Quantum Dissipation: A Primer

P. Hänggi

Institut für Physik
Universität Augsburg
QUANTUM DISSIPATION

\[L = \frac{1}{2} m_0 e^{\gamma t} x^2 - \frac{1}{2} m_0 e^{-\gamma t} \dot{x}^2 \]

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = \frac{d}{dt} m_0 e^{\gamma t} \dot{x} = m_0 e^{\gamma t} \ddot{x} + m_0 e^{\gamma t} \dot{x}
\]

\[- \frac{\partial L}{\partial x} = m_0 e^{\gamma t} \omega_0^2 x \]

\[
\Rightarrow e^{-\gamma t} [m_0 \ddot{x} + m_0 \gamma \dot{x} + m_0 \omega_0^2 x] = 0
\]

QM: \[L \rightarrow H = \frac{p^2}{2m_0} e^{-\gamma t} + \frac{1}{2} m_0 e^{\gamma t} \omega_0^2 x^2 \]
QUANTUM DISSIPATION

\[L = \frac{1}{2} m_0 e^{\gamma t} x^2 - \frac{1}{2} m_0 e^{\gamma t} \omega_0^2 x^2 \]

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = \frac{d}{dt} m_0 e^{\gamma t} \dot{x} = m_0 e^{\gamma t} \ddot{x} + m_0 e^{\gamma t} \dot{\gamma} \]

\[- \frac{\partial L}{\partial x} = m_0 e^{\gamma t} \omega_0^2 x \]

\[\Rightarrow e^{\gamma t} [m_0 \ddot{x} + m_0 \dot{\gamma} \dot{x} + m_0 \omega_0^2 x] = 0 \]

QM: \[L \Rightarrow H = \frac{p^2}{2m_0} e^{-\gamma t} + \frac{1}{2} m_0 e^{\gamma t} \omega_0^2 x^2 \]

\[[q_1, p] = +i \hbar e^{-\gamma t} \]
NOISE-INDUCED ESCAPE

rate = A(y) \frac{\omega_0}{2\pi} \exp(-\Delta V/D)

RMP 62: 251 (90)
\[\Gamma = \pi \cdot \frac{\omega_0}{2n} \exp\left(-\frac{E_b}{kT}\right) \]

\[\text{TST} \]

thermal equilibrium

P. H., P. TALKNER, M. BORKOVEC
REV. MOD. PHYS. 62: 251 (1990)
Reaction-rate theory: fifty years after Kramers

Peter Hänggi, Peter Talkner, Michal Borkovec

RMP 62: 251 (90)
THE PROBLEM

potential

thermal activation

coordinate q

$M\ddot{q} + \frac{dU}{dx} + \eta \dot{q} = 0$

ENVIRONMENT
FACTS

- **H on (110) tungsten [Gomer (82)]**

- **H₂ & HD sorbed in zeolites [Bouchard et al. (82)]**

- **CO-migration in hemoglobin [Frauenfelder]**

- **Tunneling in a Josephson junction subjected to memory friction [Esteve et al. (79)]**

Graphs:

1. **Graph (a):**
 - Log-log plot of reaction rate constants ($Т^{-1}$) as a function of temperature ($1000/Т$).
 - The graph shows two distinct regions: Arrhenius and tunneling.

2. **Graph (b):**
 - Log-log plot of diffusion coefficient (D) as a function of temperature ($1000/Т$).
 - Two datasets are shown: $D(H₂)$ and $D(HD)$, with corresponding fit lines.

