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Using the fluctuation-exchange approximation, we study an effective five-band Hubbard model for iron-
pnictide superconductors obtained from the first-principles band structure. We preclude deformations of the
Fermi surface due to electronic correlations by introducing a static potential, which mimics the effect of charge
relaxation. Evaluating the Eliashberg equation for various dopings and interaction parameters, we find that
superconductivity can sustain higher hole than electron doping. Analyzing the symmetry of the superconduct-
ing order parameter we observe clear differences between the hole- and electron-doped systems. We discuss the
importance of the pnictogen height for superconductivity. Finally, we dissect the pairing interaction into
various contributions, which allows us to clarify the relationship between the superconducting transition
temperature and the proximity to the antiferromagnetic phase.
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I. INTRODUCTION

The recent discovery of superconductivity at 26 K in
LaFeAsO1−xFx opened a new field of a highly intensive re-
search in the material science.1 In a short period of time, the
superconducting transition temperature Tc has been elevated
to over 50 K by substitution of another rare earths for La,
which yields the highest Tc outside cuprates.2–4 At present,
there exist the 1111 systems represented by LaFeAsO, the
122 systems with BaFe2As2,5 the 111 systems with LiFeAs,6

and the 11 systems with Fe�Se,Te�.7,8 These four families
hold similar Fe-pnictogen layers and are supposed to possess
the same superconducting pairing mechanism.9 The super-
conducting phase appears in a close proximity to the stripe-
type antiferromagnetic �AF� phase of the undoped systems.
Early on, it was argued that the AF spin fluctuations originate
from the nesting between the two-dimensional cylindrical
Fermi surfaces �two hole surfaces around � point and two
electron surfaces around M point�, and that they give rise to
the sign-reversing s-wave �s�� superconducting state.10

Kuroki et al. constructed an effective five-band model
Hamiltonian in the unfolded Brillouin zone �BZ�, which can
describe the band structure of LaFeAsO near the Fermi level,
and analyzed it within the random-phase approximation
�RPA� obtaining a similar pairing state.11 This conclusion
was confirmed within the RPA studies,12,13 the third-order
perturbation theory,14 the functional renormalization group,15

and the fluctuation-exchange �FLEX� approximation.16,17

The s�-wave state has been actively discussed as a promis-
ing candidate for the pairing symmetry in the iron-pnictide
superconductors.

The undoped LaFeAsO parent compound has a stripe-
type AF ground state. With the electron doping due to sub-
stitution of F for O, the AF phase abruptly vanishes in a
first-order way and the superconducting phase appears. The
transition temperature barely changes with further the elec-

tron doping over the range x=0.04–0.14 for LaFeAsO1−xFx.
The NMR-1 /T1 study in the normal state revealed that
the strong AF fluctuations in the undoped case are dramati-
cally suppressed with electron doping, and a pseudogap be-
havior was observed above x=0.1.18–21 Such a pseudogap
behavior has been observed also with the photoemission
spectroscopy.22 This implies that the pairing mechanism can-
not be attributed solely to the AF spin fluctuations. The
NMR-1 /T1 relaxation rate in the superconducting state fol-
lows the T3 dependence,18,19,21 but recently, also a T6-like
behavior has been reported.23 Thus, it is not clear whether
the power-law behavior reflects the superconducting node or
not. Rather, the lack of the residual density of states suggests
a fully gapped state with a gap minima.24

In BaFe2As2, the electron doping by substitution of Co for
Fe and the hole doping by substitution of K for Ba are
available.5,25 The superconductivity exists in a wider region
for the hole doping than for the electron doping, and even the
end material KFe2As2 is superconducting.26 From the
NMR-1 /T1 study in the normal state, the correlation between
the AF spin fluctuations and Tc can be deduced.27–30 As for
the superconducting symmetry, in the hole-doped region, T5

dependence of the NMR 1 /T1 �Ref. 31� and the exponential
behavior of the penetration depth32 indicate a fully gapped
superconductivity. This is supported by the direct observa-
tion with the angle-resolved photoemission spectroscopy
�ARPES�.33,34 In the inelastic neutron-scattering measure-
ments, development of the resonance peak below Tc was
reported, although whether it means the sign change in the
superconducting gap or not is not clear yet.35–38 In addition,
quite recently, indications were found that KFe2As2 is a mul-
tigap system with line nodes,39,40 and the As-P system shows
a line-nodal behavior with high Tc.

41,42

In FeSe, an enhancement of Tc with pressure was re-
ported, accompanied by an increase in the AF spin
fluctuations.43,44 The neutron scattering shows a correlation
between the superconductivity and the stripe-type AF spin
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fluctuations, and below Tc, a development of a remarkable
resonance peak.45 The thermal conductivity46 and the scan-
ning tunnel microscope47 show a fully gapped behavior.
Moreover, the phase-sensitive analysis seems to be consis-
tent with the s�-wave superconductivity.

Although the s� state is the prime candidate for explana-
tion of pnictide superconductivity, whether the robustness of
the superconductivity with respect to the presence of impu-
rities can be understood within the s� scenario is a key issue
for the future.48 In addition, the recently discovered 42 622
system with perovskite-block layer49,50 seems to possess a
considerably different band structure51,52 while the Tc is
comparable with the other pnictides. Whether this system
possesses the same pairing mechanism is another open prob-
lem.

In order to understand the phase diagrams and the magni-
tude of Tc of iron pnictides, it is necessary to study super-
conductivity and the correlation effects using realistic micro-
scopic Hamiltonians. The thermal-Hall conductivity53 and
the microwave conductivity32 in the superconducting state
indicate a strong scattering between the quasiparticles and
the mass enhancement factor observed in the ARPES,54 the
optical spectroscopy,55 and the de Haas-van Alphen
experiment56 is as large as 2–3. In addition, ab initio esti-
mates of the interaction parameters suggest that these sys-
tems are moderately, not weekly, correlated.57–59

In this paper, we investigate the superconductivity by in-
cluding the correlation effect within the FLEX approxima-
tion. As in the preceding study �Paper I�,17 we encounter the
following problem. In the intermediate correlation regime,
the renormalized band structure deviates drastically from the
local-density approximation �LDA� one, which leads to sub-
stantial changes in the Fermi surface and the magnetic fluc-
tuations, and thus spoils the good agreement of the LDA
Fermi surface with ARPES data. The effect was traced to a
shift of the renormalized d3z2−r2 site energy closer to the
Fermi level, which leads to enlarging of the Fermi surface
around the �� in the unfolded BZ and shrinking of the other
sheets. We believe, as discussed below, that it is an unphysi-
cal artifact of combining the ab initio band structure with the
FLEX approximation. In Paper I, as a tentative method, we
shifted the site energy of d3z2−r2 to preserve the shape of the
Fermi surface in the renormalized band structure. Although
this allowed us to investigate the superconductivity with the
effect of correlations, the value of the shift is ambiguous. In
Paper II,60 we constructed and studied an effective four-band
model for dxy ,dyz/zx and dx2−y2 assuming that d3z2−r2 stays
below the Fermi level and is always irrelevant for the low-
energy physics. While the Fermi surface is not deformed so
much even in the intermediate correlation regime as ex-
pected, the magnetic structure still drastically changes and
the stripe-type AF never becomes dominant. This lead us to
suggest that the high-energy physics such as the interactions
between localized spins, which is not considered in the
FLEX, may be important to understand the stripe-type AF in
iron pnictides.

