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We study a model of a covalent band insulator with on-site Coulomb repulsion at half filling using dynami-
cal mean-field theory. Upon increasing the interaction strength the system undergoes a discontinuous transition
from a correlated band insulator to a Mott insulator with hysteretic behavior at low temperatures. Increasing the
temperature in the band insulator close to the insulator-insulator transition we find a crossover to a Mott
insulator at elevated temperatures. Remarkably, correlations decrease the energy gap in the correlated band
insulator. The gap renormalization can be traced to the low-frequency behavior of the self-energy, analogously
to the quasiparticle renormalization in a Fermi liquid. While the uncorrelated band insulator is characterized by
a single gap for both charge and spin excitations, the spin gap is smaller than the charge gap in the correlated
system.
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I. INTRODUCTION

The role of electron-electron �e-e� interactions in solids is
one of the central problems of condensed-matter physics.
The Hubbard model with local e-e interaction has become a
paradigm for the description of electronic correlations in
narrow-band materials. It has been used to investigate elec-
tronic correlations in metals and to study the correlation-
driven metal-insulator transition.1 Much less attention has
been paid to electronic correlations in band insulators �BI�
since the lack of low-energy excitations rendered them less
interesting.

However, the discoveries of the quantum-Hall effect and
Kondo insulators showed that BIs are far from trivial, and
recent progress in the topological classification of BIs �Ref.
2� demonstrates that our understanding of the insulating state
is indeed incomplete. The quest for materials with topologi-
cally nontrivial electronic structures suggests to explore
heavier elements with strong spin-orbit coupling involving d
or f electrons3 and raises the question about the role of elec-
tronic correlations. The common feature of these materials is
that the constituting atoms have partially filled shells and the
gap—a hybridization gap—opens due to a particular pattern
of interatomic hopping integrals. It has been proposed that
similar characteristics apply to materials such as FeSi, FeSb2,
or CoTiSb,4 some of which exhibit strongly temperature-
dependent magnetic and transport-properties reminiscent of
Kondo insulators. We call this class of BIs covalent insula-
tors �CI�.

Recently the evolution of a BI into a Mott insulator �MI�
upon increasing the interaction strength has been studied in
the context of the ionic Hubbard model,5–12 a two-band Hub-
bard model with crystal-field splitting,13 and a bilayer model
with two identical Hubbard planes coupled by single-particle
hopping.14–18 Different scenarios have emerged with the pos-
sibility of an intervening phase and continuous or discontinu-
ous transitions at critical interaction strengths.

In order to study the properties of CIs with local e-e in-
teraction we employ the dynamical mean-field theory

�DMFT�.19–23 In particular we are interested in the nature of
the interaction-driven transition from a covalent to a Mott
insulator, the possible existence of an intervening metallic
phase, the evolution of charge and spin gaps and the single-
particle self-energy as a function of the interaction strength
U.

This paper is organized as follows: in Sec. II we define
the model and the methods chosen to study correlations in
the covalent band insulator. The subsequent investigation is
guided by the following questions: �i� how does the band
insulator at weak coupling evolve into the Mott insulator at
strong coupling �Sec. III A�? �ii� What is the effect of corre-
lations on the spectral function and what happens when the
temperature is increased in the correlated system �Sec.
III B�? �iii� Can we quantify correlation effects in a band
insulator by means of concepts analogous to Fermi-liquid
theory �Sec. III C�? �iv� Regarding the characterization of a
simple band insulator as an insulator with identical charge
and spin excitation gaps: is this picture modified by correla-
tions �Sec. III D�? Our results are summarized and conclu-
sions are drawn in Sec. IV.

