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Two-dimensional Dirac fermions are used to discuss quasiparticles in graphene in the presence of
impurity scattering. Transport properties are completely dominated by diffusion. This may explain why
recent experiments did not find weak localization in graphene. The diffusion coefficient of the quasi-
particles decreases strongly with increasing strength of disorder. Using the Kubo formalism, however, we
find a robust minimal conductivity that is independent of disorder. This is a consequence of the fact that
the change of the diffusion coefficient is fully compensated by a change of the number of delocalized
quasiparticle states.
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Recent experimental studies of single graphite layers
(graphene) have revealed interesting transport properties
[1–3]. A quantum Hall effect was found in the presence of
an external magnetic field with Hall plateaus �xy �
��2n� 1�2e2=h (n � 0; 1; . . . ). This result can be ex-
plained by the band structure of graphene which has two
nodes (or valleys) due to the hexagonal lattice and a linear
dispersion around each of these nodes [4]. If the Fermi
energy is near these nodes the quasiparticles can be de-
scribed as fourfold degenerated (two valleys and two spins
orientations) 2D Dirac fermions. Another interesting ob-
servation is the existence of a minimal conductivity �min

xx
which occurs if the Fermi energy is exactly at the nodes.
This quantity shows a remarkable stability with �min

xx �
3 . . . 5 e2=h, even if the mobility of the studied samples
changes by almost a factor 6 from � � 0:15 m2=V s to
� � 0:85 m2=V s [1]. The varying mobilities in different
samples indicate a varying density of impurities. The
transport mechanism must be related to diffusion of elec-
trons and holes, caused by impurity scattering. The latter
can formally be described by a random potential. Then, in
terms of the Dirac fermions, the impurities can create gap
fluctuations, i.e., a random Dirac mass, because a gap can
easily be opened at the nodes of the band structure, for
instance, by a staggered potential [5].

Existing theories of 2D Dirac fermions predicted the
value �xx � e2=h� for a single Dirac node [6–10], (i.e.,
�min
xx � 4e2=h�) such that there is a quantitative discrep-

ancy by a factor 1=� in comparison with the experimental
observation, as discussed in Ref. [1]. In recent papers
several authors applied the Landauer formula, instead of
the Kubo formula used in previous studies, to determine
the minimal conductivity also as �min

xx � 4e2=h� for a
rectangular system with aspect ratio W=L� 1 [11,12].
Nomura and MacDonald argued that �min

xx could be en-
hanced by Coulomb scattering, leading to �min

xx � 4e2=h�
[13]. Several possibilities for the value of �min

xx , using
different approaches to the linear response were also dis-
cussed in Ref. [14].

The effect of quantum interference due to impurity
scattering was studied in a recent experiment [3]. It was
found that there is no weak localization in a single gra-
phene sheet. Multilayer graphite films, on the other hand,
exhibit clearly weak localization. These observations in-
dicate that graphene has special transport properties.

It will be shown in the following that (1) a calculation,
based on linear response theory (Kubo formula), gives a
conductivity of �min

xx � �e2=h for the pure system,
(2) weak scattering leads to a linear Boltzmann conductiv-
ity similar to what was observed experimentally, and
(3) there are no weak (anti-)localization corrections due
to a spontaneously broken supersymmetry which creates
diffusive fermions.

Starting from the Kubo formula [15], the conductivity
tensor ��� of a system with Hamiltonian H at inverse
temperature � � 1=kBT and for frequency ! reads

 

e
i@

lim
�!0

Z 0

�1
e�i!���tTr��e��H; r�	e�iHtj�eiHt�dt: (1)

The current operator is given by the Hamiltonian as the
commutator j� � �ie�H; r�	. For noninteracting fermions
with single-particle energy eigenstates jki (i.e., Hjki �
�kjki) a lengthy but straightforward calculation yields