In the present study, we examine the five-band model and
propose a simple way to avoid the drastic deformation of the
Fermi surface by adding a static potential to the FLEX self-
energy. We argue that such potential mimics the restoring

force due to charge relaxation. With this modification we
obtain a strong stripe-type AF fluctuations also in the inter-
mediate correlation regime. Then, we evaluate the Eliashberg
equation in the intermediate correlation regime, and investi-
gate the phase diagram as a function of doping. In addition,
we clarify how to understand the correlation between the AF
spin fluctuations and Tc, and where the paring glue for su-
perconductivity comes from.

In the following section, first, we calculate the LDA band
structure in LaFeAsO, and make ab initio construction of the
effective five-band Hubbard model. In Sec. III A we demon-
strate the results of the FLEX for the five-band Hubbard
model and discuss what kind of problems they have. In Sec.
III B we introduce a simple way to avoid deformations of the
Fermi surface due to electronic correlations, which mimics
the effect of charge relaxation. In Sec. III C we verify that
the modified FLEX well works even in the intermediate cor-
relation regime. In Sec. IV, with this method we investigate
the doping dependence of the eigenvalue in the Eliashberg
equation. We show that the obtained phase diagram qualita-
tively explains the overall feature in LaFeAsO and
BaFe2As2, and then, the pnictogen height is important for
high Tc. In addition, we investigate the gap anisotropy of the
pairing function obtained in several doping cases. Finally, we
suggest that it is oversimplified that the pairing mechanism
in this system is attributed to only the conventional AF spin
fluctuation. In Appendices A–D, we summarize hopping in-
tegrals in the five-band model and the technical parts in sym-
metry consideration of Hamiltonian and FLEX calculations.

II. ELECTRONIC BAND STRUCTURE AND
MODEL HAMILTONIAN

First, we carry out LDA band-structure calculation using
WIEN2K package in the APW+local orbital basis.61 The band
structure of iron pnictides is known to be sensitive to the
internal coordinate z, which determines distance of the pnic-
togen from the iron layer in the unit of the c lattice param-
eter. Experimentally, the superconducting transition tempera-
ture Tc is well correlated with the Fe-X-Fe �X=pnictogen�
bond angle, which is related to the internal coordinate z.62

Thus z is an important parameter of the iron pnictides.
In our calculations, performed for nonspin-polarized un-

doped LaFeAsO, we use the experimental values for the
crystallographic parameters �a=4.035 �Å�, c=8.741 �Å�,
zLa=0.1415, and zAs=0.6512�.1 In Fig. 1, we show the cal-
culated band structure. As 4p and O 2p hybrid bands are
located between −5–−2 eV, the Fe 3d orbitals are dominant
contribution to the bands near the Fermi level, and the La 4f
bands are situated around 3–4 eV. The Fermi surface consist-
ing of quasi-two-dimensional cylinders is essentially the
same as the one obtained by Mazin et al.63

Next, we use the recently developed interface64 to WAN-

NIER90 code65 and construct the maximally localized Wannier
functions �MLWFs� spanning the Hilbert space of the Fe 3d
bands. The tight-binding model on the MLWFs basis pro-
vides an input for further calculations. The tight-binding
band structure �see Appendix A�, marked by the green
dashed line in Fig. 1, represents well the LDA Fe 3d bands.
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Deviations around �−0.5 and �2 eV originate from strong
hybridization with As 4p, O 2p and La 5d orbitals. The ten-
band model can be unfolded11 to five bands in a doubled BZ,
shown in Fig. 2. The band structure is similar to that of the
preceding studies.11,17 The Fermi surface is composed of two
hole sheets ��� around the � point, two electron sheets ���
around the M point, and a hole sheet ��� around the �� point
�the � point of the original folded BZ�. The � surface and a
part of the � surface are dominated by the dyz and dzx char-
acter. The � surface and another part of the � surface arise
from dx2−y2 band. The Fermi surface is characterized by nest-
ing with Q= �� ,0�, which corresponds to stripe-type AF or-
dering. In fact, the �� ,0� AF spin fluctuation is the dominant
fluctuation within RPA.11 This fluctuation is predominantly
due to scattering between the � and � surfaces with dx2−y2

character. Thus, the presence of the � surface with the high
density of states is vital for this AF fluctuation.17,60,66 More-

over, since the �� ,0� AF fluctuations are considered the prin-
cipal pairing glue for the sign-reversing s� pairing, the size
of the � surface plays a key role for the high-Tc supercon-
ductivity in this system. However, it has been shown that the
� hole surface is missing in the band structure in the iron
pnictides with perovskite-block layer51,52 mentioned in Sec.
I.

Construction of the model Hamiltonian is completed by
adding the on-site Coulomb interaction,

H� =
U

2 �
i�

�
�

ci��
† ci��̄

† ci��̄ci�� �1a�

+
U�

2 �
i��m

�
���

ci��
† cim��

† cim��ci�� �1b�

+
J

2 �
i��m

�
���

ci��
† cim��

† ci���cim� �1c�

+
J�

2 �
i��m

�
�

ci��
† ci��̄

† cim�̄cim�, �1d�

where �=� and �̄=−�, and ci��
† and ci�� are the creation

and annihilation operators in the basis of real harmonics
3z2−r2, xz, yz, x2−y2, and xy located at Fe sites. Since the
Fermi surface of LaFeAsO is quasi-two-dimensional cylin-
der, for simplicity, we restrict ourselves to a two-dimensional
kz=0 space. In addition, to meet the rotation invariance of
the atomic orbitals in the orbital space, we take U=U�+2J
and J=J�.

In the following section, we show the results of the FLEX
calculations. The technical parts of FLEX are summarized in
Appendix D. In the actual calculations, we take 64�64
meshes in the unfolded BZ and 1024 Matsubara frequencies.
In this case, we can safely carry out the FLEX calculation for
T	0.002. We set T=0.003 throughout this paper. As the
numerical analytic continuation, we use the Padé approxima-
tion.