3. **Graph (c):**
 - Log-log plot of tunneling times ($τ$) as a function of temperature (t_0).
 - The graph shows a clear exponential decay as temperature decreases, reaching $T = 18 mK$. The term "Theory!" is added as a note.
Results

<table>
<thead>
<tr>
<th>Quantum Tunneling</th>
<th>Crossover</th>
<th>Quantum Corrections</th>
<th>Thermal Activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = A \exp(-B)$</td>
<td>2-0-modes</td>
<td>$k = T^2 \sigma$</td>
<td>$k = A(\eta) e^{-E_0/\delta T}$</td>
</tr>
<tr>
<td>$B = S_B(T, \gamma)$</td>
<td>$\frac{S_B}{\hbar} = \frac{E_B}{kT_0}$</td>
<td>quantum enhancement</td>
<td>$\gamma = \eta / \mu$</td>
</tr>
<tr>
<td>$B(T=0) = B(\eta=0)$</td>
<td>smooth!</td>
<td></td>
<td>Kramers</td>
</tr>
<tr>
<td>$A(\gamma) = A(\gamma)$</td>
<td>Erfc-behavior</td>
<td></td>
<td>$\left{ \frac{\nu^2}{4} + \omega_0^2 \right}^\frac{1}{2}$</td>
</tr>
<tr>
<td>$\propto A_0(1+2.30y)$, $y \to 0$</td>
<td>$E_0 \to E_0 - \frac{c}{T}$</td>
<td></td>
<td>$\nu = \frac{\omega_0}{2\pi}$</td>
</tr>
</tbody>
</table>
Quantum transmission coefficient

\[\kappa = \frac{k}{k_{cl,TST}} \]

\[k_{cl,TST} = \frac{1}{2\pi \hbar} \frac{k_b T}{Z} e^{-\beta E_b} \]
The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

CONTENTS

List of Symbols ... 252
I. Introduction .. 253
II. Roadway To Rate Calculations 257
 A. Separation of time scales 257
 B. Equation of motion for the reaction coordinate 257
 C. Theoretical concepts for rate calculations 258
 1. The flux-over-population method 258
 2. Method of reactive flux 259
 3. Method of lowest eigenvalue, mean first-passage time, and the like 261
 D. Energy-diffusion-limited rate 273
 E. Spatial-diffusion-limited rate: the Smoluchowski limit 274
 F. Spatial-diffusion-limited rate in many dimensions and fields 275
 1. The model 275
 2. Stationary current-carrying probability density 276
 3. The rate of nucleation 277
 G. Regime of validity for Kramers' rate theory 278
III. Classical Transition-State Theory 263
 A. Simple transition-state theory 262
 B. Canonical multidimensional transition-state theory 263
 1. Multidimensional transition-state rate for a collection of N vibrational bath modes 264
 2. Atom-transfer reaction 264
 3. Dissociation reaction 264
 4. Recombination reaction 265
 C. Model case: particle coupled bilinearly to a bath of harmonic oscillators 266
 1. The model 266
 2. Normal-mode analysis 266
 3. The rate of escape 267
IV. Kramers Rate Theory 268
 A. The model 268
 B. Stationary flux and rate of escape 270
 C. Energy of injected particles 272
 D. Dissociation reaction 273
 E. Recombination reaction 274
 F. Spatial-diffusion-limited rate in many dimensions and fields 275
 1. The model 275
 2. Stationary current-carrying probability density 276
 3. The rate of nucleation 277
 G. Regime of validity for Kramers' rate theory 278
V. Unimolecular Rate Theory 279
 A. Strong collision limit 281
 B. Weak collision limit 282
 C. Between strong and weak collisions 284
 D. Beyond simple unimolecular rate theory 285
VI. Turnover between Weak and Strong Friction 286
 A. Interpolation formulas 286
 B. Turnover theory: a normal-mode approach 287
 C. Peculiarities of Kramers' theory with memory friction 289
VII. Mean-First-Passage-Time Approach 290
 A. The mean first-passage time and the rate 290
 B. The general Markovian case 290
 C. Mean first-passage time for a one-dimensional Smoluchowski equation 291
 1. The transition rate in a double-well potential 291
 2. Transition rates and effective diffusion in periodic potentials 292
 3. Transition rates in random potentials 293
 4. Diffusion in spherically symmetric potentials 294
 D. Mean first-passage times for Fokker-Planck processes in many dimensions 295
 E. Sundry topics from contemporary mean-first-passage-time theory 297
 1. Escape over a quartic (−x^4) barrier 297
2. Escape over a cusp-shaped barrier
3. Mean first-passage time for shot noise
4. First-passage-time problems for non-Markovian processes

