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Interacting lattice electrons with disorder in two dimensions: Numerical evidence for
a metal-insulator transition with a universal critical conductivity
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(Received 8 July 2011; published 25 July 2011)

The dc conductivity of electrons on a square lattice interacting with a local repulsion in the presence of disorder
is computed by means of quantum Monte Carlo simulations. We provide evidence for the existence of a transition
from an Anderson insulator to a correlated disordered metal with a universal value of the critical dc conductivity
σdc,crit = (1.19 ± 0.02)e2/h at the transition.
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I. INTRODUCTION

The Coulomb interaction between the electrons and the
presence of disorder both strongly affect the properties of
solids.1–5 Namely, electronic correlations and randomness
are separate driving forces behind metal-insulator transitions
(MITs) due to the localization and delocalization of particles.
While the electronic repulsion may lead to a Mott-Hubbard
MIT,6 the scattering of noninteracting particles from randomly
distributed impurities can cause Anderson localization.7,8 The
simultaneous presence of disorder and interactions lead to
further subtle many-body effects, which raise fundamental
questions in theory and experiment not only in solid state
physics,1–6,8–12 but also in the field of cold atoms in optical
lattices.13

According to the scaling theory of Anderson
localization14,15 noninteracting electrons in two spatial
dimensions (d = 2) are localized in the presence of
disorder. Hence, in the thermodynamic limit at zero
temperature, there is no metallic state in d = 2. By contrast,
the experimental observation of an MIT in resistivity
measurements on various high-mobility heterostructure
samples and Si-metal-oxide-semiconductor field-effect
transistors (Si-MOSFETs)16 clearly indicates that interactions
can turn an Anderson insulator into a metal. Near-perfect
scaling of the resistivity data17 was taken as evidence for the
presence of a quantum critical point18 between the metallic
and the Anderson localized state.4,5 Recent investigations19,20

based on a nonlinear sigma model (NLσM) for interacting
electrons with disorder in the continuum confirm the existence
of such a quantum critical point, which is characterized
by a universal value of the dc resistivity. Universal critical
conductivities were also discussed in other two-dimensional
systems; for example, in connection with the transition from a
superconductor (superfluid) to an insulator,21,22 in the integer
quantum Hall effect,23 and in graphene.24

Numerical investigations of the interplay between disorder
and interactions usually address electrons on a lattice rather
than in the continuum. Various approaches include Hartree-
Fock investigations in three25 and two dimensions,26 quantum
Monte Carlo (QMC) simulations,27–29 and dynamical mean-
field theory.30–33 In their QMC studies of two-dimensional
lattice electrons, Denteneer et al.27,28 indeed found a phase
transition between an Anderson insulator and a metallic phase,

in accordance with experiment.5 There has also been the
proposal of the MIT as a percolation transition.34

In this paper we provide evidence through extensive QMC
simulations that, in the Anderson-Hubbard model in d = 2,
there exists a transition between a metallic phase and an
Anderson insulator, and that this transition takes place at
a value of the dc conductivity σdc,crit which is essentially
independent of the critical interaction, critical disorder, and
particle density. The computation of such a universal value
of the critical dc conductivity provides an explicit link to
results obtained from effective theories in the continuum.19

Indeed, numerical investigations of microscopic lattice models
can provide details of the properties of a system at a
quantum critical point that are not accessible within effective
perturbative approaches.

II. MODEL AND METHOD OF INVESTIGATION

Our investigation of interacting electrons in the presence of
disorder is based on the Anderson-Hubbard Hamiltonian on a
square lattice

H = T {εi} + U
∑

i

ni↑ni↓. (1)

Here,

T {εi} = −t
∑
〈ij〉σ

c
†
iσ cjσ +

∑
iσ

(εi − μ)niσ , (2)