 ��� � �i
e2

@

X
k1;k2

hk1j�H; r�	jk2ihk2jr�jk1i



f���k2

� � f���k1
�

�k1
� �k2

�!� i�
(2)

with Fermi function f���� � 1=�1� e����. The identity
hk2j�H; r�	jk1i � ��k2

� �k1
�hk2jr�jk1i and the Dirac delta

function ����k � �� � lim	!0	=���k � ��
2 � 	2	 allow

us to express the conductivity in Eq. (2) as a double integral
with respect to two energies �, �0:
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f���
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d�d�0: (3)

An alternative expression is obtained by writing the Dirac
delta functions in terms of the Green’s function G�z� �
�H � z��1. Using the identity
 

G�z��H; r�	G�z
0� � r�G�z

0� �G�z�r�

�G�z�r��z� z0�G�z0�;

the diagonal elements of the conductivity tensor read
 

��� � i
e2

@

1

8�2 lim
	1;	2!0

ZZ X
r;r0
�r� � r0��2



X

s1;s2��1

s1s2��0 � �� i�s1	1 � s2	2�	


 Trn�Grr0 ��
0 � is1	1�Gr0r��� is2	2�	



f���0� � f����

�� �0 �!� i�
d�d�0; (4)

where Trn is the trace related to n additional degrees of
freedom (e.g., n � 2 for the spinor index of 2D Dirac
fermions).

In the special case of graphene the Hamiltonian reads in
sublattice representation [4,5]

 H � �1h1 � �2h2; (5)

where �j (j � 1, 2, 3) are Pauli matrices. In Fourier

representation with wave vector ~k � �k1; k2� the coeffi-
cients of the Pauli matrices in a pure system are

 h1 � �t
X3

j�1

cos� ~aj � ~k�; h2 � �t
X3

j�1

sin� ~aj � ~k�;

with the lattice vectors of the honeycomb lattice ~a1�

��
���
3
p
=2;1=2�, ~a2 � �0;�1�, and ~a3��

���
3
p
=2;1=2�. H can

be diagonalized as H�diag�ek;�ek� with ek�
���������������
h2

1�h
2
2

q
.

The current operator transforms under Fourier transforma-
tion as �ie�H; r�	 ! e@H=@k�.

There are six points at ~k � ��4�=3
���
3
p
; 0�, (2�=3

���
3
p

,
�2�=3), and (�2�=3

���
3
p

, �2�=3) where ek vanishes,
corresponding with the two nodes. The commutators are
in the diagonal representation of H

 �H; r�	12�H; r�	21 �
1

e2
k

�
h2
@h1

@k�
� h1

@h2

@k�

�
2
; (6)

whose value is 9=4 at all nodes. The 2D k integration at
each node can be expressed by an integration with respect
to h1 and h2 as d2k � Jdh1dh2, where the Jacobian is J �
4=9 at all nodes. Therefore, after the angular integration
around the nodes the integration is given by

 J�2�=3�ekdek � �8�=27�ekdek�0 � ek � 
�:

This can be inserted in the conductivity of Eq. (3) and after
the summation over all nodes the conductivity ��� reads
at low temperatures (�1)

 � i
e2

h
12

27

Z 


0

�
�H;r�	12�H;r�	21

2ek�!� i�
�
�H;r�	21�H;r�	12

�2ek�!� i�

�
dek:

Inserting the commutators from Eq. (6) yields eventually

 Re ��22� �
e2

h

Z 


0
���2ek �!�dek �

�
2

e2

h
: (7)

Another factor of 2 comes from the spin-1=2 degeneracy of
the quasiparticles. Thus our calculation gives for the mini-
mal conductivity �min

xx � �e2=h.
In a pure graphene sheet there is only ballistic transport.

