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We address the quantum transition of a spin-1=2 antiferromagnetic Kondo lattice model with an easy-
axis anisotropy using the extended dynamical mean field theory. We derive results in real frequency by
using the bosonic numerical renormalization group (BNRG) method and compare them with quantum
Monte Carlo results in Matsubara frequency. The BNRG results show a logarithmic divergence in the
critical local spin susceptibility, signaling a destruction of Kondo screening. The T � 0 transition is
consistent with being second order. The BNRG results also display some subtle features; we identify their
origin and suggest means for further microscopic studies.

DOI: 10.1103/PhysRevLett.99.227204 PACS numbers: 75.20.Hr, 71.10.Hf, 71.27.+a, 71.28.+d

A sizable number of (nearly) stoichiometric heavy fer-
mions have recently been discovered in which the antifer-
romagnetic transition temperature can be continuously
suppressed to zero [1]. These materials have not only
allowed further elucidation of the heavy fermion physics
but also provided a concrete setting to address the larger
question of quantum criticality. The application of the
Landau paradigm considers the fluctuations of the mag-
netic order parameter as the primary critical modes [2].
The resulting T � 0 spin-density-wave (SDW) quantum
critical point (QCP) [2–4] is Gaussian. However, a host of
dynamical, transport, and thermodynamic data [1,5–8]
suggest that the observed QCPs are non-Gaussian, indicat-
ing the existence of additional quantum critical modes.
Since there is not yet a universal prescription for the
identification of such emergent critical modes, microscopic
considerations have been playing an important role.

One idea invokes the breakdown of the Kondo screening
effect at the magnetic QCP to characterize the new critical
modes [9–11]. In local quantum criticality [9], the destruc-
tion of the Kondo effect arises through the decoherence by
the magnetic order-parameter fluctuations. Microscopi-
cally, this picture has been studied through the extended
dynamical mean field theory (EDMFT) approach [12,13].
Here the Kondo lattice systems are analyzed in terms of a
Bose-Fermi Kondo (BFK) model, with the spectra of its
fermionic and bosonic baths self-consistently determined.
The EDMFT approach addresses the competition between
the RKKY and Kondo models, going beyond the seminal
works of Refs. [14,15] in ways that are important for the
collapse of the Kondo scale at the magnetic QCP. It treats
this competition dynamically. Equally important, it incor-
porates not only paramagnetic and antiferromagnetic
phases with a ‘‘large’’ Fermi surface but also an antiferro-
magnetic phase with a ‘‘small’’ Fermi surface (local mo-
ments not participating in the electronic Fermi volume).
The critical behavior of the BFK model was shown to

allow [9] a self-consistent solution in which the criticality
of the BFK model—with critical Kondo screening—is
manifested at the magnetic QCP of the lattice. This ana-
lytical result was verified in a quantum Monte Carlo
(QMC) study of a Kondo lattice model with an easy-axis
anisotropy [16]. An important question is whether the
actual zero-temperature transition is second-order. Earlier
works at finite temperatures, using various QMC ap-
proaches, have led to some conflicting conclusions
[17,18]. The differences have been attributed to the differ-
ent EDMFT equations, which handle the generated RKKY
interactions on the ordered side differently [19,20].

In this Letter, we study the magnetic transition of the
anisotropic Kondo lattice model directly at zero tempera-
ture, using the recently developed bosonic numerical re-
normalization group (BNRG) method [21,22]. Our results
are important for experiments, not only because the nu-
merical studies play an important role in the understanding
of the unusual magnetic dynamics [5] (which itself was the
primary initial experimental indication for the non-SDW
nature of the QCP) but also because the theoretical picture
has crucial predictions for other experiments that are ac-
tively being examined by ongoing experiments (e.g.,
Refs. [7,8]). More generally, the question of whether un-
conventional QCPs would be stable and relevant to realistic
models and materials or tend to be preemptied by first-
order transitions is broadly important and also arises [23]
in, e.g., the case of deconfined quantum criticality [24] in
spin and boson lattice systems.

