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We use nonequilibrium dynamical mean-field theory to study the time evolution of the fermionic

Hubbard model after an interaction quench. Both in the weak-coupling and in the strong-coupling regime

the system is trapped in quasistationary states on intermediate time scales. These two regimes are

separated by a sharp crossover at U
dyn
c ¼ 0:8 in units of the bandwidth, where fast thermalization occurs.

Our results indicate a dynamical phase transition which should be observable in experiments on trapped

fermionic atoms.
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The properties of correlated many-particle systems can
change dramatically and abruptly as external parameters
are varied. An important example is the Mott transition
from an itinerant state to a correlation-induced insulator,
which occurs in such diverse systems as transition-metal
compounds [1] and ultracold quantum gases [2–4]. An en-
tirely new perspective on those systems is provided by their
nonequilibrium dynamics after an external perturbation,
which is experimentally accessible not only in the case
of well-controlled ultracold quantum gases, but also for
electrons in solids by means of femtosecond spectroscopy
[5]. On short time scales the perturbed systems are essen-
tially decoupled from the environment and follow the uni-
tary time evolution according to the Schrödinger equation,
which immediately raises a number of questions: How
does an isolated many-body system approach a new equi-
librium after being quenched, i.e., after a sudden change in
one of its parameters? Does it eventually thermalize, or is
detailed memory on the initial state retained for all times?

Recently these questions have been addressed in a num-
ber of experimental [6,7] and theoretical investigations [8–
20]. After a quench to a large interaction parameter U
characteristic collapse-and-revival oscillations with period
2�@=U appear, which are due to the integer eigenvalues of
the interaction operator [2,8,10–12,15–17,21]. These os-
cillations eventually fade out, but in some cases the system
is trapped in a nonthermal stationary state up to the largest
accessible times [10,11]. In general, thermalization is only
known to be inhibited for integrable systems [8,9,15],
whereas nonintegrable systems such as those studied in
Refs. [10,11] are expected to thermalize [13]. In contrast to
classical mechanics where the famous Kolmogorow-
Arnold-Moser theorem holds, the transition from ergodic
to nonergodic behavior in quantum systems is not well
understood. The mere vicinity of an integrable point can
delay thermalization for very long times [10,14]. In par-
ticular, it has been shown that nonthermal quasistationary
states in nonintegrable systems form on an inter-
mediate time scale (/1=U2) after quenches to small inter-

action parameters [14]; this prethermalization is followed
by thermal equilibration on a much longer time scale (/
1=U4). In numerical studies of quenches in finite quantum
systems it was found that thermalization depends on the
magnitude of the parameter change [19] and the distance to
an integrable point [20]. Another interesting observation is
that a qualitatively different relaxation behavior can occur
depending on the strength of the interaction parameter
[17]. Whether and how this phenomenon, which may be
called a dynamical phase transition, relates to an under-
lying equilibrium phase transition remains to be clarified in
further studies.
Here we consider the relaxation of correlated lattice

fermions described by a time-dependent Hubbard
Hamiltonian at half-filling,

HðtÞ ¼ X
ij�

Vijc
þ
i�cj� þUðtÞX

i

�
ni" � 1

2

��
ni# � 1

2

�
; (1)

using nonequilibrium dynamical mean-field theory
(DMFT). We restrict ourselves to the paramagnetic phase
and choose hoppings Vij corresponding to a semielliptic

density of states �ð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V2 � �2

p
=ð2�VÞ. The system is

initially in the ground state of the noninteracting
Hamiltonian, i.e., Uðt < 0Þ ¼ 0. At t ¼ 0 the Coulomb
repulsion is switched to a finite value, Uðt � 0Þ ¼ U.
Energy is measured in units of the quarter-bandwidth V
and time in units of 1=V, i.e., we set @ ¼ 1 and in the
figures also V ¼ 1. Our results confirm the prethermaliza-
tion for quenches to U � V and indicate a second non-
thermal quasistationary regime for U � V, for which we

provide a general perturbative argument. At Udyn
c ¼ 3:2V

we observe a sharp crossover between the two regimes,
indicating a dynamical phase transition in the above sense.
Nonequilibrium DMFT.—In equilibrium DMFT, which

becomes exact in the limit of infinite dimensions [22], the
self-energy is local and can be calculated from a single-site
impurity model subject to a self-consistency condition
[23]. Nonequilibrium DMFT is a reformulation for Green
functions on the Keldysh contour [24,25], which maps the
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lattice problem (1) onto a single-site problem described by
the action