III. RESULTS FOR UNDOPED CASE

A. Band-structure renormalization

As mentioned in Sec. I, the FLEX calculations for the
present model encounter severe problems as reported in Pa-
pers I and II.17,60 We start with summary and detailed analy-
sis of the trouble points for the carrier density n=6.00 cor-
responding to the undoped parent compound LaFeAsO. In
Fig. 3�a� we show the largest eigenvalue 
 of the Eliashberg
equation as a function of U for two choices of J=U /6 and
U /8. In both cases, the pairing symmetry for the maximum
eigenvalue is a s� wave, as in the RPA calculations. Al-
though 
 initially increases with U, for J=U /8 it shows a
tendency to saturate for U	1.2.67 For J=U /8, we cannot
reach 
=1 even for large U, that is to say that even at T
=0.003�30 K superconductivity cannot be realized. While
we can obtain 
=1 for J=U /6 and U	1.6, the structure of
the magnetic fluctuations is drastically changed, as discussed
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FIG. 1. �Color online� The electronic band structure of the un-
doped LaFeAsO. Red lines denote the band structure in the LDA
calculation. Green dashed lines are the ten-band model obtained
with the MLWFs method.
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FIG. 2. �Color online� �a� The five-band structure and �b� the
Fermi surface in the unfolded BZ. Orange and green bars in �a�
represent weights of 3z2−r2 and x2−y2 orbitals of Fe 3d, respec-
tively. In �b�, the inner square rotated 45° denotes the folded origi-
nal BZ. The shaded triangle stands for the irreducible part of the
unfolded BZ.
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in Papers I and II. With increasing U the dominant magnetic
fluctuation moves from the stripe-type AF with Q1= �� ,0�
into a checkerboard-type AF with Q2= �� ,��, as illustrated
in Figs. 3�b� and 3�c�. This change is related to the renormal-
ization of the band structure.

In Fig. 3�d�, we show the spectral weight ��k ,��=
− 1

��lIm G��
R �k ,��, obtained from the imaginary part of the

retarded Green’s function, and the quasiparticle band 
̃nk

along the symmetry lines. To evaluate 
̃nk the self-energy is
expanded to the first order in �, and the equation

Det��zk
�� − ����m − h�m

k − Re��m
R �k,0�� = 0 �2�

is solved. The mass enhancement factor zk
� for each orbital,

which is given by

zk
� = 1 −	 ����

R �k,��
��

	
�→0

, �3�

can be at sufficiently low temperatures replaced with the ap-
proximate form

zk
� � 1 −

Im ����k,i�T�
�T

�4�

while Re ��m�k , i�T� is taken for the real part of the retarded
self-energy Re ��m

R �k ,0�. Thus obtained quasiparticle band
traces closely the position of the peak in the spectral density
�the bright portion in Fig. 3�d��. The quasiparticle bands are
strongly renormalized, which results in a drastic change in
the Fermi surface �see Fig. 4�a��. The Fermi surfaces around
� and M shrink, and the � sheet around �� vanishes com-
pletely.

To understand the effect of this drastic change on the
dominant magnetic fluctuations, we show the orbital-
dependent weight of the Green’s function �G���k , i�T�� in
Figs. 4�b�–4�d�. Shown in Fig. 4�c�, dyz /dzx bands give rise
to two nesting vectors, Q1= �� ,0� and Q2= �� ,��, as in the
noninteracting case. The renormalization of the dx2−y2 band
leads to relative suppression of the Q1 fluctuation due to the
reduction in the weight around ��. On the other hand, the
rise of the d3z2−r2 band toward the Fermi level results in Q2
fluctuations. Altogether, the band renormalization leads to
strong enhancement of the Q2 fluctuation, which then domi-
nates over the Q1 fluctuation.

Up to now, however, there is no experimental evidence
that Q2 fluctuation is strong and that the renormalized bands
drastically deviate from the LDA bands except for effective-
mass enhancement. Even though, quite recently, the Fermi-
surface shrinkage has been reported in the vicinity of the AF
critical point in As-P system56 and thus the tendency ob-
served with the FLEX approximation seems to be right,68 the
extent of the Fermi-surface renormalization is overestimated.
This leads us to conclude that the observed changes in the
Fermi surface, caused by the shifts of the quasiparticle
bands, are largely artifact of the LDA+FLEX approximation.
In particular, the deviation connected with the d3z2−r2 orbital
is serious. In Paper II, we constructed and studied an effec-
tive four-band model excluding the d3z2−r2 orbital. However,
even in the absence of d3z2−r2, Q1 fluctuation is quite sup-
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FIG. 3. �Color online� �a� Eigenvalue 
 as a function of U in the
FLEX approximation. �b� Spin susceptibility �s�q ,0� at U=1.40
and �c� that at U=1.80 for J=U /6. �d� Spectral weight ��k ,��
along the high-symmetry lines for U=1.40 and J=U /6. White and
orange lines denote the unperturbed and the renormalized bands,
respectively.
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FIG. 4. �Color online� �a� The renormalized Fermi surface for
U=1.40 and J=U /6. �b� The orbital-dependent weights of the
Green’s function �G���k , i�T�� for d3z2−r2 orbital, �c� dyz /dzx orbital,
and �d� dx2−y2 orbital.
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pressed and Q2 channel becomes dominant in the intermedi-
ate correlation regime. Thus, the straightforward application
of FLEX for these models has the problem that the system
cannot achieve the stripe-type AF phase transition. In the
following we will argue that the Fermi surface should not be
substantially changed by the correlations and present a
simple way to achieve this within the present computational
scheme.

B. Modified self-energy and density relaxation

We start with the empirical observation that LDA is sur-
prisingly successful in predicting the Fermi-surface geom-
etries even in complicated multiband materials with strong
electronic correlations such as heavy fermion systems.69,70

This fact is even more striking when we realize that other
quantities such as the effective electron mass, spin suscepti-
bility, or specific heat may be completely wrong. Quite
likely, this success of LDA is connected to its high accuracy
in computing the charge distributions, obtained by minimiz-
ing the density functional, which contains the large electro-
static �Hartree� contribution. In real material, the large Har-
tree term is the main restoring force which stabilizes the
charge distribution.

Constructing the effective Hubbard model only the on-site
interaction within the Fe d shell is treated explicitly while the
other �large� interaction terms are absorbed into the fixed
effective site energies and hopping integrals, which do not
depend on the charge distribution. Thus an important feed-
back mechanism, which stabilizes the charge distribution is
missing. For example, in the calculations of the previous
section the renormalized d3z2−r2 and dx2−y2 occupancies devi-
ate about 10% from the unperturbed state. This is remarkably
large deviation since the Fermi surface is small in this sys-
tem. This leads to a remarkable modification of the small
sheets of the Fermi surface. An obvious solution to the prob-
lem of the missing feedback is a self-consistent recalculation
of the effective Hamiltonian for the each FLEX iteration.
However, it is not feasible with our present computer codes.
Therefore we take an alternative “poor man’s” approach.
Taking LDA Fermi surface for realistic, we restrict its modi-
fication due to correlations by subtracting the static part from
the single-particle self-energy. Namely, we replace the FLEX
self-energy ��m�k , i�n� in Eq. �D1a� with

���m�k,i�n� = ��m�k,i�n� − Re ��m
R �k,0� , �5�

where ��m�k , i�n� is calculated in Eq. �D4a� as usual, and
Re ��m

R �k ,0� is its static energy part obtained by analytic
continuation to the real axis of them. Although a numerical
analytic continuation generally includes errors, the �→0
limit at low temperatures can be obtained with high preci-
sions by the Padé approximation using several lowest Mat-
subara frequencies.