is the single-electron part where c
†
iσ (ciσ ) are fermion creation

(annihilation) operators for site Ri and spin σ , niσ = c
†
iσ ciσ

is the operator for the local density, μ denotes the chemical
potential, and t is the hopping amplitude for electrons between
nearest-neighbor sites. The local energies εi are random
variables which are sampled uniformly from the interval
[−�/2,�/2]; hence the width � characterizes the strength
of the disorder. The interaction is assumed to be repulsive
(U > 0). The model is solved numerically using determinantal
QMC (DQMC),35 where the interval [0,β] [β = 1/(kBT )]
is partitioned according to β = L�τ , with �τ being the
size of a small step in the imaginary time direction, and
L being the number of imaginary time slices. The partition
function Z is then decomposed according to the Suzuki-
Trotter formula.36 In the next step, a Hubbard-Stratonovich
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transformation is performed whereby the interaction prob-
lem is reduced to noninteracting electrons in the presence
of fluctuating fields described by Ising variables on every
space- (imaginary) time lattice site.37 The electrons can
then be integrated out. The calculation of quantities such
as the Green function, electronic density, and two-particle
correlation functions proceeds with Monte Carlo sampling of
the various configurations of the Ising degrees of freedom.
The hopping integral t sets the unit of energy, and the
simulation now contains three independent energy scales:
the disorder strength �, the interaction strength U , and the
temperature T .

To evaluate the dc conductivity, we compute the electronic
current density operator

jx(Ri) = ieat

h̄

∑
σ

(c†i+exσ
ciσ − c

†
iσ ci+exσ ), (3)

where ex denotes a translation in x direction by a lattice
constant a. This leads to the time-dependent current density
operator

jx(Ri ,τ ) = eHτ/h̄jx(Ri)e
−Hτ/h̄, (4)

where τ is the imaginary (Matsubara) time. The position-space
Fourier transform of the current operator, jx(q,τ ), is then used
to calculate the current-current correlation function

�xx(q,τ ) = 〈jx(q,τ )jx(−q,τ = 0)〉. (5)

Within linear response theory, the dc conductivity is obtained
from

σdc = lim
ω→0

Im�xx(q = 0,ω)

ω
. (6)

The current-current correlation function in Matsubara time is
related to the imaginary part of the current-current correlation
function in real frequency through the integral transform

�xx(q,τ ) =
∫ ∞

−∞

dω

π

e−ωτ

1 − e−βω
Im�xx(q,ω). (7)

DQMC simulations can compute �xx(q,τ ), but to determine
σdc it is necessary to obtain Im�xx(q,ω). For sufficiently low
temperatures, the exponential decay of the bosonic kernel
K(ω,τ ; β) = e−ωτ

1−e−βω for τ = β/2 ensures that the integral
contributes only for small ω, where the substitution arising
from linear response, Eq. (6), is valid (for a discussion of the
accuracy of this approximation see, e.g., Refs. [ 27–29,38]).
Replacing τ by β/2 and Im�xx(q,ω) by ωσdc, the integral can
be carried out analytically and yields the dc conductivity as a
function of temperature for different values of the interaction
U and disorder strength �:

σdc = β2

π
�xx

(
q = 0,τ = β

2

)
. (8)

In the following discussion, we set t = 1.
There are two sources of statistical error in this analysis: one

due to the QMC simulations and the other due to the disorder

averaging. For all parameter sets studied here, the intrinsic
QMC error for any given disorder realization is much smaller
than the error arising from different disorder realizations.
These two sources of error are completely independent, and
a combined error analysis including both of them cannot be
justified. Therefore, the error bars shown are always the larger
of the two (i.e., arising from averaging over different disorder
realizations). When the error bars are of the order of, or smaller,
than the symbols they are not shown. Otherwise, they are
shown explicitly.

The conductivity data is averaged over 10 disorder real-
izations at high temperatures (T = 1,0.5,0.333,0.25), up to
80 disorder realizations for intermediate temperatures (T =
0.2,0.167), and up to 100 disorder realizations for the two
lowest temperatures (T = 0.125,0.1). The number of disorder
realizations are chosen such that the error bars are comparable
across the entire temperature range.

III. RESULTS

In Figure 1, the dc conductivity is shown as a function of
T for several values of the disorder strength �. Initially, when
the value of the disorder strength is less than about � = 10, the
slope of the conductivity curve at low temperatures is negative
(i.e., the conductivity decreases with increasing temperature),
implying that the system is metallic. As the disorder strength
is increased, the low-temperature conductivity develops a
positive slope, which is the signature of an insulator. Since the
system is far from half-filling, such that a Mott-Hubbard MIT
does not occur, these results indicate a transition between a
metallic and an Anderson localized state. The dc-conductivity
values of Fig. 1 (and all other subsequent figures and tables)
have been checked for system-size dependence with Ns =
8 × 8, Ns = 10 × 10, and Ns = 12 × 12, and the results are
unchanged.

