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The magnetic ground state phase diagram of the disordered Hubbard model at half-filling is computed

in dynamical mean-field theory supplemented with the spin resolved, typical local density of states. The

competition between many-body correlations and disorder is found to stabilize paramagnetic and

antiferromagnetic metallic phases at weak interactions. Strong disorder leads to Anderson localization

of the electrons and suppresses the antiferromagnetic long-range order. Slater and Heisenberg antiferro-

magnets respond characteristically differently to disorder. The results can be tested with cold fermionic

atoms loaded into optical lattices.
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Interacting quantum many-particle systems with disor-
der pose fundamental challenges for theory and experiment
not only in condensed matter physics [1–5], but most
recently also in the field of cold atoms in optical lattices
[6–10]. Indeed, ultracold gases have quickly developed
into a fascinating new laboratory for quantum many-body
physics [11–17]. A major advantage of cold atoms in
optical lattices is the high degree of controllability of the
interaction and the disorder strength, thereby allowing a
detailed verification of theoretical predictions.

In particular, these quantum many-body systems will
allow for the first experimental investigation of the simul-
taneous presence of strong interactions and strong disorder.
This very interesting parameter regime is not easily acces-
sible in correlated electron materials. Namely, at or close to
half-filling where interaction effects become particularly
pronounced, strong disorder implies fluctuations (e.g., of
local energies) of the order of the bandwidth, which usually
leads to structural instabilities. These limitations are absent
in the case of cold atoms in optical lattices where disorder
can be tuned to become arbitrarily strong without destroy-
ing the experimental setup. Since at half-filling and in the
absence of frustration effects interacting fermions order
antiferromagnetically, several basic questions arise:
(i) How is a noninteracting, Anderson localized system at
half-filling affected by a local interaction between the
particles? (ii) How does an antiferromagnetic insulator at
half-filling respond to disorder which in the absence of
interactions would lead to an Anderson localized state?
(iii) Do Slater and Heisenberg antiferromagnets behave
differently in the presence of disorder? In this Letter we
answer the above questions by calculating the zero tem-
perature, magnetic phase diagram of the disordered
Hubbard model at half-filling using dynamical mean-field
theory (DMFT) [18–20] with a geometric average over the

disorder [21–25] and allowing for a spin-dependence of the
density of states (DOS).
Antiferromagnetic (AF) long-range order is a generic

property of interacting lattice fermions with particle-hole
symmetry, as exemplified by the Hubbard model at half-
filling with nearest-neighbor hopping on a bipartite lattice
[26–28]. Such an instability is also highly relevant for
current and future experiments in optical lattices [29],
where the magnetic superexchange energy scale has re-
cently been observed in a two-component bosonic mixture
[30]. The influence of disorder, e.g., due to fluctuating local
potentials, on interacting quantum particles is subtle and
leads to a remarkably rich phase diagram which was
studied by a variety of numerical techniques [31–37].
While previous investigations yielded important insights
into the properties of disordered Hubbard antiferromagnets
in various regions of parameter space, a comprehensive
study, where effects due to Anderson localization, genuine
many-body correlations, and AF order are treated within
the same nonperturbative theoretical framework, did not
yet exist. To this end we here employ the DMFT—a non-
perturbative approach to correlated lattice fermions which
accounts for the Mott-Hubbard metal-insulator transition
(MIT) and magnetic ordering—in combination with a dis-
order average which is able to detect Anderson localization
on the one-particle level [21–23]. Namely, Dobrosavljević,
Pastor, and Nikolić [22] showed that by employing the
geometric rather than the arithmetic average over the dis-
order it is possible to determine the typical local DOS [38]
as a dynamical mean field within the DMFT. This approach
was recently employed to calculate the paramagnetic phase
diagram of the disordered Hubbard model [24] and
Falicov-Kimball model [25]. Thereby it was possible to
determine the MIT due to disorder (Anderson localization)
and interactions (Mott-Hubbard transition), respectively, as
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well as the transition scenario caused by their simultaneous
presence, within a unified framework; see also [39].

In the absence of frustration effects the Mott-Hubbard
MIT is completely hidden by AF long-range order [19,28].
To capture this feature it is necessary to generalize the
investigation and include AF solutions of the Hubbard
model with local disorder (Anderson-Hubbard model),
whose Hamiltonian is given by
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Here tij is the amplitude for hopping between the sites i

and j, U is the on-site repulsion, ni� ¼ ayi�ai� is the local

fermion number operator with ai� (ayi�) as the annihilation
(creation) operator of a fermion with spin �, and �i are
random on-site energies. In the following we work with a
continuous probability distribution function for �i, i.e.,
P ð�iÞ ¼ �ð�=2� j�ijÞ=�, with � as the step function.
The parameter � is a measure of the disorder strength. We
consider a finite dimensional bipartite lattice with an equal
number of fermions and lattice sites (half-filled case). In
the absence of disorder the Hamiltonian is then explicitly
particle-hole symmetric.