C. FLEX with modified self-energy

Here, we present the LDA+FLEX results for the undoped
model obtained with the modified self-energy. In Fig. 5�a�,
we show the largest eigenvalue 
 and the maximum value of

the spin susceptibility �s�q ,0� as a function of U for J
=U /6. The pairing symmetry corresponding to 
 remains s�

wave as in Sec. III A. Although the value of 
 is almost the
same as that in Fig. 3�a� for U�1.0, we can obtain a mono-
tonic behavior also for the intermediate correlation regime,
which is different from the erratic behavior in Fig. 3�a�.
�where 
 is sensitive to a small change in parameters.� This
is because the electronic structure does not change drastically
in this method as expected. In fact, Figs. 5�b� and 5�c� indi-
cate that the structure of the spin fluctuation does not change
even for U=1.8, and �� ,0� fluctuation is robust. Strictly
speaking, the peak position is not commensurate. This draw-
back of the perfect elimination of the self-energy shift has no
serious effect in comparison with the drastic change from Q1
to Q2 spin fluctuations. In Fig. 5�d�, we show the spectral
weight ��k ,�� along the symmetry line for U=1.8. The total
bandwidth is reduced by about 1/3 and the renormalization
effect is larger near the Fermi level but the Fermi-surface
topology does not change. In Fig. 6, we present the mass
enhancement factors for each orbital close to the � and �
surfaces. The quasiparticle mass increases toward the AF
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FIG. 5. �Color online� �a� U dependence of the eigenvalue 
 and
the maximum of the spin susceptibility �s�q ,0� in the FLEX with
modified self-energy. �b� Spin susceptibility �s�q ,0� at U=1.20 and
�c� that at U=1.80 for J=U /6. �d� Spectral weight ��k ,�� along the
high-symmetry lines for U=1.80 and J=U /6. White and orange
lines denote the unperturbed band structure rescaled by 1/3 and the
renormalized band structure, respectively.

PHASE DIAGRAM AND GAP ANISOTROPY IN IRON-… PHYSICAL REVIEW B 81, 054502 �2010�

054502-5



critical point, which is a behavior recently observed in the
dHvA experiment for the As-P system.56

IV. DOPING AND SUPERCONDUCTING PROPERTIES

In the rest of the paper, we discuss the results obtained
with the modified FLEX for various dopings of the five-band
model.

A. Fermi surface

We start with the evolution of the Fermi surface with
carrier doping. Figure 7 shows the Fermi surfaces of the
five-band model for electron densities in the interval from
5.52 to 6.16, where n=6.0 corresponds to the undoped
LaFeAsO. With electron doping, the � surface around ��
point shrinks and vanishes at n�6.12. The disappearance of
this sheet was shown to be important for the pseudogap

behavior17 while its presence is important for the �� ,0� spin
fluctuations.17,60,66 The electron � surface around the M point
shrinks with hole doping. At n=5.60, it reduces to a pair of
Dirac points, and with further hole doping it becomes a hole
surface as in n=5.52 case. The same evolution is expected in
�Ba,K�Fe2As2. The Fermi surface at around n=5.52 is simi-
lar to that of the end material KFe2As2.71 Thus, the system-
atic calculation for doping dependence is relevant for the
overall features of the phase diagrams and the gap symmetry
in the related materials.

B. Phase diagram

Now, let us investigate the doping dependence of the larg-
est eigenvalue 
 of the Eliashberg equation. In Fig. 8, we
show the eigenvalue for s�-wave and dx2−y2-wave states, and
the maximum value of the spin susceptibility �s�q ,0� for U
=1.20 and J=0.25. There is a region of strong AF spin fluc-
tuation on the hole-doped side �n�6.00� of the phase dia-
gram.

The s�-wave state overall dominates in the proximity of
the AF phase. The value of 
�0.9 suggests that the super-
conducting phase can be reached for strong interaction
and/or lower temperature. The eigenvalue 
 is remarkably
reduced above n�6.10 and below 5.60. This corresponds to
vanishing of the � hole surface and the � electron surface at
these points, respectively. The dx2−y2-wave solution domi-
nates for n	6.16, where the � hole surface is absent. The s�

wave in this region develops nodes, so-called nodal s�

wave,66 as discussed in Sec. IV C.
Next, we examine the doping dependence of s�-wave

eigenvalue for several different parameters. Figure 9�a�
shows the 
 vs n doping dependence for various U at
fixed J=0.22, and Fig. 9�b� for various J at fixed U=1.20.
It is intriguing that 
 is almost flat over a rather wide
doping range, and sensitive to J rather than U. Increase
in J enhances the AF spin fluctuation with Q= �� ,0� and
the eigenvalue 
. In the large J case, 
 increases when
approaching the AF phase boundary, revealing a strong
correlation between the AF spin fluctuation and supercon-
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FIG. 6. �Color online� U dependence of the mass enhancement
factor for each orbital zk

� at �kx ,ky�= �7� /32,0� and �25� /32,0�
with the same parameters as in Fig. 5�a�.
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around the M points shrinks into a pair of Dirac points at n=5.60.
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note the eigenvalue 
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ducting Tc. Two different behaviors of 
 can be distin-
guished, �i� for relatively small J, small 
 insensitive to
carrier doping, and �ii� for relatively large J, large 

sensitive to carrier doping and the presence of the
AF phase. These facts are consistent with the doping depen-
dence of the transition temperature in LaFeAs�O,F� and
�Ba,K�Fe2As2 /Ba�Fe,Co�2As2, respectively.9

Next, to understand why SmFeAsO and NdFeAsO have
the highest Tc among the iron pnictides, let us investigate the
relationship between the pnictogen height z and Tc, which
has been found experimentally,62 and stressed theoretically.66

We calculate the s�-wave eigenvalue 
 for several different
values of z, shown in Table I, and the lattice parameters of
LaFeAsO, repeating the LDA+FLEX procedure described
above for the respective crystal structures. �see Appendix A�

In Fig. 10, we show the results for U=1.20 and J=0.25.
We can see that 
 grows with an increasing pnictogen height.
In the Nd case, 
 is larger for wider region, especially on the
electron-doped side, than that in the La case. Figures 11�a�
and 11�b� show the total weight of the Green’s function
���G���k , i�T�� and the spin susceptibility �s�q ,0� at n
=6.08. The bright parts in the former represent the Fermi
surface. With the decreasing pnictogen height, the � hole
surface around �� point visibly shrinks and becomes dim.
Correspondingly, the �� ,0� spin fluctuation is suppressed.
Thus, the pnictogen height is very important for the high Tc
since it controls the size of the � hole surface and the mag-
nitude of the spin fluctuation. The observed trend is consis-
tent with the experimental data showing that NdFeAsO and
SmFeAsO hold high Tc even for heavily electron doping.