VIII. Transition Rates in Nonequilibrium Systems
A. Two examples of one-dimensional nonequilibrium rate problems
 1. Bistable tunnel diode
 2. Nonequilibrium chemical reaction
B. Brownian motion in biased periodic potentials
C. Escape driven by colored noise
D. Nucleation of driven sine-Gordon solitons
 1. Nucleation of a single string
 2. Nucleation of interacting pairs

IX. Quantum Rate Theory
A. Historic background and perspectives; traditional quantum approaches
B. The functional-integral approach
C. The crossover temperature
D. The dissipative tunneling rate
 1. Flux-flux autocorrelation function expression for the quantum rate
 2. Unified approach to the quantum-Kramers rate
 3. Results for the quantum-Kramers rate
 a. Dissipative tunneling above crossover
 b. Dissipative tunneling near crossover
 c. Dissipative tunneling below crossover
 4. Regime of validity of the quantum-Kramers rate
E. Dissipative tunneling at weak dissipation
 1. Quantum escape at very weak friction
 2. Quantum turnover
F. Sundry topics on dissipative tunneling
 1. Incoherent tunneling in weakly biased metastable wells
 2. Coherent dissipative tunneling
 3. Tunneling with fermionic dissipation

X. Numerical Methods in Rate Theory
XI. Experiments
A. Classical activation regime
B. Low-temperature quantum effects
XII. Conclusions and Outlook
Acknowledgments

LIST OF SYMBOLS

A (T) temperature-dependent quantum rate prefactor
C (t) correlation function
D diffusion coefficient
E energy function
E_b activation energy (= barrier energy with the energy at the metastable state set equal to zero)
E_A Hessian matrix of the energy function at the stable state
E_S Hessian matrix of the energy function around the saddle-point configuration
I action variable of the reaction coordinate
J Jacobian
K (x, x') transition probability kernel
M mass of reactive particle
P(E) period of oscillation in the classically allowed region
P(E, E') classical conditional probability of finding the energy E, given initially the energy E'
Q quantum correction to the classical prefactor
S_b dissipative bounce action
T temperature
T_c crossover temperature
T(E) period in the classically forbidden regime
U(x) metastable potential function for the reaction coordinate
V volume of a reacting system
Z partition function, inverse normalization
Z_0, Z_A partition function of the locally stable state (A)
Z^+ partition function of the transition rate
H Hamiltonian function of the metastable system
F complex-valued free energy of a metastable state
L Fokker-Planck operator
L^* backward operator of a Fokker-Planck process
j total probability flux of the reaction coordinate
h Planck's constant
h (2π)^{-1}
K_B Boltzmann constant
k reaction rate
k^+ forward rate
k^- backward rate
k_{TST} transition-state rate
k(E) microcanonical transition-state rate, semiclassical cumulative reaction probability
k_S mass of ith degree of freedom
p(x, t) probability density
p_0(x) stationary nonequilibrium probability density for the reaction coordinate
p_i configurational degree of freedom
q_i quantum reflection coefficient
r(E) density of sources and sinks
s(x) quantum transmission coefficient
t(E) mean first-passage time to leave the domain \Omega, with the starting point at x
t_{MFP} constant part of the mean first-passage time to leave a metastable domain of attraction
v = \dot{x} velocity of the reaction coordinate
x location of well minimum or potential minimum of state A, respectively
x_b barrier location
x_T location of the transition state
\beta inversion temperature (k_B T)^{-1}
microscopic approach

\[
H_{\text{total}} = \frac{1}{2} M \dot{q}^2 + U(q)
\]

system

\[
+ \frac{1}{2} \sum_\alpha m_\alpha \dot{q}_\alpha^2 + \sum_\alpha m_\alpha \omega_\alpha^2 q_\alpha^2
\]

