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The effect of binary alloy disorder on the ferromagnetic phases of f-electron materials is studied within
the periodic Anderson model. We find that disorder in the conduction band can drastically enhance the
Curie temperature Tc due to an increase of the local f moment. The effect may be explained qualitatively
and even quantitatively by a simple theoretical ansatz. The emergence of an alloy Kondo insulator at
noninteger filling is also pointed out.
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Materials with f-electrons such as the rare earths (e.g.,
cerium) or actinides (e.g., uranium) exhibit a wealth of
highly unusual thermodynamic, magnetic, and transport
properties [1]. The minimal microscopic model that can
account for this diverse physical behavior is the periodic
Anderson model (PAM) which describes a band of non-
interacting electrons hybridizing with localized, interact-
ing f-electrons [2]. Depending on the position of the
f-electron energy "f relative to the conducting band, and
on the strength of the hybridization V and the local
Coulomb interaction U, the PAM is able to reproduce
heavy fermion, intermediate valence, and local moment
behavior. At low enough temperatures, the PAM also de-
scribes magnetically ordered phases. While antiferromag-
netic order is well known to occur close to half-filling [2],
ferromagnetic solutions are found far away from half-
filling [3]. Indeed, ferromagnetism has been observed in
various f-compounds [4].

Alloys of f-electron materials also display intriguing
properties. For example, by changing the stoichiometric
composition of Ce�Pt1�xNix�2Si2, the systems can be tuned
from the local moment regime at x � 0 to the intermediate
valence regime at x � 1 [5]. Alloying inevitably introdu-
ces disorder into the system. In general, disorder is ex-
pected to reduce the tendency towards ferromagnetic long-
range order of the f-electrons and thus lower the Curie
temperature Tc. On the other hand, in certain cases, dis-
order is even known to improve the stability of ferromag-
netism. For example, disorder in the conduction electron
band caused by the substitution of Rh by Co in
URh1�xCoxGe leads to a maximum in Tc at x � 0:6 [6].
Similarly, a maximum in Tc is observed in CeCu2Si2�xGex
at x � 1:5 which may be attributed to an enhanced ex-
change interaction between the f-electron moments in-
duced by the diffusive motion of the Cu electrons [7].
Finally, alloying Ce with La as in �Ce1�xLax�3Bi4Pt3 in-
troduces disorder into the f-electron system, which can
trigger a transition from a Kondo insulator to a dirty metal
[8]. Clearly, disorder is an important feature of many

f-electron alloys and must therefore be included in any
comprehensive theoretical study of such compounds.

Previous investigations of the disordered PAM focused,
in particular, on the effect of nonmagnetic impurities on the
heavy Fermi liquid or the Kondo insulating state [9], and
on the disorder-driven non-Fermi liquid behavior in Kondo
alloys [10]. Grenzebach et al. [11] recently presented a
detailed study of transport properties of the disordered
PAM within the dynamical mean-field theory (DMFT)
[12] together with a thorough discussion of the develop-
ment of the field. The effect of disorder in the f-electrons
on the ferromagnetic phase was investigated by Meyer
[13], who found that the Curie temperature is always
reduced.

In this Letter, we report results of a detailed study of
ferromagnetism in the PAM in the presence of alloy dis-
order. In particular, we show that Tc can be substantially
enhanced by disorder in the conduction electrons. We also
predict Kondo insulator behavior away from half-filling at
particular values of the alloy concentration. Quite gener-
ally, the Hamiltonian of the PAM in the presence of local
disorder has the form
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where cyi� (ci�) and fyi� (fi�) are creation (annihilation)
operators of conduction (c) and localized (f) electrons with
spin � at a lattice site i. Here the on site energies "fi and "ci
are random variables, and V is the local hybridization
between f- and c-electrons. The hopping amplitude of
the c-electrons is given by tij. The Coulomb interaction
U acts only between f-electrons on the same site.

The alloy will be modeled by a bimodal probability
distribution function, P�yi� � x��yi � y0 � �y� � �1�

x���yi � y0�, where yi � "ci , "
f
i are independent, random

variables with reference values y0 � "c0, "f0 . The alloy
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concentration is characterized by the parameter x and the
splitting between the atomic levels of the alloy components
by the energy �y � �c, �f, respectively. While the con-
centration x and energy splitting �y are, in general, inde-
pendent parameters, the values x � 0, 1 correspond to a
nondisordered system even if �y � 0. Hence, �y � x�1�

x��y is a natural parameter for the disorder strength of
alloy disorder.