The Anderson-Hubbard model (1) is solved within
DMFT by mapping it onto single-impurity Anderson
Hamiltonians with different �i [19,32]. For each random
on-site energy �i, where i belongs to one of the sublattices
s ¼ A or B, we calculate the local Green function
G�sð!; �iÞ. From this quantity we obtain the geometri-
cally averaged local DOS �geom

�s ð!Þ ¼ exp½hln��sð!; �iÞi�
[21,22], where ��sð!; �iÞ ¼ �ImG�sð!; �iÞ=�, and
hOi ¼ R

d�iP ð�iÞOð�iÞ denotes the arithmetic average of

Oð�iÞ. For comparison, the arithmetically averaged local
DOS �arith

�s ð!Þ ¼ h��sð!; �iÞi is also computed. The local
Green function is then obtained from the Hilbert transform
G�

�sð!Þ ¼ R
d!0��

�sð!0Þ=ð!�!0Þ, where � ¼ geom
(arith) denotes the geometric (arithmetic) average used to
compute the local DOS. The local self-energy ��

�sð!Þ is
determined from the k-integrated Dyson equation
��

�sð!Þ ¼ !� ��
�að!Þ � 1=G�

�sð!Þ where ��
�sð!Þ is the

hybridization function of the effective Anderson
Hamiltonian. The latter quantity provides the position
and the resonant broadening of single-site quantum levels
and may be interpreted as a molecular mean field which
describes the effect of all other sites within the DMFT. The
self-consistent DMFT equations are closed by the Hilbert
transform of the Green function on a bipartite lattice

G�
�sð!Þ ¼

Z
d�

N0ð�Þ
½!���

�sð!Þ � �2

!���
��sð!Þ�

; (2)

where N0ð�Þ is the noninteracting DOS and �s denotes the
sublattice opposite to s. In the following we choose a

model DOS, N0ð�Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � �2

p
=�D2, with bandwidth

W ¼ 2D, and set W ¼ 1. For this DOS and a bipartite
lattice the local Green function and the hybridization func-
tion are connected by the simple algebraic relation
��
�sð!Þ ¼ D2G�

��sð!Þ=4 [19]. The DMFT equations are
solved at zero temperature by the numerical renormaliza-
tion group technique [40], which allows us to calculate the
geometric or arithmetic average of the local DOS in each
iteration loop.
To characterize the ground state of the Hamiltonian (1)

the following quantities are computed: The local DOS
��
�sð!Þ for a given sublattice s and spin direction �, the

total DOS for a given sublattice s at the Fermi level
N�

s ð0Þ � P
��

�
�sð! ¼ 0Þ, and the staggered magnetization

m�
AF ¼ jn�"A � n�"Bj, where n��s ¼

R
0
�1 d!��

�sð!Þ is the

on-site particle density on each sublattice. The possible
phases of the Anderson-Hubbard model can then be clas-
sified as follows: The system is a (i) paramagnetic metal if
N

geom
s ð0Þ � 0 and m

geom
AF ¼ 0, (ii) AF metal if N

geom
s ð0Þ �

0 and mgeom
AF � 0, (iii) AF insulator if Ngeom

s ð0Þ ¼ 0 and

mgeom
AF � 0 but Ngeom

s ð!Þ � 0 for some ! � 0, and (iv)

paramagnetic Anderson-Mott insulator if N
geom
s ð!Þ ¼ 0

for all !. The order parameter m
geom
AF is related to the

number of states in the continuous part of the spectrum
and thus accounts for itinerant quasiparticles which then
order magnetically. A finite value ofm

geom
AF corresponds to a

spin density wave, which should be observable in neutron
scattering experiments.
The ground state phase diagram of the Anderson-

Hubbard model (1) obtained by this classification is shown
in Fig. 1. All lines correspond to continuous phase tran-
sitions. In the absence of disorder the system is an anti-
ferromagnetic insulator for arbitrary U > 0 [26–28].
Depending on whether the interaction U is weak or strong
the response of the system to disorder is found to be very
different. In particular, at strong interactions, U=W * 1,
there exist only two phases, an AF insulating phase at weak
disorder, �=W & 2:5, and a paramagnetic Anderson-Mott
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FIG. 1 (color online). Magnetic ground state phase diagram of
the Anderson-Hubbard model at half-filling as calculated by
DMFT with a spin resolved local DOS (see text).
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insulator at strong disorder, �=W * 2:5. Namely, the local
DOS and the staggered magnetization both decrease gradu-
ally as the disorder � increases and vanish at their mutual
boundary (lower panel of Fig. 2). By contrast, the phase
diagram for weak interactions, U=W & 1, has a much
richer structure (Fig. 1). In particular, for weak disorder a
paramagnetic metallic phase is stable. It is separated from
the AF insulating phase at large U by a narrow region of
AF metallic phase. The transition between AF metal and
AF insulator occurs at intermediate couplings and without
symmetry breaking.