(harmonic) bath

\[
+ q_f \sum_\alpha c_\alpha q_\alpha
\]

linear coupling

\[
+ q^2 \sum_\alpha \frac{c_\alpha^2}{2 m_\alpha \omega_\alpha^2}
\]

compensation of frequency shift

- path integral approach to density matrix at temperature \(T \)
- trace out environment
dissipation

\[H^T = H_{\text{system}} + H_{\text{bath}} + H_{\text{Int}} \]

\[\ddot{q} = -\frac{1}{M} \frac{\delta U}{\delta q} - \int_{0}^{t} \tilde{g}(t-s) \dot{q}(s) \, ds \]

\[S_E = S_{\text{rev. motion}} + S_{\text{(nonlocal)} \text{ dissipation}} \]
QUANTUM NOISE
QUANTUM LH-EQ.

\[|0\rangle_{S+B} \neq |0\rangle_S |0\rangle_B \]

DECOHERENCE AT \(T = 0 \)

\[H_{S+B} = H_S + H_{S-B} + H_B \]

\[= \frac{\mathbf{p}^2}{2m} + V(\mathbf{x}) + \sum \left[\frac{\mathbf{p}^2}{2m_x} + \frac{m_x c^2}{2} \left(\frac{\mathbf{q}_x - \mathbf{c}_x}{m_x c} \right)^2 \right] \]

\[S_S \neq 2^{-1} \exp \left(-\frac{H_S}{\hbar T} \right) ! \]

\[S_{Total} = S_{S+B} = 2^{-1} \exp \left(-\frac{H_{S+B}}{\hbar T} \right) \]
\[i \dot{s} = [0, H_t] \]

\[m \ddot{x} + m \int_0^t \int_0^s y(t-s) \dot{x}(s) + \frac{\partial V(x)}{\partial x} \]

\[= \eta(t) - m y(t-0) \times 10 \]

INITIAL SLIP

\[\gamma(t-s) = \frac{1}{m} \sum \frac{c_i^2}{m^2 a_i^2} \cos(a_i(t-s)) \]

\[= \gamma(s-t) \]

\[\eta(t) = \sum c_i [q_i(0) \cos(a_i t) + \frac{m_i}{m^2 a_i^2} \sin(a_i t)] \]
\[[\eta(+) , \eta(s)] = -i \hbar \sum \frac{e^2}{m} \sin (kx(t-s)) \neq 0 \]
\[\sigma_B = 2^{-1} \exp \left\{ -\beta \left[\sum \left(\frac{1 \sigma^2}{2m} + \frac{m \beta^2}{2} \right) \right] \right\} \]
\[< \eta(+) > \sigma_B = 0 \]

\[\frac{1}{2} < \eta(t) \eta(s) + \eta(s) \eta(+) > = C(t-s) \]
\[= C(\tau) = \frac{1}{2} \sum \frac{e^2}{m} \coth \left(\frac{\pi \hbar k}{2kT} \right) \cos (\omega \tau) \]

\[\hbar \tau \gg \frac{\hbar k}{2} \]
\[\rightarrow kT \gamma (\tau) \]
\[\hat{\delta}(z) = \int_0^L \exp(-zt) j(t) \, dt \]

\[\delta(\omega) = \delta(z = -i\omega) \]

Ohmic Dissipation

\[J(\omega) = \gamma \omega \exp\left(-\omega / \omega_c\right) \]