C. Gap anisotropy

In this section, we examine anisotropy of the gap func-
tions for various dopings. To this end, we plot the band di-
agonal anomalous Green’s function,
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FIG. 9. �Color online� Doping dependence of the s�-wave ei-
genvalue �a� for U=1.40, 1.20, and 1.00 at J=0.22 and �b� for J
=0.30, 0.25, and 0.22 at U=1.20.

TABLE I. Height and internal z coordinate of the As atom. La is
shorthand of LaFeAsO. Nd and P 100% represents LaFeAsO with
the pnictogen height corresponding to NdFeAsO and LaFePO, re-
spectively. The pnictogen height of P 50% is an interpolated value
between La and P 100%.

Pnictogen height
�Å� Internal coordinate z

Nd 1.38 0.6580

La 1.32 0.6512

P 50% 1.23 0.6408

P 100% 1.14 0.6304
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FIG. 10. �Color online� Doping dependence of the s�-wave ei-
genvalue for several pnictogen heights with U=1.20 and J=0.25.
The band structures for shorthand Nd, La, P 50%, and P 100% have
been obtained with the use of the pnictogen heights in Table I.
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Fnn�k,i�T� = �
�m

�u�n
k ��F�m�k,i�T�umn

k , �6�

obtained from Eq. �D1c� with the eigenvectors of the Eliash-
berg Eq. �D15�. It singles out the gap amplitude on the Fermi
surface.

In the hole-doped region, the strong �� ,0� spin fluctua-
tions render the s� wave a likely gap function. For instance,
at n=5.76, the �� ,0� spin fluctuation is remarkably enhanced
as shown in Fig. 12�a�, and the gap function has no nodes as
shown in Figs. 13�a� and 13�b�. In this case, the gap function
on the � surface has almost the same amplitude as that on the
� surface �with opposite sign�, and about a half of the �
surface one. This is consistent with the gap structure ob-
served in ARPES on �Ba,K�Fe2As2.33,34 The ratio of the � to
� surface gap amplitude changes gradually with carrier dop-
ing, as illustrate by n=5.60 in Fig. 14�a�.

In the electron-doped region, the AF spin fluctuations are
suppressed as shown in Fig. 12�b�. While the s�-wave pair-
ing symmetry is still favorable, the gap function becomes
remarkably anisotropic on the � surface, as shown in Fig.
13�d�. Further electron doping leads to a sign reversal, i.e., it
becomes so-called nodal s� wave shown in Fig. 13�f�. How-
ever, the corresponding eigenvalue is small and the
dx2−y2-wave pairing prevails. Thus we may expect a fully
gapped state in the hole-doped region, and gap minima or
line nodes in the electron-doped region. This may be the key
to understanding of the material-dependent nodal features as
the fully gapped behavior in �Ba,K�Fe2As2, and the nodal/
nodeless behaviors in Ba�Fe,Co�2As2 and LaFeAs�O,F�.

Let us take a detailed look at the gap anisotropy. Even at
n=5.76, the gap amplitude around the M point exhibits some
anisotropy. Comparing the gap amplitudes at the points
marked a and b in Fig. 13�b�, we find that the amplitude at a
is the same as that on the � surface while the amplitude at b
is about the same as on the � surface. This reflects the fact
that the Fermi surface at a is dominated by the dyz /dzx orbit-
als, and that at b by the dx2−y2 orbital. Thus, the gap ampli-
tude on the � surface will be always anisotropic. The appear-
ance of the distinct gap minima on the � surface in the
electron-doped region is related to the shrinkage of the �
surface.

Finally, let us comment on the end material of the 122
series, KFe2As2. Quit recently, it has been reported that it
exhibits a two-gap nodal behavior.39,40 In our model, this
material corresponds to a hole doping of 0.5, close to the
filling n=5.60, which leads to a Dirac-cone band structure.
Since the gap functions for these two fillings barely differ, let
us discuss only the n=5.60 case, in which the unrenormal-
ized � surface reduces to a point. In the strong-coupling
theory of superconductivity, electrons within a finite-energy
window around the Fermi level participate in the pairing, and
the anomalous Green’s function can have a large amplitude
even at k points far from the Fermi surface. Indeed, we find
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FIG. 12. �Color online� Spin susceptibility �s�q ,0� �a� at n
=5.76 and �b� at n=6.12 for U=1.20 and J=0.25.
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a large weight in a finite region around the M point, see Figs.
14�b� and 14�d�. Another interesting point is the small mag-
nitude of the gap function on the � surface relative to that
around the � and M points, both in the s�-wave and
dx2−y2-wave states. Observation of two gap of distinct sizes is
consistent with the recent experiments in KFe2As2.39 Never-
theless, this conclusion must be taken with care. In addition
to the small value of 
, we overestimate the d3z2−r2-orbital
contribution in the heavily hole-doped region. In the present
two-dimensional model, the c-axis dispersion due to the
d3z2−r2 orbital is neglected. Although it is not crucial as long
as the d3z2−r2 band is far from the Fermi level, its presence
close to the Fermi level suppresses the eigenvalue of the
dx2−y2 wave relative to the s� wave. Therefore, we expect the
dx2−y2-wave eigenvalue to be comparable with the s�-wave
one in a more realistic three-dimensional calculation.

D. Pairing glue

In this section, we analyze the paring mechanism. Al-
though we have obtained the phase diagram insensitive to
carrier doping and the presence of the AF phase in relatively
small J case, we need to clarify what is the glue for the
superconducting pairs in this case. In Fig. 15, we investigate
the J=0.22 and 0.25 cases. Within the RPA and FLEX for-
malism the pairing interaction can be separated into contri-
butions from the spin and charge sectors.

The former includes all spin fluctuations described by
�12,34

s , and the latter consists of all charge/orbital fluctuations
contained in �12,34

c . In Fig. 15, the “spin sector” denotes con-
tribution of �12,34

s only, i.e., we omit �12,34
c when solving the

Eliashberg equation. Clearly, the contribution of the charge
sector is negligible.

Next, we consider only the contribution from the orbital-
diagonal spin fluctuations ���,mm

s . These add up to the spin
susceptibility �diag

s 
��Si
� ,S j

���=��m���,mm
s , which describes

the correlations between spin-dipole moments Si
�

=��,��ci��
† ���

� ci��. In Fig. 15, we denote this contribution
with “spin dipole.” We find that for both choices of J, the
contribution of the spin dipole-dipole fluctuations reflects the
proximity of the AF phase, that is, the eigenvalue 
 overall
increases toward the AF phase boundary. Such a behavior is
rather remarkable in the light of flatness of the full 
 vs n.
Moreover, the dipole-only eigenvalue is only 60–70 % of
the total value of 
. The rest comes from the orbital-off-
diagonal spin fluctuations, which represent correlations be-
tween higher-order multipoles, especially, �s

��,�m+�s
��,m� as

suggested in Paper I, This gives a coupling between spin
dipole and spin quadrupole. Thus, although the conventional
AF spin fluctuations provide the largest contribution to the
paring glue, the higher-order multipolar fluctuations given by
the off-diagonal elements of �12,34

s assist the superconducting
pairing, and push the transition temperature up. Therefore,
the correlation between Tc and the proximity of the AF phase
is seemingly weak.