II. MODEL AND METHODS

As a covalent insulator we denote a band insulator with
partially filled identical local orbitals. This definition implies
that the band gap is a hybridization gap arising from a par-
ticular pattern of hopping integrals. Realizations of the cova-
lent insulator include dimerized or bilayer lattices,14–18

quantum-Hall systems with filled Landau levels or Haldane’s
model24 and the related model of Kane and Mele2 describing
electrons on a honeycomb lattice with broken time-reversal
invariance. We use a simple particle-hole symmetric model
at half filling described by the Hamiltonian

H = �
k�

�ak�
† , bk�

† �H�k��ak�

bk�
� + U�

i�

ni↑�ni↓�, �1�
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H�k� = ��k V

V − �k
� �2�

with two semicircular electronic bands of widths 4t �t=1 in
the following� and dispersions �k and −�k, respectively, cor-
responding to two sublattices coupled by the k-independent
hybridization V and a local e-e interaction of strength U.
Here ni��=�i�

† �i� measures the number of electrons with
spin �= ↑ ,↓ on site i of sublattice �=a ,b.

We use the DMFT approximation to calculate the local
single-particle propagator and the local spin susceptibility,
quantities which within DMFT depend on the lattice only
through the noninteracting density of states and thus are in-
dependent of a particular realization of the CI. The single-
particle self-energy ���� obtained by DMFT is local and
fulfils the equations

G�i�n�I = �
k

��i�n + � − ��i�n��I − H�k�	−1,

G0
−1�i�n� = G−1�i�n� − ��i�n� , �3�

where I denotes a 2�2 unit matrix. The functional depen-
dence of ��i�n��G0 ,U�, defined on the discrete set of Mat-
subara frequencies �n= �2n+1�	T, on G0 and U is deter-
mined by an auxiliary Anderson impurity problem, for a
solution of which we employ the continuous-time quantum
Monte Carlo �QMC� algorithm.25 For quantities obtained in
the imaginary time domain, i.e., the spectral function and the
dynamical susceptibility, the analytic continuation to the
real-frequency axis is performed using the maximum-
entropy method.26

III. RESULTS AND DISCUSSION

A. Phase diagram

The noninteracting ground state �U=0� of our model is
characterized by a gap in the spectral function of size 

=2V at any V�0. In the V=0 limit we have two decoupled
copies of a single-band Hubbard model with semicircular
density of states, a problem which has been extensively stud-
ied within DMFT.23,27 It is well known that upon increasing
the interaction strength U at finite, low temperature the para-
magnetic phase undergoes a discontinuous transition from a
metal to a MI with a hysteresis in the interval Uc1

�U
�Uc2

.27 At high temperatures the hysteretic behavior is re-
placed by a continuous crossover.

In Fig. 1 we show the phase diagram in the T-U plane
obtained for V=0.5. At low temperatures two distinct phases
exist separated by a discontinuous transition. The phase
boundaries were obtained by calculating the double occu-
pancy D= 
n↑n↓�, shown in the inset for two selected tem-
peratures. In a finite range of U values we find two stable
self-consistent solutions of the DMFT equations.28 The two
phases, adiabatically connected to the band insulator �U=0�
and the Mott insulator �U→�, respectively, both exhibit a
gap in the single-particle spectral function as discussed be-
low. No signature of an intermittent metallic phase is found.
The calculated phase diagram resembles that of a single-band

Hubbard model including the existence of a critical end point
of the discontinuous phase transition, a weak T dependence
of Uc1 and a considerable increase in Uc2 upon lowering the
temperature.27

B. Single-particle spectral function

The evolutions of the spectral function A���=−Im G��
+i0+� /	 along a horizontal T=1 /30 and a vertical U=5 line
in the phase diagram of Fig. 1 are shown in Figs. 2 and 3,
respectively. Remarkably, starting from U=0 the gap in the
spectral function shrinks with increasing interaction strength
U. At the same time the incoherent Hubbard bands evolve
and spectral weight is transferred to them. The gap is well
distinguishable throughout the entire interaction range except
for a small region in the vicinity of Uc2

where thermal broad-
ening smears the strongly renormalized spectral features.