Kondo-Parameter

\[\gamma = \frac{2\pi \hbar}{a^2} \times \omega \exp\left(-\omega / \omega_c\right) \]

\[a = 2q a : \text{tunneling length} \]
1. QLE OPERATES IN FULL HILBERT SPACE OF $e \otimes b$

\[\delta(t) = \sum_{\omega} \epsilon^{i \omega t} f(t) \text{dt} = \frac{i}{2m} \sum \frac{\epsilon_{\omega}}{\omega} \left[\frac{1}{\omega^2 - \omega_{\alpha}^2} + \frac{1}{\omega^2 - \omega_{\beta}^2} \right] \]

\[\frac{1}{\omega + i \eta} = P\left(\frac{1}{\omega} \right) - i \eta \delta(x) \quad \text{Im} \eta > 0 \]

\[\text{Re} \delta(t = \omega + i \eta) = \frac{\pi}{2m} \sum \frac{\epsilon_{\omega}}{\omega^2} \left[d(\omega - \omega_{\alpha}) + d(\omega + \omega_{\alpha}) \right] \]

\[C(t) = \frac{m}{\pi} \int_0^\infty dw \, \text{Re} \delta(w + i \eta) \cos(\omega t) \cdot \coth \left(\frac{\hbar \omega}{2kT} \right) \]

2. with $\delta(t) = \hbar f(t) - m g(t) \times (0)$

\[\delta_B = 2^{-1} \exp \left\{ - \beta \left[\sum \left(\frac{\epsilon_{\omega}^2}{2m_{\epsilon}} + \frac{\epsilon_{\omega}^2}{2} \left(\frac{\epsilon_{\omega} - \epsilon_{\omega_{\alpha}}}{m_{\epsilon} \omega_{\alpha}} \right)^2 \right] \right\} \]

\[\Rightarrow \langle \delta(t) \rangle_B = 0 \]

\[\frac{1}{2} \langle \delta(t) \delta(0) + \delta(0) \delta(t) \rangle_B = C(t) \]
4. DEPHASING AT $T = 0$!

$$\langle x(0) \tilde{y}(t) \rangle_{\beta} \neq 0$$

$$\langle \mathbf{H}_{\text{INT}} \rangle_{\beta} \neq 0$$

5.

$\tilde{y}(t) \rightarrow \text{C-NOISE } \tilde{y}(t)$

WITH CORRELATION $C(\tau)$

IS INCONSISTENT
\[\hat{H}(t) = \hat{H}_0 - F(t)\hat{A} \quad \text{and} \quad g_\beta = Z^{-1} \exp(-\beta \hat{H}_0) \]

\[
<\hat{B}(t)> - <\hat{B}(t)>_\beta = <\delta\hat{B}(t)> = \int_{t_0}^{t} \chi(t-s) F(s) ds
\]

Kubo:

\[
\chi_{BA}(\tau) = \Theta(\tau) \frac{i}{\hbar} \left< [\hat{B}(\tau), \hat{A}(0)] \right> = -\Theta(\tau) \int_0^\infty \left< \hat{A}(\tau + \lambda) \hat{B}(\tau) \right> d\lambda
\]

Classical limit: \(-\Theta(\tau) \beta \left< \hat{B}(t) \hat{A}(0) \right>\)
\[\hat{H}(t) = \hat{H}_0 - F(t) \hat{A} \; ; \; g_\beta = Z^{-1} \exp(-\beta \hat{H}_0) \]

\[\langle \hat{B}(t) \rangle - \langle \hat{B}(t) \rangle_0 = \langle \delta \hat{B}(t) \rangle = \int_0^t \chi(t-s) F(s) ds \]

Kubo: \[\chi_{BA}^{(\tau)}(\tau) = \Theta(\tau) \frac{i}{\hbar} \langle [\hat{B}(\tau), \hat{A}(0)] \rangle_\beta \]

\[= -\Theta(\tau) \oint \langle \hat{A}(-i\lambda) \hat{B}(\tau) \rangle_\beta d\lambda \]