V. SUMMARY AND CONCLUSIONS

Using a combination of ab initio band structure and the
FLEX approximation, we have constructed a five-band
model of iron pnictides and studied the doping dependence
of superconductivity. We have employed a simple procedure
to fix the shape of the Fermi surface to its LDA shape.

We have found that the superconductivity is stable in a
wider interval for hole doping than for electron doping. The
s�-wave state corresponds to the largest eigenvalue of the
Eliashberg equation 
 over a wide doping range, only in the
heavily electron-doped region d-wave state becomes more
favorable. For a relatively small Hund’s coupling J, the ei-
genvalue 
 is relatively small and insensitive to carrier dop-
ing. On the other hand, for large J, 
 is large and more
sensitive to the carrier doping and the proximity of AF phase.
These observations are consistent with the behavior of the
superconducting transition temperature Tc in LaFeAs�O,F�
and �Ba,K�Fe2As2 /Ba�Fe,Co�2As2, respectively. Further-
more, to understand why the highest Tc is found in Sm-
FeAsO and NdFeAsO, we have investigated the influence of
the pnictogen height on 
. The pnictogen height has a great
impact on the size of the Fermi surface around the �� point
formed by the dx2−y2 orbital. In the Nd case, the �� sheet is
large resulting in a large 
 over a wider doping region, es-
pecially on the electron-doped side, than in the La system.
This agrees with the fact that SmFeAsO and NdFeAsO hold
the high Tc even when heavily electron doped.

As for the anisotropy of the gap function, we find a fully
gapped state in the hole-doped region, and remarkably aniso-
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FIG. 15. �Color online� Phase diagram for �a� J=0.22 and �b�
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spin susceptibility �s�q ,0�. The red, orange, and green lines denote
the eigenvalue 
 with the total contribution, the spin sector, and just
the conventional AF spin fluctuation, respectively.
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tropic gap function around the M point in the electron-doped
region. This may be the key to understanding of the material-
dependent nodal behavior, such as fully gapped behavior in
�Ba,K�Fe2As2 and nodal/nodeless behavior in LaFeAs�O,F�.
Furthermore, we have found indications of gaps of two dis-
tinct sizes for the end 122 material KFe2As2.

Finally, concerning the pairing mechanism, we have ex-
plained why the correlation between Tc and the presence of
the AF phase is seemingly weak in this system. Only
60–70 % of the total pairing interaction originates from the
diagonal components of spin fluctuation, which corresponds
to the conventional spin-spin correlation. The remaining part
originates from correlations involving higher-order spin mul-
tipoles. This additional pairing glue naturally comes from the
multiband character of iron pnictides with several different
orbital contributions at the Fermi surface. Therefore, it is an
oversimplification to attribute pairing in these materials only
to the conventional AF spin fluctuations.
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APPENDIX A: HOPPING INTEGRALS

Let us here provide a set of in-plane hopping integrals on
the MLWFs basis, t�m��x̄ ,�ȳ�, for each band calculation in
Table I, where ��x̄ ,�ȳ� denotes the in-plane hopping vector
and ��m� the orbitals. Note that the x̄ and ȳ axes point toward
neighboring Fe atoms while x and y in the orbitals
�1:d3z2−r2 ,2 :dxz ,3 :dyz ,4 :dx2−y2 ,5 :dxy� are those in the coor-
dinate system for the original unit cell. In Table II, we list
t�m��x̄ ,�ȳ� up to the fifth neighbors, the magnitude of which
is larger than 0.005 eV. We can obtain the principal hopping
integrals for each band structure from this table and the re-
lation t�m��x̄ ,�ȳ�= tm��−�x̄ ,−�ȳ�.

APPENDIX B: SYMMETRY CONSIDERATION FOR THE
HOPPING MATRIX

We here give careful consideration to symmetry opera-
tions in the two-dimensional model Hamiltonian. The unper-
turbed Hamiltonian is defined as follows:

H0 = �
k�m�

h�m
k ck��

† ckm� �B1a�

= �
k�m�

h̃�m
k c̃k��

† c̃km� �B1b�

=�
kn�

�knakn�
† akn�, �B1c�

where ck��
† and ckm� are the Fourier transforms of ci��

† and
cim�. The hopping matrix h�m

k has the following form:

h�m
k =


e io io e e

− io e e io io

− io e e io io

e − io − io e e

e − io − io e e
� , �B2�

where “i” is the imaginary unit, and “e” and “o” denote,
respectively, even- and odd-parity functions of the wave vec-
tor k. Introducing a sign function with s=+ /− below/above
the line kx=ky in Fig. 2�b�, io= is�o� with �o�=so, which is
unchanged under the inversion. In this case, using the trans-
formation

ck��
† = ik�

� c̃k��
† , ckm� = ikmc̃km� �B3�

with

ikm =

1

is

is

1

1
� , �B4�

h�m
k can be cast into a real symmetric form,

h̃�m
k = ik�

� h�m
k ikm =


e − �o� − �o� e e

− �o� e e �o� �o�
− �o� e e �o� �o�

e �o� �o� e e

e �o� �o� e e
� ,

�B5�

which is unchanged under the inversion. The third line of Eq.

�B1� shows the diagonal form obtained from h̃�m
k by the uni-

tary transformation ũ�n
k . The band indices n are set according

to the main orbital component, not in the order of energy
eigenvalues. In this case, the unitary matrix ũmn

k has the same

matrix form as the above h̃�m
k ,

ũmn
k =


e �o� �o� e e

�o� e e �o� �o�
�o� e e �o� �o�
e �o� �o� e e

e �o� �o� e e
� . �B6�

With the use of this unitary matrix, the direct transformation
from ckm� to akn� can be defined by

ckm� = umn
k akn� = ikmũmn

k ikn
� akn�, �B7a�

ck��
† = �u�n

k ��akn�
† = ik�

� ũ�n
k iknakn�

† . �B7b�

In this case, the relation
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�umn
k �� = umn

−k �B8�

corresponding to the time-reversal symmetry of the Hamil-
tonian naturally holds. Thus, we can fix the complicated
phase factors accompanying the diagonalization at each k
point. In addition, considering the mirror symmetry about the
two lines kx=ky and kx+ky =2� through the �� point, we can
carry out any numerical calculations in the reduced zone as
shown in Fig. 2�b�, which improves the accuracy and speeds
up the calculation.