The Kondo lattice Hamiltonian is

 H �
X
ij�

tijc
y
i�cj� �

X
i

JKSi � sc;i �
X
ij

�Iij=2�SziS
z
j: (1)

Here Si and sc;i represent the spins of the S � 1
2 local

moment and conduction c electrons, respectively. There
are 1 moment and, on average, x < 1 conduction electrons
per site. JK is the antiferromagnetic Kondo interaction. tij
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is the hopping integral, corresponding to a band dispersion
�k whose density of states (DOS) �0��� is featureless. Iij
denotes the RKKY interaction; its Fourier transform Iq is
the most negative at an antiferromagnetic (AF) wave vector
Q (IQ � �I). The EDMFT approach leads to the effective
impurity action [17]
 

Simp � Stop �
Z �

0
d��hlocSz��� � JKS��� � sc����

�
ZZ �

0
d�d�0

X
�

cy����G�1
0;���� �

0�c���
0�

�
1

2

ZZ �

0
d�d�0Sz�����1

0 ��� �
0�Sz��0�; (2)

where Stop is the Berry phase of the local moment and hloc,
G�1

0;�, and ��1
0 are the static and dynamical Weiss fields

satisfying the self-consistency conditions
 

hloc � ��I � ��1
0 �! � 0��mAF; (3a)

�loc�!� �
Z I

�I
d��I���=�M�!� � ��; (3b)

Gloc;��!� �
Z D

�D
d��0���=�!��� �� ���!��; (3c)

respectively. Here M�!� and ���!� are, respectively, the
spin and conduction-electron self-energies, which satisfy
the Dyson(-like) equations: ���!� � G�1

0;��!� �
G�1

loc;��!� and M�!� � ��1
0 �!� � �

�1
loc �!�. mAF � hS

ziimp

is the staggered magnetization; �loc�!� and Gloc;��!� are
the connected local spin susceptibility and local
conduction-electron Green’s function, respectively.
Finally, M�!� also specifies the lattice spin susceptibility
[12]:

 ��q; !� � 1=�Iq �M�!��: (4)

As described in detail in Refs. [16,17], the effective impu-
rity action [Eq. (2)] can be rewritten in a Hamiltonian form,
in which the dynamical Weiss fields are represented by a
fermionic bath and a bosonic one. Through a canonical
transformation, the fermionic coupling is reduced to a
transverse field Ising model with an Ohmic bosonic bath.
Integrating out the two bosonic baths yields a form that is
suitable for QMC studies:
 

S0imp �
Z �

0
d�
�
hlocSz��� � �Sx��� �

1

2

Z �

0
d�0Sz���Sz��0�

	 ���1
0 ��� �

0� �Kc��� �0��
�
: (5)

Here Kc�i!n� � �cj!nj describes the Ohmic dissipation;
�c and � are determined by the longitudinal and transverse
components of the Kondo coupling, respectively.

For the BNRG studies, we work in the real frequency
domain by rewriting Eq. (5) in a Hamiltonian form:

 H 0
imp � hlocS

z � �Sx �
X
p

~gpS
z�	p �	

y
�p�

�
X
p

~wp	
y
p	p; (6)

where ~!p and ~gp are such that �
P
p�2~g2

p ~!p=�!
2 �

~!2
p�� � ~��1

0 �!� 
 ��1
0 �!� �Kc�!�. The EDMFT proce-

dure starts with a trial hloc and �0�!�. The BNRG iteration
loop [21] is then used to solve the impurity model (6) for
mAF and �loc�!� which, in turn, lead to updated hloc and
��1

0 �!�. The procedure is repeated until convergence is
achieved. For the most part, we consider two-dimensional
magnetic fluctuations [17] as represented by a constant
RKKY DOS �I��� 


P
q
��� Iq� � �1=2I���I � j�j�,

with � being the Heaviside function. In this case,
Eq. (3b) yields

 M�!� � I= tanh�I�loc�!��: (7)

We take the energy cutoff !cutoff � 1 and the parameters
� � 0:75 and �c � �, yielding T0

K 
 1=�loc�! � 0; I �
0� � 0:71. In most cases (exceptions will be specified), we
choose the NRG discretization parameter � � 2, keep
Nb � 100 bosonic states for the impurity site and 8 states
for the other sites, and retain Ns � 60 many-body states.
To reach convergence, the difference between two con-
secutive iterations in hloc as well as in ��1

0 �!� for each! is
smaller than 10�6. Away from the transition region, 30 or
so EDMFT iterations are sufficient. In the transition region,
it takes as many as 2400 iterations.