Classical limit: \[\rightarrow -\Theta(\tau) \beta \delta \langle \hat{B}(\tau) A(0) \rangle_\beta \]

\[\hat{B} = \hat{A} = \hat{q} \; ; \; F(t) = A \cos \Omega t \]

\[\langle \delta q(t) \rangle = P_1 e^{-i\Omega t} + P_{-1} e^{i\Omega t} \]

\[P_{1,-1} = \frac{A}{2} e^{\pm i\Omega t} \chi(\pm \Omega) \]
QUANTUM - FDT

\[S_{BA}(\tau) = \frac{1}{2} < (\hat{B}(t) - <\hat{B}>_\rho) (\hat{A}(0) - <\hat{A}>_\rho) + (\hat{A}(0) - <\hat{A}>_\rho) (\hat{B}(t) - <\hat{B}>_\rho)_\rho \]

\[\chi_{BA}(\tau) = \chi'_{BA}(\tau) + i \chi''_{BA}(\tau) \]
\[\frac{1}{2} [\chi_{BA}(+) + \chi_{AB}(-t)] \]
\[-\frac{i}{2} [\chi_{BA}(+) - \chi_{AB}(-t)] \]

\[\chi_{BA}(\omega) = \sum_{-\infty}^{\infty} \chi_{BA}(t) e^{i\omega t} dt \]

\[\chi''_{BA}(\omega) = \frac{1}{\hbar} \tanh(\hbar \omega \beta/2) S_{BA}(\omega) \]
\[S_{BA}(\omega) = \hbar \coth(\hbar \omega \beta/2) \chi''_{BA}(\omega) \]
\[\hbar \omega \ll 1 \Rightarrow 2 \chi''_{BA}(\omega)/(\beta \hbar) \]

NOTE: \[\chi''_{BA}(\omega) = \frac{1}{2} [\chi^*_{AB}(\omega) - \chi_{BA}(\omega)] \]
\[\neq \text{Im} \chi_{BA}(\omega) \text{, except } \lambda = \beta \]

\[\hat{A} = \hat{B} = \hat{a} : \ S_{99}(\omega) = \hbar \coth(\hbar \omega \beta/2) \text{Im} \chi_{99}(\omega) \]
EQ. CURRENT NOISE

\[h = b \]

\[I = \frac{dh}{dt} \]

\[\langle \delta I(t) \rangle = \frac{1}{c} \int_{-\infty}^{\infty} Z(t-s) \delta(s) ds \]

\[Z(t-s) = \frac{dX(t)}{dt} \]

\[X''_{AA}(\omega) = \frac{1}{\omega} \text{Im} \left(\frac{2\omega}{\epsilon} \right) = -\frac{1}{\omega} \text{Re} \ Z(\omega) \]

\[S_{II}(\omega) = -\omega^2 S_{BB}(\omega) \]

\[S_{II}(\omega) = (k\omega) \text{coth} \left(\frac{k\omega}{2kT} \right) \text{Re} \ Z(\omega) \]

\[kT \gg k\omega : S_{II}(\omega) \rightarrow 2kT \text{Re} \ Z(\omega) \rightarrow 2kT/R \]

JOHNSON-NYQUIST (1928)

\[kT \ll k\omega \rightarrow k\omega \text{Re} \ Z(\omega) \]

quantum-zero point fluct.

\[S_{II}(\omega = 0) = 0 \text{ at } \omega = 0 \]
1900-1951

J.B. Johnson

Thermal agitation of electricity in conductors.

Phys. Rev. (1928) 32 (July) 97-109

H. Nyquist

Thermal agitation of electric charge in conductors.

Phys. Rev. (1928) 32 (July) 110-113

L. Onsager

Reciprocal relation in irreversible process.

Phys. Rev. (1931) 32 (February) 405-426

H.B. Callen, T.A. Welton

Irreversibility and Generalized Noise.

Phys. Rev. (1951) 83 (1) 34-40
QUANTUM NOISE

NO QUANTUM EQ.-PARTITION-TH.

\[\mathcal{S} \xrightarrow{H_{\text{INT}}} \mathcal{B} \]

FEYNMAN-PATH-INT.

QUANTUM LANG.-EQ.