APPENDIX C: GREEN’S FUNCTIONS

We here summarize several generic relations for the
Green’s functions. First, let us define the normal and anoma-

lous Green’s functions for orbitals � and m. We assume a
paramagnetic normal state and the spin-singlet symmetry for
the superconducting state. Then the Green’s functions at the
wave vector k and the imaginary time � are given by

G�m�k,�� = ��ck�����ckm�
† �0��� , �C1a�

�F�m�k,�� = ��ck�����c−km�̄�0��� , �C1b�

�F�m
† �k,�� = ��c−k��̄

† ���ckm�
† �0��� . �C1c�

Here, ��A���B�0���=−�T��A���B�0��� with the conventional
notation. From the above definition and the time-reversal in-
variance, we obtain the following relations:

TABLE II. Hopping integrals t�m��x̄ ,�ȳ� for Nd, La, P 50%, and P 100% in Table I in units of eV. �y, I, and �d mean t�m��x̄ ,−�ȳ�,
t�m�−�x̄ ,−�ȳ�, and t�m��ȳ ,�x̄�, respectively. “�” and “����m��” in the columns denote �t�m��x̄ ,�ȳ� and �t��m���x̄ ,�ȳ�, respectively.

��m�

�Nd� ��x̄ ,�ȳ� �La� ��x̄ ,�ȳ�

�0,0� �1,0� �1,1� �2,0� �2,1� �2,2� �y I �d �0,0� �1,0� �1,1� �2,0� �2,1� �2,2� �y I �d

�11� 7.872 −0.033 −0.006 −0.025 0.020 −0.011 + + + 7.949 −0.053 −0.029 0.023 −0.011 + + +

�12� −0.083 −�13� − − −0.075 −�13� − −

�13� 0.083 −0.153 −0.027 −�12� − + 0.075 −0.147 −0.028 −�12� − +

�14� 0.138 0.007 −0.013 − + + 0.160 0.008 −0.014 − + +

�15� −0.294 −0.008 −0.018 + + − −0.298 −0.021 + + −

�22� 8.075 −0.189 0.135 0.005 0.009 +�33� + + 8.141 −0.201 0.136 0.006 0.009 +�33� + +

�23� 0.130 0.021 −0.017 + + − 0.132 0.022 −0.016 + + −

�24� 0.168 0.009 +�34� − − 0.169 0.013 +�34� − −

�25� −0.235 0.127 −0.007 0.006 −�35� − + −0.250 0.135 −0.008 0.007 −�35� − +

�33� 8.075 −0.189 0.310 0.005 −0.025 0.061 +�22� + + 8.141 −0.201 0.327 0.006 −0.026 0.065 +�22� + +

�34� 0.168 0.046 0.018 +�24� − + 0.169 0.023 0.019 +�24� − +

�35� 0.235 0.024 −�25� − − 0.250 0.027 −�25� − −

�44� 8.174 0.121 0.108 −0.019 −0.027 −0.024 + + + 8.288 0.151 0.119 −0.025 −0.030 −0.025 + + +

�45� −0.008 − + − −0.010 − + −

�55� 7.761 0.310 −0.058 −0.016 + + + 7.829 0.315 −0.065 −0.019 + + +

�P 50%� ��x̄ ,�ȳ� �P 100%� ��x̄ ,�ȳ�
��m� �0,0� �1,0� �1,1� �2,0� �2,1� �2,2� �y I �d �0,0� �1,0� �1,1� �2,0� �2,1� �2,2� �y I �d

�11� 8.055 −0.083 0.015 −0.034 0.028 −0.011 + + + 8.196 −0.108 0.034 −0.036 0.032 −0.012 + + +

�12� −0.060 0.008 −0.008 −�13� − − −0.041 0.016 −0.012 −�13� − −

�13� 0.060 −0.133 −0.008 0.008 −0.029 −�12� − + 0.041 −0.113 −0.016 0.017 −0.030 −�12� − +

�14� 0.193 0.007 −0.015 − + + 0.225 0.005 −0.014 − + +

�15� −0.304 0.005 −0.025 + + − −0.306 0.016 −0.029 + + −

�22� 8.231 −0.219 0.135 0.011 −0.009 0.005 +�33� + + 8.356 −0.232 0.132 0.017 −0.010 0.006 +�33� + +

�23� 0.133 0.024 −0.014 + + − 0.128 0.022 −0.010 + + −

�24� 0.166 0.019 +�34� − − 0.161 0.025 +�34� − −

�25� −0.272 0.147 −0.010 0.009 −�35� − + −0.291 0.157 0.008 −0.013 0.011 −�35� − +

�33� 8.231 −0.219 0.347 0.011 −0.030 0.071 +�22� + + 8.356 −0.232 0.356 0.017 −0.035 0.076 +�22� + +

�34� 0.166 −0.023 0.020 +�24� − + 0.161 −0.075 0.022 +�24� − +

�35� 0.272 0.033 −�25� − − 0.291 −0.008 0.039 −�25� − −

�44� 8.454 0.200 0.134 −0.036 −0.035 −0.026 + + + 8.652 0.245 0.145 −0.049 −0.040 −0.026 + + +

�45� −0.013 − + − −0.017 − + −

�55� 7.911 0.322 −0.077 −0.026 + + + 8.022 0.328 −0.089 −0.034 0.005 + + +
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Gm��k,��� = G�m�k,�� = G�m�− k,���, �C2a�

Fm��− k,− �� = F�m�k,�� = F�m�− k,���, �C2b�

=Fm�
† �− k,�� = F�m

† �k,− �� = F�m
† �− k,− ���. �C2c�

By the Fourier transformation from k to r, these relations are
rewritten as follows:

Gm��− r,��� = G�m�r,�� = G�m�r,���, �C3a�

Fm��− r,− �� = F�m�r,�� = F�m�r,���, �C3b�

=Fm�
† �− r,�� = F�m

† �r,− �� = F�m
† �r,− ���. �C3c�

Thus, G�m�r ,�� and F�m
�†��r ,�� are real functions. On the other

hand, by the Fourier transformation from � to the fermionic
Matsubara frequency �n= �2n+1��T, we can obtain

Gm��k,− i�n�� = G�m�k,i�n� = G�m�− k,− i�n��, �C4a�

Fm��− k,− i�n� = F�m�k,i�n� = F�m�− k,− i�n��

�C4b�

=Fm�
† �− k,i�n� = F�m

† �k,− i�n� = F�m
† �− k,i�n��.

�C4c�

Concerning the wave vector k, each component of the nor-
mal Green’s functions holds the same irreducible representa-
tion in the space group as the corresponding hopping matrix
h�m

k . Depending on the parity even or odd, the last equality in
Eq. �C4a� becomes

G�m�k,i�n� = � G�m�k,− i�n��. �C5�

By Eqs. �B3� and �B4�, it is convenient to introduce Green’s
functions,

G̃�m�k,i�n� = �
0

�

d�ei�n���c̃k�����c̃km�
† �� , �C6a�

F̃�m�k,i�n� = �
0

�

d�ei�n���c̃k�����c̃−km�̄�� �C6b�

in c̃km� representation with the inverse temperature �=1 /T.
In this case,

G�m�k,i�n� = ik�G̃�m�k,i�n�ikm
� , �C7a�

F�m�k,i�n� = ik�F̃�m�k,i�n�ikm
� �C7b�

with i−km= ikm
� , and then

G̃�m�k,i�n� = G̃�m�k,− i�n�� = G̃m��k,i�n� , �C8a�

F̃�m�k,i�n� = F̃�m�k,− i�n�� = F̃m��k,i�n�*. �C8b�

Thus, we can eliminate the sign depending on the parity. In
addition to these relations, a value at k point in Green’s func-

tion holds a simple relation to that at the star of k under the
space-group symmetry. Thus, Green’s functions at all k
points in the unfolded BZ can be generated from those val-
ues at k points in the reduced zone. These relations obtained
in this section are practical in actual calculations.