At low T the spectral function in the band insulator phase
close to the transition region consists of well-distinguishable
low-energy quasiparticle bands, separated by the hybridiza-
tion gap, and incoherent Hubbard bands similar to the single-
band Hubbard model. Increasing the temperature the spectral
gap is filled in while the quasiparticle bands lose their spec-
tral weight. At T=1 /10 the dip at chemical potential has
vanished completely and a single peak remains. This peak
smoothly disappears upon further increasing the temperature
and at T=1 /5 only two broad Hubbard bands remain in the
spectrum reminiscent of the Mott insulator above the critical
temperature of the metal-insulator transition.27 In Ref. 4 it
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FIG. 1. T-U phase diagram at fixed V=0.5. The critical values
of the interaction strength U are determined from the double occu-
pancy �see inset�. Below a critical temperature both band and Mott
insulating solutions of the DMFT equations are found depending on
the initial guess for the self-energy. For temperatures above the
critical end point of the coexistence region, there is a regime where
the spectral function has a single peak at the Fermi energy accom-
panied by broad Hubbard bands �see Fig. 3�. Inset: the double oc-
cupancy D= 
n↑n↓� as a function of U for T=1 /30 �circles� and T
=1 /60 �squares� indicates the phase transition from the correlated
BI �larger D� to the MI �smaller D�. Both values of the double
occupancy are shown in the region where two solutions are found in
the DMFT self-consistency cycle. Note that all energies are given in
units of the hopping integral t=1.
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was shown that this insulator-to-bad-metal crossover is re-
flected also in the dc and ac conductivities and is accompa-
nied by a substantial increase in the spin susceptibility which
follows the Curie-Weiss law at high T.

C. Gap renormalization and self-energy

The spectral densities of Fig. 2 reveal a reduction in the
charge gap in the CI phase with increasing U. In this section
we analyze this behavior which is quantified in Fig. 7 show-
ing the charge gap 
c�U� deduced from the spectral densi-
ties. In the following we derive the gap renormalization in
two different ways from second-order perturbation theory.
Our derivation closely follows the approach of Ref. 30.

1. Renormalization of the charge gap deduced from the total
energy

The charge gap 
c in the state with N particles is defined
as


c = �E�N + 1� − E�N�� + �E�N − 1� − E�N�� , �4�

where E�N� is the ground-state energy of the system with N
particles. The first correction to Eq. �4� from a perturbative
expansion in U comes from the second-order diagram. Using
the factorization of the joint density of states in the limit of
infinite dimensions the second-order correction to the
ground-state energy can be written as

E�2� = −
U2

L3 �
p1,p2,p3,p4

�1 − np1↑�np2↑�1 − np3↓�np4↓

�p1
− �p2

+ �p3
− �p4

, �5�

where npi
is the occupation number and �pi

is the energy of
the single-particle state with index pi. The noninteracting

N-particle ground state is a band insulator with all states with
energies ��−V filled. The noninteracting �N+1�-particle
ground state is obtained by filling the lowest energy state of
the empty conduction band �p0

=V �we choose spin ↓ from
the two possibilities�. Keeping only the terms that do not
vanish in the thermodynamic limit and using particle-hole
symmetry, which requires that 
c=2�E�N+1�−E�N��, we
obtain the second-order correction to the charge gap


c
�2� = − 2

U2

L3 �
p1,p2,p

�1 − np1↑�np2↑

� � 1 − np↓

�p1
− �p2

+ �p − V
−

np↓
�p1

− �p2
+ V − �p

 . �6�

Note that while E�2� is an extensive quantity, the difference in
Eq. �6� remains finite when L→. Introducing the single-
particle density of states D and its Laplace transform F