S ¼ X
�¼";#

Z
C
dtdt0cþ� ðtÞ��ðt;t0Þc�ðt0Þþ

Z
C
dthlocðtÞ; (2)

where hlocðtÞ ¼ UðtÞ½n"ðtÞ � 1
2�½n#ðtÞ � 1

2� is the local

Hamiltonian at half-filling. For a system that is prepared
in equilibrium with temperature T at times t < 0 the
time contour C is chosen to run from t ¼ 0 along
the real axis to tmax, back to 0, and finally to �i=T
along the imaginary axis. The action S determines
the contour-ordered Green function G�ðt; t0Þ ¼
Tr½TCe

�iSc�ðtÞcþ� ðt0Þ�=Z and the self-energy �ðt; t0Þ. For
the semielliptic density of states the self-consistency con-
dition reduces to ��ðt; t0Þ ¼ V2G�ðt; t0Þ [12]. The single-
site problem can be solved, for example, by means of real-
time Monte Carlo techniques [26,27]. We use the weak-
coupling continuous-time Monte Carlo (CTQMC) algo-
rithm [27], which stochastically samples a diagrammatic
expansion in powers of the interaction part hloc and mea-
sures observables such as the local Green function
G�ðt; t0Þ. The weak-coupling method is suitable for initial
noninteracting states, because the imaginary branch of the
contour does not enter the CTQMC calculation. This al-
lows us to study initial states at zero temperature by trans-
forming imaginary times to real frequencies. Furthermore,
the parameters of the algorithm can be chosen such that
only even orders contribute to G�ðt; t0Þ at half-filling,
which reduces the sign problem. Computational details
are deferred to a separate publication.

Many observables of the lattice model can be calculated
from the local Green function G�ðt; t0Þ and the self-energy

��ðt; t0Þ. The two-particle correlation function ��ðt; t0Þ ¼
iUðt0ÞhTCc

y
i�ðt0Þ½ni ��ðt0Þ � 1

2�ci�ðtÞi is obtained from the con-

tour convolution �� ¼ G� ��� and yields the double
occupation dðtÞ ¼ hni"ðtÞni#ðtÞi at t ¼ t0. (Local quantities
do not depend on the site index i for the homogeneous
phase.) Solving the lattice Dyson equation ði@t þ�� ��
��Þ � G�� ¼ 1 yields the momentum-resolved equal-time
Green function G��ðt; tÞ and thus the momentum distribu-
tion nð�k; tÞ ¼ hcþk�ðtÞck�ðtÞi, as well as the kinetic energy
per lattice site, EkinðtÞ=L ¼ 2

R
d��ð�Þnð�; tÞ�. The total

energy E ¼ EkinðtÞ þUL½dðtÞ � 1=4� must be conserved
after the quench, which provides an estimate of the com-
putational accuracy [28].

Results.—As depicted in Fig. 1, the momentum distri-
bution nð�; tÞ evolves from a step function in the initial
state to a continuous function of � at large times.
Remarkably, its discontinuity at � ¼ 0, which marks the
Fermi surface in the initial state, remains sharp while its
height decays smoothly to zero. For a noninteracting initial
state at half-filling, the discontinuity �nðtÞ ¼ nð0�; tÞ �
nð0þ; tÞ can be expressed as

�nðtÞ ¼ jGret
�¼0;�ðt; 0Þj2; (3)

whereGret
�k�ðt; 0Þ ¼ �i�ðtÞhfck�ð0Þ; cþk�ðtÞgi is the retarded

component of the momentum-resolved Green function.
This shows that the collapse of the discontinuity �n is
closely related to the decay of electron and hole excitations
which are created at time t ¼ 0 at the Fermi surface.
We now use�nðtÞ and dðtÞ to characterize the relaxation

after the quench. As shown in detail below, these functions
behave qualitatively different in the weak-coupling and
strong-coupling regimes, separated by a very sharp cross-

over at Udyn
c ¼ 3:2V. We test for thermalization by com-

paring to expectation values in a grand-canonical
ensemble; the effective temperature T� is defined such
that the thermal energy equals the energy after the quench.