The PAM with binary alloy disorder is solved within
DMFT [12], which becomes exact in the limit of infinite
dimensions [14]. In DMFT, the disordered PAM is mapped
onto independent impurities; i.e., for each random variable
fyig, the action has the form

 Sloc�f�; c�; fyig	 �
X
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�f��n; c��n�
i!n ��� "

f
i V�

V i!n ��� "
c
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The function ��n describes an effective dynamical hybrid-
ization of the c-electrons with the bath. It is the same for all
random variables fyig and is determined by the self-
consistency equations to be discussed below. We start
with the local matrix Green function

 G loc
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hT�f����f
y
��0�i hT�f����c
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(3)

where T� is the time-ordering operator. Since the Green
function (3) depends on fyig, it is a random function. Here,
we perform arithmetic averaging; i.e., the averaged Green
function is given by

 G loc
� ��� �

Z Y
fyig

dyiP�yi�Gloc
� ��; fyig�: (4)

In the absence of interactions, one then obtains the results
of the well-known coherent potential approximation (CPA)
[15]. Effects of Anderson localization are neglected in this
case but can be incorporated by employing the geometric
average [16]. The self-consistency requires the averaged
local Green function (4) to be the same as the lattice Green
function, i.e.,

 G �n �
X
k

i!n ��� �f
�n V�

V i!n ��� �k � �c
�n

� �
�1
:

(5)

The local self-energies appear in the k-integrated Dyson
equation ��n � G�1

�n �G�n, where G�n is the local Green
function of the noninteracting bath electrons, with

 G �1
�n �

i!n ��� "
f
0 V�

V i!n ��� "
c
0 � ��n

� �
: (6)

Equations (2)–(6) form a general, closed set of equations,
which determine all local, dynamical correlation functions
of the disordered PAM.

To understand the effect of alloy disorder on the physics
described by the PAM, it is instructive to investigate the
case U � 0 first since alloy disorder affects a hybridized
two-band system in several interesting ways. To this end,
we consider the disorder to act only on the c-electrons or

the f-electrons, respectively. In the case of c-electron
disorder, the diagonal elements of the local Green function
(5) are given by

 Gcc
�n �

x

�Gcc
�n�
�1 � jVj2Gff

�n

�
1� x

�Gcc
�n�
�1 � jVj2Gff

�n � �c

Gff
�n �

x

�Gff
�n��1 � jVj2Gcc

�n

�
1� x

�Gff
�n��1 � jVj2

�Gcc
�n�
�1��c

:

(7)

The case of f-electron disorder is obtained by exchanging
f $ c in Eq. (7). Large energy splitting �c leads to a band
splitting of the conduction electrons as in the single band
model [17]; i.e., each alloy subband contains 2xNL and
2�1� x�NL states, respectively, where NL is the number of
lattice sites. At the same time, the f-level does not split.
Altogether, the alloy with hybridized c- and f-electrons
can therefore be a band insulator even for total densities
different from integer values (2 or 4) [17].

We now include the interaction U between the
f-electrons and investigate its influence on the alloy sub-
bands. The effective two-orbital impurity problem in the
presence of disorder, Eqs. (2)–(6), is solved by finite
temperature determinant quantum Monte Carlo (QMC)
simulations. Ferromagnetic instabilities are detected by
the divergence of the static spin susceptibility and by a
nonvanishing value of the magnetization [18]. In the
numerical examples presented below, the DOS for the
noninteracting c-electrons has the model form N0�"� ���������������

4� "2
p

=2�, where the energy unit is t � 1. In the follow-
ing, we fix the interaction and the hybridization at U � 1:5
and V � 0:6, respectively, and include disorder either in
the f-electron or c-electron system.

As shown in Fig. 1, the computed Curie temperature for
the transition to the ferromagnetic state is a nonmonotonic
function of the alloy concentration x. In particular, the
behavior is quite different for disorder acting on the f- or
the c-electrons.
f-electron disorder.—In agreement with Meyer [13], the

presence of f-electron disorder always reduces the Curie
temperature relative to its nondisordered values at x � 0 or
1. For strong enough disorder, Tc eventually vanishes, e.g.,
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at x � 0:28 and x � 0:75, respectively, for �f � 1:7 (left
panel of Fig. 1). This is due to the splitting of the f-electron
band at large �f which increases the double occupation of
the lower alloy subband; this reduces the local moment of
the f-electrons and thereby Tc.
c-electron disorder.—By contrast, c-electron disorder

leads to a much more subtle dependence of Tc on concen-
tration x. Namely, for increasing energy splitting �c, there
are, in general, three different features observed, the physi-
cal origin of which will be discussed in more detail later:
(i) at x � 1, i.e., in the nondisordered case, Tc is reduced;
(ii) a minimum develops in Tc at x � ntot � 1> 0; (iii) for
sufficiently large �c, there exists a range of x-values where
Tc is enhanced over its nondisordered values at x � 0 or 1.
Altogether, this leads to a global maximum in Tc vs x.
While the decrease of Tc at x � 1 is a simple consequence
of the reduction of the energy difference between the
f-level and the c-electron band, "c � "f � "c0 � "

f
0 �

�c, for increasing �c, the latter effects are more subtle.
To understand the minimum in Tc vs x, we computed the