On the basis of Fig. 1 neither the critical disorder strength
nor the value of the dc conductivity σdc at the critical point
can be determined accurately. In Fig. 2 we therefore plot
σdc as a function of the disorder � for the three lowest
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FIG. 1. (Color online) Curves of the dc conductivity vs tempera-
ture at electron density n = 0.5 (quarter filling) and interaction U = 3
on a 10 × 10 square lattice computed for different values of the
disorder strength � (see inset).
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FIG. 2. (Color online) Plot of the critical conductivity σdc vs
disorder strength � for three temperatures and the same values of
U and n as in Fig. 1. The well-defined crossing point determines the
critical disorder strength as �c = 9.8. The conductivity at the critical
disorder has the value σdc,crit = 1.19e2/h.

temperatures simulated here, (i.e., T = 0.167,0.125,0.1).
When � < �c, the dc conductivity increases with decreasing
temperature (metallic behavior), while for � > �c, the con-
ductivity decreases with decreasing temperature (insulating
behavior). The three curves shown in Fig. 2 display a
well-defined crossing point, at which the dc conductivity
is independent of temperature, thereby marking the criti-
cal point for the MIT. From the location of the crossing
point one can read off the value of the critical disorder
strength �c. For U = 3.0 at quarter-filling (n = 0.5) we
find �c = 9.8, while the value of the critical conductivity is
σdc,crit = 1.19e2/h.

In Figs. 3 and 4 we show the same plots for a dif-
ferent parameter set (U = 1.0, n = 0.3). The values of
the dc conductivity for similar strengths of disorder are
seen to be very different for the two parameter sets. For
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FIG. 3. (Color online) Curves of dc conductivity vs temperature
at electron density n = 0.3 and interaction U = 1 on a 10 × 10 square
lattice computed for different values of the disorder strength � (see
inset).
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FIG. 4. (Color online) Plot of the critical conductivity σdc vs
disorder strength � for three temperatures and the same values of
U and n as in Fig. 3. The well-defined crossing point determines the
critical disorder strength as �c = 6.8. The conductivity at the critical
disorder has the value σdc,crit = 1.19e2/h.

example, for � = 6 at T = 0.1, where metallic behavior is
found for both parameter sets, σdc = 3.1e2/h (cf. Fig. 1)
for (U = 3.0, n = 0.5), and σdc = 1.67e2/h (cf. Fig. 3) for
(U = 1.0, n = 0.3). Similarly, for � = 11 at T = 0.1, when
both systems are insulating, σdc = 0.91e2/h (cf. Fig. 1) for
(U = 3.0, n = 0.5), and σdc = 0.35e2/h (cf. Fig. 3) for (U =
1.0, n = 0.3).

Using the crossing diagram in Fig. 4 we can again determine
the strength of the critical disorder and the critical dc conduc-
tivity and find �c = 6.8 and σdc,crit = 1.19e2/h. Comparing
the results of the two parameter sets (U = 3.0, n = 0.5) and
(U = 1.0, n = 0.3), we find that, although the values of the
dc conductivity in the metallic and insulating regimes as well
as the critical disorder strength �c depend strongly on the
parameter set, the critical dc conductivity σdc,crit is apparently
independent of the values of the microscopic parameters U

and n.

TABLE I. The eight parameter sets of the interaction strength U

and electron density n employed in our investigation of correlated
electrons in the presence of disorder on a square lattice are listed
together with the computed critical disorder strength �c and the
critical dc conductivity σdc,crit at the transition between a disordered
metal and an Anderson insulator. All simulations were carried out on
a 10 × 10 square lattice.

Index U n �c σdc,crit (e2/h)

a 1.0 0.3 6.8 1.19
b 1.0 0.5 6.9 1.21
c 1.0 0.6 6.9 1.25
d 2.0 0.3 7.8 1.07
e 2.0 0.5 7.9 1.26
f 3.0 0.3 8.6 1.19
g 3.0 0.5 9.8 1.19
h 3.0 0.6 10.5 1.19
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TABLE II. Relative spread of the four quantities U , n, �c, and
σdc,crit (in percent change, see text).