GME

STOCH.-L=\nu N.-EQ.

\[\psi := |\psi_1(t)\rangle < \psi_2(t) | \quad \mu := \frac{2}{\hbar} \sum \omega \frac{\Delta \omega}{c} \]

\[i \hbar \dot{\psi} = [H_0, \psi] + \frac{\hbar}{2} \left[x, \psi \right] - \frac{1}{\hbar} \left[x, \psi \right] \]

\[\langle \psi(t) \psi(t') \rangle = Re \mathcal{L}(t-t'), \quad \langle \psi(t) \nu(t') \rangle = \frac{2}{\hbar} \delta(t-t')Im \mathcal{L}(t-t'), \quad \langle \nu(t) \nu(t') \rangle = 0 \]

COMPLEX VALUED NOISE
PITFALLS

MARKOV MASTER EQ

\[\frac{\partial}{\partial t} \rho = -i \hbar \left[H, \rho \right] + \Gamma(t) \]

BLOCH-REDFIELD

\text{i.e. NO DET. BALANCE}

ROTATING WAVE APPROX.

(LINDBLAD; DAVIES-APPROX.)

DET. BALANCE \& O.K.

BUT

\bullet \text{WRONG EHRENFEST EQ.}

\bullet \text{NO FDT}

\bullet \text{NO KMS-COND.} \quad \langle u(t) v \rangle = \langle v u(t + \tau) \rangle
Schematic of stochastic resonance. The cross-hatched oval represents a black-box system which receives two inputs: one weak and periodic, the other strong and random. The output is relatively regular with small fluctuations.
NOISE-ASSISTED SYNCHRONIZED HOPPING
Bistable Model

\[\dot{x} = x - x^3 + A \cos(\Omega t + \varphi) + \xi(t) \]

\[\langle \xi(t) \rangle = 0 \]

\[\langle \xi(t) \xi(t') \rangle = 2D \delta(t-t') \]

\[T_e = \frac{2\pi}{\Omega} \]

SIGNAL

\[T_e = 2 \Gamma^{-1} \]

ESCAPE
MORE NOISE → MORE SIGNAL

AMPLIFICATION

\[n \]

\[D = \text{NOISE INTENSITY} \]

\[\Omega = 0.1 \]

P. JUNG + P. H., PHYS. REV. A44: 8032 (1991)
AMPLIFICATION

LRT

\[\Omega = 0.1 \]

\[A = 0.1 \]
\[A = 0.3 \]
\[A = 0.5 \]
\[A = 0.8 \]

\(D = \text{noise intensity} \)

MORE NOISE → MORE SIGNAL

\[M_1 \sim \chi(t) = -\frac{1}{D} \frac{d}{dt} \langle j x(t) S S^\dagger \rangle \]

\[|M_1|^2 \propto \frac{1}{D^2} \exp(-2\Omega U D) \]
SR

IN QUANTUM MECHANICS

QS R
\[V_0 \gg \hbar \omega_0 \gg \hbar \varepsilon_0, kT \]

\[\omega_0 \approx -\hbar \varepsilon_0 \]

\[-\frac{\hbar}{2} \left(\varepsilon_c \sigma_z + \Delta \sigma_x \right) \]

\[\frac{1}{2} \sum_{\alpha} \left(\frac{p_\alpha^2}{m_\alpha} + m_\alpha \omega_\alpha^2 x_\alpha^2 - c_\alpha x_\alpha \sigma_z \right) \]

\[T \]

\[\text{Temperature} \]

\[\Omega, \hat{\Omega} \]

\[\frac{\hbar \hat{E}}{2} \cos(\Omega t) \sigma_z \]

\[n \cdot \pi = \hat{\pi} \]

\[t \rightarrow 0 \]
LINEAR RESPONSE & QSR

with \(P_1 = \frac{A}{2} \chi_{qq}(\Omega) = \frac{A}{2} \chi(\Omega) \)

\[
\eta_I = 4\pi |P_1|^2 = \pi A^2 |\chi(\Omega)|^2
\]

\[
\text{SNR} = \frac{\pi A^2 |\chi(\Omega)|^2}{S_{qq}(\Omega, A=0)} = \frac{\pi A^2 |\chi(\Omega)|^2}{\text{Im} \chi(\Omega) \coth(\hbar \Omega / 2)}
\]