The resulting phase diagram is summarized in Fig. 1(a).
We observe a substantial drop of ��1

AF from both sides, as
well as of mAF. Indeed, the magnetic order parameter mAF

vanishes continuously within the numerical uncertainty as
I approaches the transition point Ic1 (�1:1228T0

K).
Figure 2(a) shows �loc�!� at various I, from around I �

Ic1 and beyond. Above a cutoff scale, the local suscepti-
bility is logarithmically dependent on the frequency. Such
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FIG. 1 (color online). Inverse static AF susceptibility ��1
AF 


��q � Q; ! � 0��1 � M�! � 0� � I from the PM (trial hloc �
0; green circles) and AF (trial hloc � 0; blue circles) solutions
and the AF order parameter mAF (red squares), obtained from the
(a) BNRG and (b) QMC methods. The lines are guides to the
eye. See the main text for details.
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a singular behavior signals the Kondo screening being
critical, which is the hallmark of local quantum criticality.
Fitting the slope of the logarithmic dependence in terms of
�=2I yields an � which is nearly constant (varying by less
than 2%) in the shown range of I. Through the self-
consistency equation (7) together with Eq. (4), � is the
critical exponent that appears in the dynamical AF spin
susceptibility �AF�!� 
 ��Q; !�. Extrapolating to the
BNRG continuum limit (�! 1�) yields � � 0:83. The
low-frequency cutoff scale for the logarithmic dependence
is relatively small, becoming of the order of �10�2T0

K for
the largest I we have reached as I is increased towards Ic2

(�1:26T0
K), the instability point of the paramagnetic solu-

tion signaled by a diverging �AF; this cutoff scale extrapo-
lates to zero as I ! I�c2.

For comparison, the QMC results for the phase diagram
and the Matsubara frequency dependence of the local
dynamical spin susceptibility are shown in Figs. 1(b) and
2(b), respectively. At the gross level, the BNRG and QMC
results are similar to each other.

At a fine level, the BNRG results contain some differ-
ences from their QMC counterparts. Major among these is
the observation, as seen in Fig. 1(a), that Ic2 is larger than
Ic1 by about 12%. In the QMC results, by contrast, Ic2

equals Ic1 within the numerical uncertainty of a few per-
cent. To see whether this is unique to the BNRG results for
the 2D magnetic fluctuations, we have carried out similar
BNRG studies of the EDMFT phase diagram in the case of
3D magnetic fluctuations—as represented by a semicircu-
lar RKKY DOS �I��� � �2=�I2�

����������������
I2 � �2
p


�I � j�j�. The
3D case does not have the complication of a divergent local
susceptibility, and a SDW solution is expected in the
EDMFT approach [9,16,17]. We find that the magnetic
transition is essentially continuous (with the upper bound
of the order-parameter jump being 0.016), yet �Ic2 �
Ic1�=Ic1 is still nonzero (about 13%).

The observation of a continuous onset of the magnetic
order parametermAF but, at the same time, different Ic1 and
Ic2 is unexpected. One possibility is that the dichotomy is
inherent to the EDMFT equations. To address this, we

return to the self-consistent equation for the magnetic order
parameter, Eq. (3a). For a small hloc (we have numerically
determined that the magnetic solution is the same regard-
less of whether an infinitesimal finite value or a large value
is chosen for the trial hloc), we have mAF � ��lochloc �
a3h

3
loc � a5h

5
loc � . . . . Note that the linear coefficient is

equal to ��loc�! � 0� since, in Eq. (6), hloc couples
linearly to Sz only [25]. We can then rewrite Eq. (3a) as

 rhloc � �uh
3
loc � vh

5
loc � � � � ; (8)

where r � �loc=�AF is the quadratic coefficient of the
corresponding static Landau function and u � �a3���1

loc �
��1

AF� and v � �a5���1
loc � �

�1
AF� are the quartic and sextic

Landau coefficients, respectively. When u > 0 (the alter-
native, u < 0, would lead to a large jump in mAF, in
contrast to what we have observed), we have a canonical
case of a second-order transition at r � 0 (in other words, a
hloc � 0 solution cannot occur for any r > 0). Through r �
�loc=�AF, this implies that at Ic1 (the onset of the magnetic
transition) �AF diverges. This is the same condition for Ic2,
where the paramagnetic solution goes away. So, within the
EDMFT equations per se, a continuous onset in mAF must
coincide with a vanishing (Ic2 � Ic1).