Index δU δn δ�c δσdc,crit

a −50.0 −33.33 −16.6 0.00
b −50.0 +11.11 −15.3 1.68
c −50.0 +33.33 −15.3 5.04
d 0.0 −33.33 −4.3 −10.08
e 0.0 +11.11 −3.1 +5.88
f +50.0 −33.33 +5.5 0.00
g +50.0 +11.11 +20.3 0.00
h +50.0 +33.33 +28.8 0.00

We will use the crossing diagrams to evaluate the critical
disorder strength and the critical conductivity for six more
parameter sets (U,n), which are listed in Table I. For every
parameter set, the value of the critical dc conductivity is
determined to an accuracy of ∼0.01e2/h.

Table I lists four dimensionful quantities with different
dimensions. U and �c are in units of the hopping t , the
filling n is a dimensionless number, while σdc,crit is in units
of the quantum of conductance, e2/h. Thus, a direct compar-
ison of the spread of these four quantities is meaningless.
Therefore, we determine the relative spread of these four
quantities across the different sets a–h. The reference point
with respect to which the relative spread is calculated for
the quantity of interest is taken to be the mean of the
eight data sets. For example, the reference point for the
Hubbard interaction U is taken to be Ũ = 1

8 (1.0 + 1.0 +
1.0 + 2.0 + 2.0 + 3.0 + 3.0 + 3.0) = 2.0. Note that Ũ has no
physical meaning at this point and is simply taken to be the
point of reference with respect to which relative spreads are
calculated.

Table II shows the relative spreads of U , n, �c, and σdc,crit

for the sets a–h. The results collected in Table II can be
summarized as follows: in spite of the strong variation of
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FIG. 5. (Color online) Graphical presentation of the spread of the
parameters listed in Table II in percentage relative to p̃, where p is
one of the quantities U , n, �c, or σdc,crit. The gray band is a guide to
the eye to emphasize the clustering of the values of σdc,crit compared
to U , n, and �c, not a mathematical measure of uncertainty.

the microscopic input parameters U,n and of the critical
disorder strength �c, the associated critical dc conductivity
σdc,crit is found to be essentially independent of these input
parameters. The results are presented graphically in Fig. 5,
where the values of the critical conductivity are seen to cluster
around the value σdc,crit = (1.19 ± 0.02)e2/h, where the error
0.02e2/h is simply the error in estimating the arithmetic
mean from the eight datasets.39 This provides evidence for
the existence of a universal value of the critical conductivity.
Indeed, the NLσM, in which the dc conductivity appears as
a coupling constant, predicts a universal40 critical value of
the conductivity σdc,crit ∼ 1.06e2/h,19 in close correspondence
with our result. In obtaining this estimate, we assumed that
the number of valleys appropriate for our work is nv = 1.41

Thus our results establish a link between the microscopic
Anderson-Hubbard model and the low-energy effective theory
provided by the NLσM for the metal-insulator phase transition
in two dimensions.

IV. CONCLUSIONS AND OUTLOOK

The calculations presented in this paper were performed
at finite temperature and for finite system sizes. While a
quantum critical point (QCP) is defined at zero temperature
and in the thermodynamic limit, it is well known to show its
effects even at finite temperatures.18 Even if a spontaneous
symmetry breaking unrelated to charge transport (perhaps
magnetic in nature) were to completely mask the QCP between
a metallic and an Anderson insulting phase, the existence of
a universal conductivity at criticality can show up as one
crosses the separatrix (by changing, in our case, disorder
strength) between the metal and Anderson insulator at low but
finite temperatures. We are currently investigating possible
signatures of magnetic ordering in the Anderson-Hubbard
model at even lower temperatures.

In summary, quantum Monte Carlo simulations of in-
teracting lattice electrons in the presence of disorder for
d = 2 provide clear evidence for a transition from metallic
to insulating behavior as the disorder strength is varied. At
the transition, the value of the dc conductivity is found
to be given by σdc,crit = (1.19 ± 0.02)e2/h, implying that
the critical dc conductivity is essentially independent of
interaction strength, electron density, and the critical disorder
strength. This points toward the existence of a universal
critical dc conductivity. We obtained qualitatively similar
results from investigations where site disorder is changed to
bond disorder, the details of which will be given in a future
presentation.
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