evolution of the spectral functions Nc�!� at x � 0:3 for �c

increasing from 0 to 6 (Fig. 2). There is an opening of a gap
at the chemical potential signalling a metal-insulator tran-
sition in this system. This is caused by the splitting of the
c-electron band due to binary alloy disorder and the corre-
lations between the f-electrons. Namely, for energy split-
tings �c much larger than the width of the c-electron band,
the total number of available low-energy states is reduced
from 4NL to �4� 2�1� x�	NL � 2�1� x�NL, whereby
the filling effectively increases by a factor of 4=�2�1�
x�	, such that neff

tot � 2ntot=�1� x�, if ntot < 2�1� x�. For
the filling ntot � 1:3 studied in the Figs. 1 and 2, the
concentration x � 0:3 is a special case since then neff

tot �
2. The system is then effectively at half-filling and behaves
as a Kondo insulator at large U, �c, and low temperatures.
In particular, itinerant ferromagnetism is unfavorable in
this case, i.e., Tc � 0 in the vicinity of x � 0:3 at �c � 2,

cf. Figure 1. The metal to Kondo insulator transition at
noninteger filling in the PAM predicted here is a counter-
part of the Mott-Hubbard metal to insulator transition at
nonintegral fillings in the one-band Hubbard model found
in [17,19].

We are now able to understand the maximum in Tc vs x.
It can be explained within the following model based on an
ansatz for the Curie temperature, Tc�U;V;�� �
T0
c �U;V;��F

c��� "0
c�F

f��� "0
f�, which implies that

the formation of local f-electron moments (Ff) is assumed
to be independent from the c-electron mediated ordering of
those moments (Fc). In fact, for the RKKY model, this
ansatz can be microscopically justified within a static
mean-field theory [20]. The two functions Fc, Ff are
determined by Tc calculated within DMFT for the nondis-
order case at fixed�� �c0 or�� �f0 , respectively; they are
shown in Figs. 3(a) and 3(b) for one set of parameters. The
prefactor T0

c is determined by the requirement that the
dimensionless functions Ff and Fc be equal to one at their
maxima. We note that Ff��� "f0� has a maximum when
the f-level is half-filled (� � "f0 �U=2), i.e., when the
local moment is maximal.

The Curie temperature in the presence of c-electron
disorder can now be estimated by averaging over the
c-electron part, Fc, giving rise to the disorder-dependent
function F c�x;�� �c0� � �xF

c��� "c0 � �c� � �1�
x�Fc��� "c0�	. The linear dependence on the alloy con-
centration can again be justified microscopically within a
static mean-field theory for the RKKY model, where Tc
depends linearly on the DOS at the chemical potential [20].
Tc is now determined for each concentration x. We calcu-
late �, which is an implicit function of x, in the nonhybri-
dized limit (V � 0) within a rigid band approximation
[21]. The dependence of the resulting functions F c�x;��

"c0� and Ff��� "f0� on x are shown in Fig. 3(c) for
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�c � 2:0. In general, Ff��� �f0� has a maximum at those
values of x for which the f-level is half-filled [see
Fig. 3(c)]. By contrast, F c�x;�� �c0� is characterized by
a wide minimum, related to the formation of the pseudogap
in the interacting DOS seen in Fig. 2. This minimum
reaches zero, i.e., F c�x;�� "c0� � 0, for a finite range
of x values as shown in Fig. 3(c). Altogether, the product of
F c�x;�� �c0� and Ff��� �f0�, which determines the
critical temperature, has a global maximum. The resulting
Tc�x� agrees remarkably well with the numerical result
obtained by DMFT as shown in Fig. 3(d).

In conclusion, the interplay between the disorder in-
duced splitting of the conduction band and many-body
correlations among the f-electrons can lead to a remark-
able enhancement of the Curie temperature in the periodic
Anderson model. There are two competing effects deter-
mining Tc as the alloy concentration x is decreased from
x � 1: (i) a rise due to an increase of the local moment, and
(ii) a decrease due to the opening of a gap in the alloy
Kondo insulator at noninteger filling. Altogether, this leads
to a global maximum in Tc vs x. Therefore, experimental
investigations of f-electron materials with alloy disorder in
the conducting band are expected to be particularly
rewarding.
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(1992); V. Janiš and D. Vollhardt, Phys. Rev. B 46,
15712 (1992).

[16] K. Byczuk, W. Hofstetter, and D. Vollhardt, Phys. Rev.
Lett. 94, 056404 (2005).

[17] K. Byczuk, W. Hofstetter, and D. Vollhardt, Phys. Rev. B
69, 045112 (2004).

[18] M. Ulmke, Eur. Phys. J. B 1, 301 (1998); K. Byczuk and
D. Vollhardt, Phys. Rev. B 65, 134433 (2002).

[19] K. Byczuk, M. Ulmke, and D. Vollhardt, Phys. Rev. Lett.
90, 196403 (2003).

[20] See, e.g., T. Dietl, J. Cibert, D. Ferrand, and Y. Merle
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