We are then led to search for numerical origins for the
dichotomatic observation and have identified the primary
source. Within BNRG, as in any NRG method, the imagi-
nary part of the local susceptibility �00loc�!� is calculated in
terms of a set of Gaussian-broadened delta functions. The
real part is in turn determined via the Kramers-Kronig
relation, which we call �0loc;KK�!�. The static local suscep-
tibility can alternatively be calculated in terms of (a) the
differential response of the local magnetization with re-
spect to hloc or (b)

P
njhnjSzj0ij

2=�En � E0�, where n
labels all of the many-body excited states and 0 the ground
state. We find that the latter two methods yield essen-
tially the same result, which we call �loc;static. A key ob-
servation is that �loc;static is larger than �0loc;KK�! � 0� by a
sizable amount (about 11.5% for � � 2, in the 2D case).
The quadratic Landau coefficient then becomes r �
�loc;static=�AF � ��loc;static=�loc;KK�! � 0� � 1�. It follows
that the onset of the magnetic transition (at r � 0) already
occurs before �AF diverges, which explains the Ic1 < Ic2

discussed earlier. In order to confirm our observation, we
have implemented the simplest modification scheme to
ensure that the Kramers-Kronig transform of the NRG-
calculated �00loc�!� yields a static local susceptibility that is
equal to �loc;static. We use, during each EDMFT iteration,
�loc;static for the ! � 0 component of �0loc�!� but retain
�0loc;KK�!� for all finite frequencies. We find that Ic1 is
increased compared to that of the unmodified scheme. (Ic2

is essentially unchanged, although the normalization pa-
rameter T0

K is reduced.) Moreover, as shown in Fig. 3 for
the 2D case, Ic2 � Ic1 [with a difference less than 1% (2%)
in the 2D (3D) case, with � � 2]. mAF vs (I � Ic1) from
the modified scheme is mostly comparable to that of
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FIG. 2 (color online). Frequency dependence of the local spin
susceptibility at various values of I around the magnetic tran-
sition. (a) �0loc�!� vs the real frequency !, from BNRG;
(b) �loc�!n� vs the Matsubara frequency !n, from QMC.
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Fig. 1(a) except for being steeper in the immediate vicinity
of Ic1 [when �I � Ic1�=Ic1 is within a few percent]. The
magnetic transition is therefore second-order within the
numerical accuracy.

For I > Ic2 [26], the nominally self-consistent paramag-
netic solution has max�2I�00loc�!��>�, which, through
Eq. (7), yields an oscillatory M00�!� [27]. By contrast, in
the Matsubara frequency domain, a nominally paramag-
netic solution (hloc � 0 � mAF, but a finite Curie constant)
exists for I > Ic2, which helped to determine the phase
diagram [17].

Independently, Glossop and Ingersent [28] have carried
out NRG studies within the EDMFT approach to the same
Kondo lattice model. They used the NRG method of
Ref. [22], in which the Kondo coupling to the conduction
electrons is directly treated (instead of being mapped to an
Ohmic dissipation). Moreover, they adopted a somewhat
different modification scheme to ensure the consistency
between the static local susceptibilities from two ways of
calculation within NRG. In spite of these differences in
methods, the results from the two groups are largely com-
patible with each other.

To summarize, we have carried out bosonic numerical
renormalization group studies of the extended dynamical
mean field theory of a Kondo lattice model. The local spin
susceptibility has a logarithmic frequency dependence—
signifying the critical Kondo screening—and the magnetic
transition is consistent with being second order. These
results provide evidence for local quantum criticality.
Our study has also advanced the understanding of the
numerical renormalization group, a venerable method
[29] in the area of correlated systems.
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FIG. 3 (color online). Inverse AF susceptibilities (PM, green
circles; AF, blue circles) and the AF ordered moment (red
squares), from the modified scheme, as described in the main
text. The notations are the same as in Fig. 1.
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