(3) \[\frac{1}{2} \left(\mathbf{A}_1 + \mathbf{A}_2 \right) \cdot \mathbf{A} = (\mathbf{A} \cdot \mathbf{A}) \cdot \mathbf{B} \]

where \(\mathbf{p} \) denote the momentum distribution in space-time:

(2) \[(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{F} \]

In the case of constant speed, the form proposed by Kramers is the most convenient, or when the condition is satisfied in a wide range of problems. The condition is satisfied by the particular case of differential equations with constant speed. The condition is satisfied in the particular case of differential equations with constant speed.

(1) \[0 = 0 + \mathbf{A} \cdot \mathbf{B} \]

Hence, the probability current density is the density of sources, \(s < 0 \), and sinks, \(s > 0 \).

For small damping conditions, the approximate expression is given by the formula of Fermi-Pollack's space-time diffusion:

\[\left(\mathbf{A} \cdot \mathbf{B} \right) \cdot \mathbf{F} \]

For a complete presentation, the approximate expression is given by the formula of Fermi-Pollack's space-time diffusion.

\[\left(\mathbf{A} \cdot \mathbf{B} \right) \cdot \mathbf{F} \]

For a complete presentation, the approximate expression is given by the formula of Fermi-Pollack's space-time diffusion.

\[\left(\mathbf{A} \cdot \mathbf{B} \right) \cdot \mathbf{F} \]

For a complete presentation, the approximate expression is given by the formula of Fermi-Pollack's space-time diffusion.

\[\left(\mathbf{A} \cdot \mathbf{B} \right) \cdot \mathbf{F} \]