Consequently, the diffusion coefficient D is infinite. On the
other hand, if the Fermi energy is exactly at the nodes, the
related density of states � vanishes. From this point of
view, the conductivity, expressed by the Einstein relation
as �min

xx / �D, depends very sensitively on the limits of the
model parameters (e.g., the dc limit !! 0). A more
instructive situation is a system with randomly distributed
scatterers that may lead to diffusion (i.e., D<1) or even
to Anderson localization (i.e.,D � 0) [16–19]. A source of
disorder in the tight-binding Hamiltonian H of Eq. (5) is a
randomly fluctuating nearest-neighbor hopping rate. For a
qualitative discussion of random scattering, the
Hamiltonian is approximated by the 2D Dirac Hamiltonian

 HD � i�1r1 � i�2r2 �m�3:

A randomly fluctuating gap is introduced by a random
Dirac mass m with Gaussian distribution of zero mean
and variance g. The transformation property of the tight-
binding Hamiltonian

 HT � ��2H�2 (8)

is also obeyed by the random Dirac Hamiltonian HD after
rotating �1 ! �2 and �2 ! �1. This property is crucial
for the formation of a diffusion mode in two dimensions
[10]. Models which violate this property, e.g., by an addi-
tional term proportional to a 2
 2 unit matrix, may lead to
localization of states near the Fermi energy [18,19]. Inter-
valley scattering is ignored by the approximation H � HD
such that we have only independent Dirac cones. The effect
of the random mass can be studied by applying a perturba-
tion theory, using a partial summation of an infinite series
of most relevant contributions. On the level of the averaged
single-particle Green’s function this leads to a self-energy
term 	 in the Green’s function: G��i�� � G�i�� i	�.
This is formally equivalent to a mean-field approximation
of a supersymmetric functional-integral approach, where
the random Dirac mass is replaced by a random super-
matrix [10]. Then 	 is obtained as a solution of
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 	 � g�	� ��
Z
��	� ��2 � k2	�1kdk=�: (9)

The Green’s function can be expressed again by a pertur-
bation expansion, now in terms of fluctuations around the
mean-field approximation G��i��. This expansion can be
inserted into the conductivity (3). The leading term for
i� � EF (Fermi energy) is the Boltzmann conductivity

 

Re����� �
e2 ��	2

@�

Z
f��ek � EF�2 � 	2	�2

� ��ek � EF�2 � 	2	�2g��ek�dek: (10)

Here �� is an approximation of the two commutators in
Eq. (3) and � is the density of states of pure Dirac fermi-
ons: ��E� � �0jEj, where �0 depends on the cutoff 
 of
the spectrum of H. This is a classical result for the con-
ductivity of Dirac fermions that was already anticipated by
Fradkin [6] and discussed in the context of d-wave super-
conductors by Lee [7] and for graphene by Peres et al. [8].
The conductivity at EF � 0 is �min

xx � 2e2 ���0=h and does
not depend on 	. Thus �min

xx is independent of the strength
of impurity scattering g. Sufficiently away from EF � 0
the conductivity becomes linear, as shown in Fig. 1. This
behavior agrees well with the experimentally observed
linear conductivity [1].

The next question is whether or not quantum interfer-
ence effects are important. The corresponding corrections
in the conductivity are given by the next order terms of the
expanded Green’s function. This includes a logarithmic
term (Cooperons) due to a massless mode of the fluctua-
tions around the mean-field approximation. Previous stud-
ies found that the corrections give an antilocalization effect
for conventional scatterers, i.e., an increase of the conduc-
tivity due to quantum interference effects [20]. Additional
terms in the Hamiltonian of second order in the momentum
can suppress weak antilocalization [21].

A crucial question, implied by the antilocalization effect
and the absence of weak-localized corrections in experi-
ments [3], is whether or not the states in graphene are
localized. The conductivity in Eq. (3) does not directly
address localization, in contrast to the alternative expres-
sion in Eq. (4): The long-distance behavior of the Green’s
functions is directly related to the behavior of the quantum
states. For this purpose we return to Eq. (4), consider the
minimal conductivity (i.e., EF � 0), and take the limits
�! 0 and �! 1 (	1, 	2 ! 0 are implicit) to obtain
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e2

@
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8�

Z !=2

�!=2

X
r;r0
�r� � r

0
��
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X

s1;s2��1

s1s2Tr2�Grr0 ���!=2� is1	1�


Gr0r���!=2� is2	2�	d�: (11)

Assuming that the integrand is finite for 0<!� 1 it can
be pulled out of the integral for � � 0. The major contri-
bution comes from s1 � s2, where the poles of the Green’s
function are on different sides of the real axis. A finite
factor �0 takes care of a correction in comparison with the
exact value of the integral
 