\(\textbf{Valid at all temperatures!} \)

PROBLEM: QUANTUM \(\chi_{qq}(\Omega)^{FDT} S_{qq}(\Omega) \)

\[
S_{qq}(+) = \frac{1}{2} < \delta q(+) \delta q(0) + \delta q(0) \delta q(+) >_\beta
\]

\(\textbf{DIFFICULT!} \)
\textbf{LINEAR RESPONSE & QSR}

with \(P_1 = \frac{A}{2} \chi_{gg} (\Omega) \equiv \frac{A}{2} \chi (\Omega) \)

\(\eta_1 = 4\pi |P_1|^2 = \pi A^2 |\chi (\Omega)|^2 \)

\[
\text{SNR} = \frac{\pi A^2 |\chi (\Omega)|^2}{S_{gg} (\Omega, A=0)} = \frac{\pi A^2 |\chi (\Omega)|^2}{\text{Im} \chi (\Omega) \text{coth} (\hbar \beta / 2)}
\]

\(\text{Valid at all temperatures!} \)

\textbf{PROBLEM: QUANTUM } \chi_{gg} (\Omega)^{\text{FDT}} \equiv S_{gg} (\Omega)

\(S_{gg} (t) = \frac{1}{2} \left< d\xi (t)d\xi (0) + d\xi (0)d\xi (t) \right> \)

\(\textbf{DIFFICULT!} \)

\(\Rightarrow \text{2 LIMITS} \)

above \(\approx \) near \text{crossover to thermal hopping \text{at low T}}
\[\alpha = 50 \]
\[\frac{V_b}{\hbar \omega_b} = 0.2 \]
\(T = 0 \)

\(\mathcal{R}^c = (x_1^c, x_2^c) \)

\(x_1^c \Rightarrow q \)

Classically allowed

Classically forbidden

\[U(q) \]

\(q_c (\tau = 0) \quad \gamma > 0 \)

Tunnelling

Thermal activation

\[q_c (\tau) \]

Bounce

\[\dot{q}_c (\tau) \]

Zero-mode

\[\gamma = 0: \]

\[M \frac{d^2 q_B (\tau)}{d\tau^2} = \frac{\delta U}{\delta q_B} \]

\[- M \frac{d^2 q_B (\tau)}{d\tau^2} + \left(\frac{\delta^2 U}{\delta q_B^2} \right) \dot{q}_B (\tau) = 0 \]
\[-M \ddot{q}_B + \frac{\partial U(q_B)}{\partial q_B} + \int_{-\frac{\Theta}{2}}^{\frac{\Theta}{2}} k(\tau-\tau') q_B(\tau') d\tau' = 0\]

\[\Theta = \frac{\hbar}{kT}\]

\[q_B(\tau + \Theta) = q_B(\tau)\]
QUANTUM SR

(a) INCOHERENT TUNNELING

\[\varepsilon = 0 \]

\[\alpha \ll 1, \quad \varepsilon \neq 0 \]

HIGH FREQUENCIES
HIGH TEMPERATURES

driving induced coherence

(b) LOW FREQUENCIES
LOW TEMPERATURES

adiabatic quantum coherence

LOW FREQUENCIES
HIGH TEMPERATURES

incoherent regime
DRIVEN QUANTUM TUNNELING

M. GRIFONI, P. H. PHYS. REP. 304: 229 - 358 (98)

FREE COPY

http://www.physik.uni-augsburg.de/theo1/hanggi/
DRIVEN - TUNNELING - ZOO
SUPPR. vs. ENH.

CDT

EHG

CHAOS-ASSISTED

QSR

COHERENT TUNNELING CONTROL

- DRIVING (Ω, Λ, I)
- BATH SPECTRUM
- NOISE INPUT
HOMEPAGE
„HANGGI“

GO TO : FEATURE ARTICLES

• Quantum Dissipation and Quantum Transport

http://www.physik.uni-augsburg.de/theo1/hanggi/Quantum.html