D��� =
1

L
�

p

��� − �p�, F��� = �
0



d�e−��D��� �7�

Eq. �6� can be rewritten as30


c
�2� = − 2U2� d�1d�2d�3D��1�D��2�D��3�

� �1 − n1�n2� 1 − n3

�1 − �2 + �3 − V
−

n3

�1 − �2 + V − �3


= − 4U2�
0



d� sinh��V�F3��� , �8�
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FIG. 3. Local spectral function A��� at fixed hybridization V
=0.5 and interaction strength U=5 for various values of the tem-
perature T. Upon increasing T the correlated band insulator �split
peak around �=0 plus Hubbard bands� shows a crossover to a Mott
insulator �broad Hubbard bands and reduced spectral weight near
�=0 at T=1 /5�. At intermediate temperatures �T=1 /8 and T
=1 /10� there is a single peak at the Fermi energy accompanied by
broad Hubbard bands. Note that the curves are shifted by a vertical
offset for clarity.
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FIG. 2. Local spectral function A��� at fixed interlayer coupling
V=0.5 and temperature T=1 /30 for various values of the interac-
tion strength U. The noninteracting density of states �U=0� has a
charge gap 
c=2V=1. The gap in the correlated band insulator
shrinks with increasing U until a discontinuous transition to a Mott
insulator occurs with a hysteresis region 5.35�U�5.82. For U
=5.79 both the band �solid line� and Mott insulating �dashed line�
solutions are displayed. All energies are given in units of the hop-
ping integral t=1.
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where the fixed spin index has been dropped for simplicity.
Introducing the bare gap 
c

0=2V we can write the renormal-
ized charge gap as


c = 
c
0 − 4U2�

0



d� sinh��

c

0

2
�F3��� . �9�

This expression shows that the reduction in the charge gap
does not depend on the details of D��� but rather on its
overall characteristics such as the total bandwidth. If 
c

0 is
small compared to the total bandwidth we can linearize the
expression �9� to obtain


c = 
c
0�1 − 2U2�

0



d�F3���� . �10�

In this limit the gap acquires a simple multiplicative renor-
malization, which is closely related to the quasiparticle mass
renormalization as shown below. The perturbative results are
compared with the numerical data in Fig. 7.

We close this section with two remarks. First, Eq. �5�
relies on the equality of the local and the total density of
states, which is where the concept of a covalent insulator
enters the algebra. Second, the physical origin of the reduc-
tion in the gap is best seen in Eq. �6�. Adding a single elec-
tron to the insulating states blocks scattering processes with a
contribution of the order −1 /4V but adds the same number of
processes contributing −1 /2V and therefore leads to an over-
all gain in the correlation energy in the �N+1�-particle state
and thus a reduction in the charge gap from its noninteracting
value.

2. Renormalization of the charge gap deduced from the self-
energy

An alternative derivation of the gap renormalization can
be obtained from the perturbative calculation of the self-
energy in the insulating ground state. Using the factorization
of the joint density of states as in the previous section, the
second-order contribution to the self-energy is written as

���� = U2� d�1d�2d�3D��1�D��2�D��3�

�
�1 − n1�n2n3 + n1�1 − n2��1 − n3�

�1 − �2 + � − �3
, �11�

where the spin indices were dropped as in the previous sec-
tion. For −3V���3V the denominator of the integrand re-
mains negative throughout the entire integration range, the
self-energy is therefore real and can be expressed using the
Laplace transform Eq. �7� of the noninteracting density of
states

���� = − 2U2�
0



d� sinh����F3��� . �12�

The renormalization of the band gap is obtained by searching
for the pole � of the renormalized propagator of the lowest
unoccupied state �p0

=V

� − V − ���� = 0. �13�

In the small U limit we can replace ���� by ��V� and with

c=2 � we recover Eq. �9�. As in the previous section we
can linearize Eq. �12� for small V in the interval ����V,
which leads to


c = Z
c
0,

where Z = �1 − � � Re ����
��

�
�=0

�−1

. �14�

For ����3V the second-order self-energy acquires a finite
imaginary part and expression �12� is not applicable. The
second-order self-energy obtained by numerical integration
of Eq. �11� is shown in Fig. 4.