APPENDIX D: FLEX FORMALISM

We here summarize the formulation of FLEX, following
Ref. 73. The linearized Dyson-Gorkov equations for spin-
singlet pairing with the abbreviation k= �k , i�n� are given by

G�m�k� = G�m
0 �k� + G���

0 �k����m��k�Gm�m�k� , �D1a�

F�m�k� = G����k�Gmm��− k����m��k� �D1b�

=G����k�Gmm��k�����m��k� , �D1c�

where ��m�k� and ��m�k� are the normal and the anomalous
self-energies, respectively. In c̃km� representation, these
equations can be rewritten as

G̃�m�k� = G̃�m
0 �k� + G̃���

0 �k��̃��m��k�G̃m�m�k� , �D2a�

F̃�m�k� = G̃����k�G̃mm��k���̃��m��k� , �D2b�

where �̃�m�k� and �̃�m�k� are, respectively, defined by

�̃�m�k� = ik�
� ��m�k�ikm, �D3a�

�̃�m�k� = ik�
� ��m�k�ikm. �D3b�

In the FLEX approximation, the self-energies are described
with effective interactions composed of ladder and bubble
diagrams as follows:

��m�k� = �
q

V���,mm��q�G��m��k − q� , �D4a�

��m�k� = − �
q

V���,m�m
s �q�F��m��k − q� , �D4b�

where the effective interactions V���,mm��q� and V���,mm�
s �q�

are, respectively, given by ���� ,mm�� element of matrices,

V̂�q� and V̂s�q�. Here, �n=2n�T in q= �q , i�n� is the bosonic
Matsubara frequency. In the present study, for simplicity, let
us consider only particle-hole processes and omit particle-
particle ladder processes in these effective interactions. This
simplification can be expected to be justified not only quali-
tatively but also semiquantitatively in the case where the spin
fluctuation dominates. In this case, the effective interactions
are, in the matrix form, given by

V̂�q� = Û↑↓ − 2Û↑↑ − Û↑↓�̂0�q�Û↑↓ +
3

2
Ûs�̂s�q�Ûs

+
1

2
Ûc�̂c�q�Ûc, �D5a�
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V̂s�q� = Û↑↓ +
3

2
Ûs�̂s�q�Ûs −

1

2
Ûc�̂c�q�Ûc, �D5b�

with the bare vertices Ûs,c= Û↑↓� Û↑↑ and three susceptibili-
ties, �̂0�q�, �̂s�q�, and �̂c�q�. Each component of the bare
vertices is defined by

�Û↑↓���,�� = U , �D6a�

�Û↑↓���,mm = U�, �D6b�

�Û↑↓��m,�m = J , �D6c�

�Û↑↓��m,m� = J�, �D6d�

�Û↑↑���,mm = U� − J , �D7a�

�Û↑↑��m,�m = J − U�, �D7b�

where ��m and the other components are zero.
Susceptibilities �̂s�q� and �̂c�q� represent, respectively,

susceptibilities for spin sector and charge sector, which in-
clude the RPA-like enhancement of the irreducible suscepti-
bility �̂0�q�.

�̂s�q� = �̂0�q� + �̂0�q�Ûs�̂s�q� , �D8a�

�̂c�q� = �̂0�q� − �̂0�q�Ûc�̂c�q� . �D8b�

These susceptibilities contain all informations for not only
spin and charge/orbital fluctuations but also higher-order
multipolar fluctuations. The specific matrix form of �̂0�q� is
denoted as74

�̂0�q� =

11

21

]

12

]

11 21 ¯ 12 ¯



�11,11

0 �11,21
0

¯ �11,12
0

¯

�21,11
0 �21,21

0
¯ �21,12

0
¯

] ] � ]

�12,11
0 �12,21

0
¯ �12,12

0
¯

] ] ] �

� . �D9�

With the use of the normal Green’s functions, each compo-
nent of the irreducible susceptibility is defined as follows:

����,mm�
0 �q� = − �

k

G�m�k + q�Gm����k� �D10a�

=�
r
�

0

�

d�G�m�r,��G��m��r,� − ��ei�n�−ik·r. �D10b�

The second line can be obtained with the use of the Fourier
transformation and the relation of Eq. �C3a�. In these suscep-
tibilities, a simple relation between the upper and lower tri-
angular components holds. This consideration also saves a
memory in actual numerical calculations and speeds up the
calculations.

In the FLEX approximation, first of all, we evaluate the
eigenvalue �nk and the unitary matrix ũ�m

k for the unperturbed
Hamiltonian, h̃�m

k of Eq. �B5�, and then, calculate the chemi-
cal potential � by the condition that the electron density is a
given n,

n = �
nk�

f�
nk� = 2�
nk

f�
nk� , �D11�

where 
nk=�nk−�, and f���=1 / �e��+1� is the Fermi-Dirac
distribution function. With the use of the obtained unitary
matrix ũ�m

k , the noninteracting Green’s functions are given by

G̃�m
0 �k,i�n� = ũ�n

k ũmn
k 1

i�n − 
nk
, �D12a�

G̃�m
0 �k,�� = − ũ�n

k ũmn
k �1 − f�
nk��e−
nk�. �D12b�

We next transform G̃�m
0 �k ,�� into G�m

0 �r ,��, and then, evalu-
ate Eqs. �D8� via Eq. �D10b�. From Eqs. �D4a� and �D5a�,
we can obtain the normal self-energy. With Eqs. �D2a� and
�D3a�, we obtain new normal Green’s functions, determining
a new chemical potential as

n = 2�
nk

f�
nk� + 2�
mk

�Gmm�k,i�n� − Gmm
0 �k,i�n�� .

�D13�

We carry out this self-consistent procedure until relative er-
rors in �̃�m�k� becomes less than 10−4. In this paper, we
define the magnetic transition with �s�q ,0��100, where
�s�q� is the spin susceptibility defined by

�s�q� = �
�m

���,mm
s �q� . �D14�

Concerning the superconducting transition, from Eqs. �D1c�
and �D4b�, we obtain the Eliashberg equation,

��m�k� = − 
�
k�

V���,m�m
s �k − k��

� G�����k��Gm�m��k������m��k�� �D15�

with the eigenvalue 
. The transition temperature Tc can be
obtained as the temperature when the maximum eigenvalue

 is unity.
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