�min
xx �

e2

@

�0

2�
!2
X
r;r0
�r� � r0��2Tr2�Grr0 �!=2� i	1�


Gr0r��!=2� i	1�	: (12)

For localized states the sum, averaged with respect to
randomness, is finite due to the exponential decay for jr�
r0j � 1. In the dc limit !! 0 this would lead to a vanish-
ing �min

xx .
In order to evaluate the expression in Eq. (12) it is

convenient to return to the functional integral of
Ref. [10]. It was found that the underlying supersymmetry
of the integral is spontaneously broken by the mean-field
solution of Eq. (9). The main consequence of this effect is a
diffusive fermionic mode, similar to the Goldstone mode in
systems with a rotational symmetry, that can be formally
described by a complex Grassmann field �r. This allows
us to write

 hTr2�Grr0 �i��Gr0r��i��	i �
�4	2

g2

Z
��r�r0e

�S00D� 	;

(13)

where the action depends on the solution 	 of Eq. (9):

 S00 �
4	2

g�	� ��

Z �
��

g
4��	� ��

k2

�
��k��kd2k: (14)

The latter contains the diffusion coefficient

 D �
g

4��	� ��
(15)
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FIG. 1. Conductivity of graphene calculated in mean-field
approximation [from Eq. (10)].
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that depends strongly on the variance g of the distribution
of random scatterers.

The minimal conductivity is obtained from Eq. (13) for
small � � i!=2, together with Eq. (12), as

 �min
xx � �0

e2

h�
: (16)

This agrees with the result of the mean-field approximation
in Eq. (10), except for the (undetermined) prefactors. The
variation of �0 with g for 0 � g � 1 can be neglected.
Comparing it with the result in Eq. (7) we conclude that the
renormalization factor is �0 � �2. Thus, in contrast to the
diffusion coefficient D the minimal conductivity �min

xx does
not depend on g. This implies the absence of corrections
due to quantum interference on characteristic length scales,
in agreement with recent experimental observations [3].

The fact that �min
xx is so robust with respect to impurity

scattering can be understood in terms of the Einstein
relation �min

xx / �D, where the conductivity is separated
into the diffusion coefficient D and the averaged density of
states � at the Fermi energy EF � 0. The latter is calcu-
lated from a functional integral similar to Eq. (13) as � �
	=�g [10]. Then with D of Eq. (15) the minimal conduc-
tivity reads

 �min
xx / �D /

	
	� �

�
	

	� i!=2
:

For small � the mean-field Eq. (9) gives 	 � e��=g, which
implies for D and �

 D � ge�=g=4�; � � e��=g=�g: (17)

Thus, moving away from the ballistic limit g � 0, the
conductivity should fall rapidly with increasing random
potential fluctuations due to a decreasing D in the Einstein
relation. On the other hand, the density of states � in-
creases correspondingly so that in �min

xx the influence of
random scattering is compensated. This is in agreement
with the direct evaluation of �min

xx in Eq. (16). The results
for � andD in Eq. (17) describe a nonperturbative effect of
disorder which is not visible within an expansion in powers
of g.

Strong potential scattering by charged impurities in the
substrate, for instance, can lead to a destruction of the
massless fermion mode used in Eq. (14). This can cause
localization and a vanishing �min

xx , at least at very low
temperatures. The localized regime cannot be treated

within a conventional field theory but would require either
a numerical finite-size scaling approach [22] or a strong-
disorder expansion.

In conclusion, we have studied the conductivity of gra-
phene, using a model of 2D Dirac fermions. In the case of a
pure system the ballistic transport leads to a minimal
conductivity �min

xx � �e2=h. In the case of impurity scat-
tering we found pure diffusion for any strength of Gaussian
distributed scatterers, where the diffusion coefficient de-
pends strongly on the distribution. The minimal conduc-
tivity �min

xx , on the other hand, does not depend on the
strength of impurity scattering because the change of the
diffusion coefficient is completely compensated by a
change of the density of diffusive states.
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