The linear behavior of Re���� around the chemical po-
tential is reminiscent of a Fermi liquid. It is not limited to
second-order perturbation theory but is a general conse-
quence of a sufficiently fast vanishing of Im ���� in the
vicinity of the chemical potential and the Kramers-Kronig
relations. While in Fermi liquids Im ������2, the existence
of a gap in the spectral function of the covalent insulator, as
found in the numerical simulations, and the absence of a pole
in ���� inside the gap, imply Im ����=0 throughout the
entire gap. As a result, Re���� of the CI phase closely re-
sembles the self-energy of a Fermi liquid. This similarity is
made evident in Fig. 5 where we show the self-energy on the
discrete set of Matsubara frequencies: It is barely distin-
guishable from the analogous plot obtained for the single-
band Hubbard model with comparable parameters.27

D. Spin excitations in the band insulator

Typically a band insulator is characterized by identical
gaps for charge and spin excitations. So far we have identi-
fied the insulator below the critical interaction strength as a
“correlated band insulator” due to the fact that it is adiabati-
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FIG. 4. The self-energy within second-order weak-coupling per-
turbation theory at zero temperature �see Eq. �11�� for V=0.5. The
real part �solid line� is linear around �=0; the slope �indicated by
the dot-dashed line� determines the Z factor. The imaginary part
�dashed line� is gapped for ����3V. The dotted vertical lines indi-
cate the bare gap 
c

0=1. The scale of the vertical axis is U2 / t.
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cally connected to the band insulator at U=0. Naturally the
question arises whether spin and charge gaps remain indeed
equal in the presence of correlations. To answer this question
and to characterize more precisely the correlated band insu-
lator we evaluate the dynamical spin susceptibility and com-
pare spin and charge gaps.

While the spectral function A��� is gapped in both band
and Mott insulators �see Fig. 2�, the spin gap is finite in the
BI and zero in the MI. The spin excitation spectrum is re-
flected in the local dynamical spin susceptibility �s���,
which is calculated by a QMC measurement of the imaginary
time-correlation function �s���= 
Sz���Sz�0�� and the analytic
continuation of its Matsubara transform to real frequencies.
Here we use the maximum-entropy method26 for the bosonic
kernel according to

�s��� =
1

	
� d�

e−��

1 − e−�� Im �s��� . �15�

In Fig. 6 the imaginary part of the spin susceptibility is
shown on the real-frequency axis for V=0.5, T=1 /30, and
U� �2,3 ,3.5	. Similar to the charge gap, the spin gap also
shrinks with increasing interaction strength. For a quantita-
tive comparison of correlation effects on spin and charge
excitations in the correlated band insulator Fig. 6 also shows
the bubble diagram calculated from the convolution of the
fully dressed local Green’s functions

Im �B��� = 	� d�
A���A�� − ���1 − e−���
�1 + e−����1 + e−���−���

. �16�

In the noninteracting limit �not shown� Im �B��� and
Im �s��� coincide and exhibit an energy gap of size 2V=1.
In contrast at finite U the curves differ considerably from
each other. In the spin susceptibility a prominent peak devel-
ops at energies lower than the charge gap. Furthermore spec-
tral weight is suppressed at higher energies which correspond
to excitations from the split central peak to the Hubbard

bands. The spin susceptibility is thus both qualitatively and
quantitatively more strongly influenced by correlations in
comparison to the bubble diagram, which contains correla-
tion effects via the renormalized propagator only. The effect
of correlations on the band insulator therefore goes beyond
the energy-gap renormalization discussed in Sec. III C.

The comparison of the spin susceptibility and the bubble
diagram in Fig. 6 shows that charge and spin gap do not
coincide in the correlated BI. For a quantitative analysis we
extract the gap values by a linear extrapolation to the fre-
quency axis using the slope at the inflexion point of the
spectral function and the imaginary part of the spin suscep-
tibility for the charge and the spin gap, respectively. Figure 7
shows the evolution of charge and spin gaps with increasing
interaction strength in the correlated band insulator. As dis-
cussed in Sec. III C the energy-gap renormalization at mod-
erate coupling strengths is well described by the Z factor �Eq.
�14�� extracted from the slope of the self-energy at low fre-
quencies. For U�2.5 the spin gap is smaller than the charge
gap and 
c−
s remains almost constant with increasing the
interaction strength further. Therefore, in contrast to the non-
interacting limit, the description of the band insulator as an
insulator with identical energy gaps for both charge and spin
excitations no longer holds once the interaction is strong
enough.