Weak-coupling regime, U <U
dyn
c .—For quenches to

U � 3V [Figs. 2(a) and 2(c)] we find that the double
occupation dðtÞ relaxes from its initial uncorrelated value
dð0Þ ¼ hn"i0hn#i0 ¼ 1=4 [29] almost to its thermal value

dth, while the Fermi surface discontinuity �nðtÞ remains
finite for times t � 5=V. This confirms the predictions by
Möckel and Kehrein [14] of a quasistationary state which is
formed on time scales on the order of V=U2 and has dstat ¼
dth þOðU3=V3Þ and finite �nstat ¼ 2Z� 1. Here Z is the
quasiparticle weight in equilibrium at zero temperature and
interactionU. Their result was based on a perturbative flow
equation analysis for U � V and it was argued that full
thermalization occurs only on much longer time scales on
the order of V3=U4. At t ¼ 2=V our numerical data agree
very well with the predicted value of �nstat for U � 1V.
Note that even for quenches to larger U, a prethermaliza-
tion plateau remains visible in Fig. 2(c) at roughly this
value, although the time scales V=U2 and V3=U4 are no
longer well separated.

Strong-coupling regime, U >Udyn
c .—For quenches to

large U we observe collapse-and-revival oscillations with
approximate frequency 2�=U both in dðtÞ and �nðtÞ
[Figs. 2(b) and 2(d)]. This phenomenon is well understood
in the atomic limit (V ¼ 0), where the propagator e�iHt is
exactly 2�=U periodic [2]. As expected, these oscillations
are damped for nonzero V: at least for small times, they fall
off on time scales on the order of 1=V. Interestingly, the
first few oscillations of dðtÞ are not centered around the
thermal value dth [solid arrows in Fig. 2(b)], which is
instead located close to the first minimum of dðtÞ. This
shows that a prethermalization regime does also exist for
U � V, as discussed in Ref. [10] for the one-dimensional
Bose-Hubbard model, where oscillations in dðtÞ are
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FIG. 1 (color online). Momentum distribution nð�k; tÞ for
quenches from U ¼ 0 to U ¼ 3 (left panel) and U ¼ 5 (right
panel).
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damped to a nonthermal quasistationary value on the time
scale 1=V, while full thermalization can only happen on
much longer time scales.

We now show that this prethermalization regime is a
general feature of fermionic Hubbard-type models at
strong coupling and calculate the double occupation in
the quasistationary state. We use the standard unitary
transformation �A ¼ e�SAeS [30] for which the double
occupation �D ¼ P

i �ni" �ni# of the dressed fermions �ci� is

conserved, ½H; �D� ¼ 0. After decomposing the hopping
term [31], K ¼ P

ij�ðVij�=VÞcþi�cj�, into parts Kp that

change the double occupation by p, i.e., Kþ ¼P
ij�ðVij�=VÞcþi�cj�ð1� nj ��Þni �� ¼ ðK�Þþ and K0 ¼ K �

Kþ � K�, the leading order transformation is S ¼
ðV=UÞ �Kþ þ ðV=UÞ2½ �Kþ; �K0� � H:c:þOðV3=U3Þ. For
the double occupation, dðtÞ ¼ heiHtDe�iHti0=L, we obtain

dðtÞ ¼ dstat � 2V

U
Re½eitURðtVÞ� þO

�
V2

U2
;
tV3

U2

�
; (4)

where RðtVÞ ¼ heitVK0Kþe�itVK0i0=L and dstat ¼
dð0Þ þ ð2V=UÞRehKþ=Li0. The error OðtV3=U2Þ, which
is due to omitted terms in the exponentials e�iHt, is ir-
relevant in comparison to the leading terms if t � U=V2.
Here we do not consider the dynamics for t � U=V2. In
fact, dðtÞ remains close to h �Di, which is constant on ex-