To better understand the nature of the AF phases in the
phase diagram we take a look at the staggered magnetiza-
tion m�

AF. The dependence of m
geom
AF on U is shown in the

upper panel of Fig. 2 for several values of the disorder�. In
contrast to the nondisordered case a finite interaction
strength U >Ucð�Þ is needed to stabilize the AF long-
range order when disorder is present. The staggered mag-
netization saturates at large U for both averages; the maxi-
mal values depend on the disorder strength. In the lower
panel of Fig. 2 the dependence of m�

AF on the disorder � is
shown for different interactionsU. Only for smallU do the
two averages yield approximately the same results.
Another useful quantity is the polarization P�

AF ¼
m�

AF=I
�, where I� ¼ Rþ1

�1
P

�s�
�
�sð!Þd!=2 is the total

spectral weight of ��
�sð!Þ. It allows one to investigate the

contribution of the pointlike spectrum of the Anderson lo-
calized states to the magnetization. This provides impor-
tant information about the spectrum since with increasing
disorder more and more one-particle states of the many-
body system are transferred from the continuous to the
pointlike spectrum. For weak interactions (U ¼ 0:5) the
decrease of the polarization with increasing disorder � ob-
tained with geometric or arithmetic averaging is the same
(see inset in Fig. 2). Since arithmetic averaging does not
treat states from the pointlike spectrum correctly, the de-
crease ofm�

AF (which is also the same for the two averages,

see lower panel of Fig. 2) must be attributed to disorder
effects involving only the continuous spectrum. At larger
U the polarization is constant up to the transition from the
AF insulator to the paramagnetic Anderson-Mott insulator.
In the latter phase the polarization is undefined, because
the continuous spectrum does not contribute to I

geom
AF .

The AF metallic phase is long-range ordered, but there is
no gap since the disorder leads to a redistribution of
spectral weight. In Fig. 3 the local DOS in the vicinity of
the transitions between the paramagnetic metal, the AF
insulator and the AF metal at U ¼ 0:5 (left panel), and the
transitions between the AF insulator, the AF metal and
back into the AF insulator at U ¼ 1:0 (right panel) are
shown. The paramagnetic metal, where ��

�sð!Þ ¼ ��
��sð!Þ,

is seen to be stable only for weak interactions.
In the absence of disorder the AF insulating phase

has a small (‘‘Slater’’) gap at U=W < 1 and a large
(‘‘Heisenberg’’) gap at U=W > 1. These limits can be
described by perturbation expansions inU and 1=U around
the symmetry broken state of the Hubbard and the corre-
sponding Heisenberg model, respectively. In agreement
with earlier studies [41] our results for mAF (upper panel
of Fig. 2) show that there is no sharp transition between
these limits, even when disorder is present. This may be
attributed to the fact that both limits are described by the
same order parameter. However, the phase diagram (Fig. 1)
shows that the two limits can be distinguished by their
overall response to disorder. Namely, the reentrance of the
AF metallic phase at �=W * 1 occurs only within the
Slater AF insulating phase.
The magnetic structure of the Anderson-Mott insulator

cannot be determined by the method used here since it
describes only the continuous part of the spectra and not
the point spectrum. However, only the paramagnetic solu-
tion should be expected to be stable because the local
moments as well as the kinetic exchange interaction re-
sponsible for the formation of the AF metal are suppressed
by the disorder. This does not exclude the possibility of
Griffiths phaselike AF domains [42].
It is interesting to note that even the DMFT with an

arithmetic average finds a disordered AF metal [32,34].
However, the arithmetically averaged local DOS incor-
rectly predicts both the paramagnetic metal and the AF
metal to remain stable for strong disorder. Only a computa-
tional method which is sensitive to Anderson localization,
such as the DMFTwith geometrically averaged local DOS
employed here, is able to detect the suppression of the
metallic phase for �=W * 1:5 and the appearance of the
paramagnetic Anderson-Mott insulator at large disorder �
already on the one-particle level.
In conclusion, we computed the ground state phase

diagram of the Anderson-Hubbard model at half-filling
within a nonperturbative approach which can treat inter-
actions and disorder of arbitrary strength and is sensitive to
Anderson localization on the one-particle level. For low
disorder and weak interactions paramagnetic and antifer-
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romagnetic metallic phases become stable, with a reentrant
behavior of the latter phase. Slater and Heisenberg anti-
ferromagnets can be distinguished by their very different
response with respect to disorder. Experiments with cold
fermionic atoms loaded into optical lattices will be able to
test these predictions and check the accuracy of the theo-
retical approach employed here.
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FIG. 3 (color online). Typical local DOS as a function of disorder � for interaction U ¼ 0:5 (left panel) and U ¼ 1:0 (right panel).
Solid and dashed lines represent opposite spin directions.
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