values of the
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parameter b. For the SLEκ process, one substitutes:

b = 1 +
1

8

(

κ+
16

κ

)

=
1

2κ

(

2 +
κ

2

)2

, κ ∈ R
+.

Lastly, these multifractal results, originally found heuristically in theoretical
physics, can in principle be rigorously proved in the general probabilistic framework
of SLEκ.239 The application of this general result to the case of the Brownian and
percolation cluster frontiers is then obtained by identifying those boundaries to
that of the SLE6 process (thanks to works by Lawler, Schramm, and Werner and
also by S. Smirnov240, and V. Beffara241), while, from a rigorous point of view,
the similar identification of the scaling limit of a self-avoiding walk to a SLE8/3

process, although certainly true, remains to be proven!242

Here we pause in 2005 at the end of the path started in 1827 by Robert
Brown with his observations at the microscope, and by Einstein in 1905 with his
theory of Brownian fluctuations. The new paradigm of stochastic paths could be
today the SLE, or Stochastic Loewner Evolution, generated itself by Brownian
motion on the boundary of a planar domain, and its rather extraordinary confor-
mal invariance properties in the Euclidean plane. This process brought us to the
shores of two-dimensional quantum gravity, where the SLE stochasticity seems to
call for fluctuations of the metric, hence “quantum gravity.” In some sense, we
are brought back to the work of Einstein, whose 1916 general relativity theory
explained how gravitation is equivalent to a change of metric. Now it is Statistical
Mechanics that stands in the breach, let us wish for fruitful developments!
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