ponentially long time scales [18]. It remains to show that
(i) the envelope function RðtVÞ of the oscillating term
decays to zero for t � 1=V, and (ii) the quasistationary
value dstat differs from the thermal value dth. (i) Insert-

ing an eigenbasis K0jmi ¼ kmjmi yields RðtVÞ ¼P
m;nhjnihmji0eitVðkm�knÞhnjKþjmi. In this expression all

oscillating terms dephase in the long-time average
[13,15], so that only energy-diagonal terms contribute to
the sum. But from ½K0; D� ¼ 0 it follows that D is a good
quantum number of jni so that hnjKþjni ¼ 0, and thus
RðtVÞ vanishes in the long time limit (if it exists and if
accidental degeneracies between sectors of different D are
irrelevant). From Eq. (4) we therefore conclude that dðtÞ
equals dstat for times 1=V � t � U=V2, up to corrections
of order OðV2=U2Þ. (ii) For the quasistationary value we
obtain dstat ¼ dð0Þ ��d,

�d ¼ �X
ij�

Vij�

UL
hcþi�cj�ðni �� � nj ��Þ2i0; (5)

which applies to arbitrary initial states. For noninteracting
initial states the expectation value in this expression fac-
torizes; in DMFT Eq. (5) then evaluates to �d ¼ nð1�
n=2ÞðV=UÞhK=Li0; i.e., it is proportional to the kinetic
energy in the initial state. For the thermal value dth we
expand the free energy in V=T�, because the effective
temperature T� is much larger than V after a quench to
U � V. At half-filling we obtain dth ¼ dð0Þ þ ðV=UÞ	
hK=Li0; for noninteracting initial states in DMFT we thus
find that �d ¼ dð0Þ � dstat ¼ ½dð0Þ � dth�=2, i.e., at times
1=V � t � U=V2 the double occupation has relaxed only
halfway towards dth.
The strong-coupling predictions for the prethermaliza-

tion regime agree with our numerical results, for which the
center of the first oscillation in dðtÞ approaches dstat for
large U [inset in Fig. 2(b)]. The scenario also applies to
interaction quenches in the half-filled Falicov-Kimball
model in DMFT [12] and the 1=r Hubbard chain [15],
although thermalization is inhibited in these models: in
both models the long-time limit of dðt ! 1Þ can be ob-
tained exactly and indeed agrees with dstat for U � V. For
quenches to large U in the free 1=r chain (with bandwidth
2�V) Eq. (5) yields �d ¼ ðV=UÞð1� 2n=3Þ�. For the
Falicov-Kimball model in DMFT �d is half as big as for
the Hubbard model because only one spin species contrib-
utes to the kinetic energy in the initial state.
Fast thermalization, U 
 U

dyn
c ¼ 3:2V.—The charac-

teristic collapse-and-revival oscillations of the strong-
coupling regime disappear for quenches to U between
3:3V and 3V, as is apparent from the Fermi surface dis-
continuity�n1 at its first revival maximum [Fig. 3(a)]. This
change in the short-time dynamics reflects a change in the
nature of single-particle excitations [Eq. (3)]. It occurs also
in equilibrium even at very high temperatures, because
jGret

��ðt� t0Þj2 becomes oscillatory as a result of the transfer
of spectral weight to the Hubbard subbands at �U.
Additionally the prethermalization plateau at �nstat disap-
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FIG. 2 (color online). Fermi surface discontinuity �n and
double occupation dðtÞ after quenches to U � 3 (left panels)
and U � 3:3 (right panels). Horizontal dashed lines in the lower
left panel are at the quasistationary value �nstat ¼ 2Z� 1 pre-
dicted in Ref. [14], with the T ¼ 0 quasiparticle weight Z taken
from equilibrium DMFT data [33]. Horizontal arrows indicate
corresponding thermal values dth of the double occupation,
obtained from equilibrium DMFT. Inset: thermal value dth and
dmed, the average of the first maximum and the second minimum
of dðtÞ, which provides an estimate of the stationary value dstat;
black dashed lines are the respective results from the strong-
coupling expansion (see text).
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pears between 3V and 3:3V, so that the system can relax
rapidly after quenches to U values in this range: momen-
tum distribution and double occupation reach their respec-
tive thermal values already before the first expected
collapse-and-revival oscillation at time 2�=U [Fig. 3(b)].
We thus find that the prethermalization regimes at weak
and strong Hubbard interaction are separated by a special
point, which we estimate from our data to be located at