It is worthwhile to point out that different spin and charge
gaps were also obtained in the half-filled one-dimensional
ionic Hubbard model in the weakly correlated regime, when
the ionic potential is smaller than the onsite interaction U.5,6

As in the covalent insulator, 
c and 
s decrease with increas-
ing U. However, the transition to the Mott insulator proceeds
via an intermediate insulating phase with bond order and a
staggered modulation of the kinetic energy on neighboring
bonds.
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U=5.79 (MI)
U=5.82

V=0.5, T=1/30

FIG. 5. Imaginary part of the self-energy as a function of Mat-
subara frequencies �n for three values of the interaction strength U.
In the correlated BI the self-energy has a negative slope at small �n.
In the coexistence region �U=5.79� both solutions are displayed.
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FIG. 6. Local dynamical susceptibilities in the correlated BI. At
V=0.5 and temperature T=1 /30 the imaginary parts of the spin
susceptibility �s �solid lines� and the bubble diagram �B �dashed
lines� are shown for U� �2,3 ,3.5	. The susceptibilities are obtained
from the QMC data by analytic continuation. The bubble diagram is
calculated from the convolution of the fully dressed Green’s func-
tions �see Eq. �16��. Thus the gap in Im �B��� corresponds to the
single-particle energy gap in A���, which is apparently larger than
the spin gap observed in Im �s��� in the correlated insulator.
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Hints for a possible difference of spin and charge gaps as
obtained in the above discussed correlated band insulator
phase exist also from experiments on selected insulating ma-
terials. In their study of FeSi Schlesinger et al.31 pointed out
the possible difference between spin and charge gaps in cor-
related insulators based on evidence for a larger charge gap
in the Kondo insulator Ce3Bi4Pt3.32 While the single-particle
charge gap can be measured with meV accuracy using pho-
toemission spectroscopy, the determination of the spin gap
requires accurate susceptibility measurements to tempera-
tures much lower than the gap energy. The relative gap dif-
ference for FeSi, e.g., is expected to be less than 30% and
could so far not be resolved from existing measurements.31

IV. CONCLUSION

We have studied correlation effects in a covalent band
insulator using dynamical mean-field theory. In the absence

of correlations a band insulator is characterized by its band
gap. A local Coulomb repulsion renormalizes the energy gap,
which surprisingly shrinks when the interaction strength is
increased. In second-order perturbation theory the gap
shrinking can be traced to enhanced low-energy scattering
phase space in the conduction band. By analogy to the qua-
siparticle weight in Fermi-liquid theory a renormalization
factor Z can also be introduced in interacting insulators based
on the low-frequency behavior of the self-energy. The Z fac-
tor in the insulator determines the energy-gap renormaliza-
tion. The simple one-gap picture of the band insulator breaks
down for sufficiently large interaction strengths. In the cor-
related band insulator the spin gap is smaller than the charge
gap. A discontinuous transition from the band to the Mott
insulator occurs upon increasing the Coulomb repulsion at
low but finite temperature. Close to the insulator-insulator
transition the increase in temperature in the correlated band
insulator with a split central peak and pronounced Hubbard
bands leads to a crossover into a high-temperature Mott in-
sulator phase with broad Hubbard bands.

The correlation-driven reduction in the energy gap is rare
among the known materials. Nevertheless, this mechanism
provides a natural explanation of the uncommon gap overes-
timation in band-structure calculations of systems, such as
FeSi.33 Tracing the difference between spin and charge gaps
in the correlated band insulator to its physical origin remains
a task for future work.
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