Udyn
c ¼ 3:2V, where relaxation processes on all energy

scales become relevant. This sharp crossover is quite re-
markable in view of the fact that the effective temperature
T� after the quench is much higher than the critical end-
point of the Mott metal-insulator transition in equilibrium
(Tc 
 0:052V, Uc 
 4:76V [32], whereas T� ¼ 0:84V for
U ¼ 3:3V), so that in equilibrium metallic and insulating
phases could hardly be distinguished. A similar critical
behavior was found for quenches in Heisenberg chains
[17], and we speculate that such dynamical phase transi-
tions are a generic property of the nonequilibrium dynam-
ics of correlated systems; however, this issue requires
further study. In particular, we cannot at present determine
whether an abrupt change in the longtime behavior occurs

at the same U
dyn
c .

Conclusion.—We determined the real-time dynamics of
the Hubbard model after a quench from the noninteracting
state using nonequilibrium DMFT, for which the CTQMC
method [26,27] proves to be a very suitable impurity
solver. This method allows one to investigate the transient
dynamics of correlated fermions in a variety of contexts,
e.g., to describe experiments with cold atomic gases [3,4]
or pump-probe spectroscopy on correlated electrons [12].
For the Hubbard model we found that rapid thermalization

occurs after quenches toU 
 U
dyn
c ; in fact this is one of the

few cases [10,13] where thermalization can be numerically
observed for a nonintegrable model. On the other hand, for
quenches to very small or very large interactions, the
system becomes trapped in quasistationary states on inter-
mediate time scales. The phenomena discussed in this
Letter are manifest in the momentum distribution and
double occupation; both quantities are accessible in experi-
ments with cold atomic gases.

We thank S. Kehrein, C. Kollath, M. Möckel, M. Punk,
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[26] L. Mühlbacher and E. Rabani, Phys. Rev. Lett. 100,

176403 (2008).
[27] P. Werner et al., Phys. Rev. B 79, 035320 (2009).
[28] A measure of the error in dðtÞ is given by the deviation

�EðtÞ of the measured energy EðtÞ from the conserved
value Eðt ¼ 0Þ. The maximum of j�Ej=LU is on the order
of the symbol size in Figs. 2(a) and 2(b).

[29] Here and throughout the subscript 0 denotes expectation
values in the initial state at time t ¼ 0.

[30] A. B. Harris and R.V. Lange, Phys. Rev. 157, 295 (1967).
[31] The derivation holds for arbitrary (and possibly spin-

dependent) hopping Vij�.
[32] M. J. Rozenberg et al., Phys. Rev. Lett. 83, 3498 (1999).
[33] R. Bulla, Phys. Rev. Lett. 83, 136 (1999).
[34] A. F. Albuquerque et al., J. Magn. Magn. Mater. 310, 1187

(2007).

 0.2

 0.4

 0.6

 0.8

-2 -1  0  1  2

n(
ε,

t)

ε

t = 1.6
T* = 0.84

 0

 0.5

 1

 0  2  4  6

∆n

U

∆nstat

∆n1

U=3.2

a b

FIG. 3 (color online). Left panel: U dependence of the pre-
thermalization plateau, �nstat, and the first revival maximum,

�n1. The shaded area marks the region near U
dyn
c ¼ 3:2V with

very fast thermalization. Right panel: momentum distribution at
time t ¼ 1:6 after a quench to U ¼ 3:3V (symbols); thermal
momentum distribution at the corresponding equilibrium tem-
perature T� ¼ 0:84V (solid line).
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