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Time-resolved photoemission experiments can reveal fascinating quantum dynamics of correlated electrons.
However, the thermalization of the electronic system is typically so fast that very short probe pulses are
necessary to resolve the time evolution of the quantum state, and this leads to poor energy resolution due to the
energy-time uncertainty relation. Although the photoemission intensity can be calculated from the nonequilib-
rium electronic Green’s functions, the converse procedure is therefore difficult. We analyze a hypothetical
time-resolved photoemission experiment on a correlated electronic system, described by the Falicov-Kimball
model in dynamical mean-field theory, which relaxes between metallic and insulating phases. We find that the
real-time Green’s function which describes the transient behavior during the buildup of the metallic state
cannot be determined directly from the photoemission signal. On the other hand, the characteristic collapse-
and-revival oscillations of an excited Mott insulator can be observed as oscillating weight in the center of the
Mott gap in the time-dependent photoemission spectrum.
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I. INTRODUCTION

Pump-probe experiments with femtosecond time reso-
lution can record various nonequilibrium processes in solids
directly in the time domain, including those induced by the
Coulomb interaction between electrons or the scattering of
electrons on defects and phonons. In these experiments ex-
citation of the sample and characterization of the excited
state are accomplished by two distinct laser pulses �pump
and probe� which hit the sample with controlled time delay,
and either optical or photoemission spectroscopy may be
used as probe technique. The pump-probe setup has been
used to investigate the dynamics of molecules,1

semiconductors,2 and metals3 for more than two decades.
More recently, such time-resolved experiments were also
performed on several strongly correlated materials close to a
phase transition, where many degrees of freedom contribute
to the dynamics on very different time scales.4–9

In such nonequilibrium solid-state experiments it is a ma-
jor challenge to distinguish the electronic dynamics from
other degrees of freedom. This is crucial in particular for the
Mott metal-insulator transition,10 which is driven by the
Coulomb interaction between electrons moving in a crystal
lattice. An entirely new perspective on this phenomenon
would open up if one could observe the transition as it hap-
pens in real time and, e.g., monitor the formation of well-
defined quasiparticles as the system goes from an insulating
to a metallic state. In fact, in several Mott and charge-
transfer insulators the transition to a metallic state can be
induced by a laser pump pulse.4,5,7,8 So far these experiments
have focused on the relaxation back to the insulating state,
which involves coupling to degrees of freedom other than the
valence-band electrons and is much slower than the buildup
of the metallic state after the pump pulse. In the simplest
case the observed relaxation is described by the two-
temperature model,11 i.e., as the cooling of a hot electron gas
which is coupled to the colder lattice.7,12 The true dynamics
of the electronic system has so far been observed only in

simple metals by looking at the thermalization of pump-
excited electron distributions due to electron-electron
scattering.3,13 In strongly correlated materials, thermalization
is apparently much faster. Sufficient time resolution is now
becoming available due to recent advances in femtosecond
laser techniques,14,15 which have already allowed the inves-
tigation of some solid-state systems even on the attosecond
time scale.16

In equilibrium, electronic properties of correlated materi-
als can be obtained directly from conventional photoemis-
sion spectroscopy with continuous light beams.17,18 By con-
trast, time-resolved measurements are likely to be restricted
by the frequency-time uncertainty of the probe pulse. The
energy � of occupied states in the solid from which photo-
electrons are released is determined from the kinetic energy
of the photoelectrons, the work function of the solid, and the
photon energy E�=��; when the measurement pulse has fi-
nite duration �t, the latter is determined only up to an uncer-
tainty �E��� /�t. In a strongly correlated electron system
we would expect that typical relaxation times are directly
related to the energy scales that appear in the spectrum, such
as the bandwidth or the Mott gap. In this case all information
on the initial energy � is lost for pulses which are short
enough to resolve the electronic dynamics. The equilibrium
interpretation of conventional photoemission data in terms of
the electronic spectrum of the solid thus becomes meaning-
less in this limit.

A full theory for time-resolved photoemission spectros-
copy �TRPES�, which covers both the nonequilibrium effects
of the electronic state and also the consequences of the fre-
quency uncertainty of the pulse, was presented recently by
Freericks et al.19 Their approach extends existing theories of
conventional photoemission spectroscopy to the case where
the sample is not in equilibrium and measurement pulses
have a finite time duration. The photoemission intensity as a
function of the probe pulse delay time is related to electronic
one-particle real-time Green’s functions of the sample,19

which fully incorporate the nonequilibrium many-body dy-
namics after the pump pulse. This is in contrast to earlier
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Green’s function approaches,20 which treat pump and probe
on the same �perturbative� level. The relation to real-time
Green’s functions allows to make direct contact to recent
progress in nonequilibrium many-body theory, such as the
extension of dynamical mean-field theory21 �DMFT� to
nonequilibrium.22–26 DMFT, which is exact in the limit of
infinite dimensions,27 can provide insights into the real-time
evolution of strongly correlated systems in a nonperturbative
way.

The new one-particle description of TRPES given in Ref.
19 leads to the question whether real-time Green’s functions
can be recovered fully from the time-dependent photoemis-
sion intensity or whether parts of the electronic time evolu-
tion are not accessible by TRPES at all. Freericks and
co-workers12,19 discussed the case when electronic equilib-
rium states are probed by pulses of finite time duration. This
analysis covers experiments �e.g., those of Ref. 7� in which
changes of external parameters such as the electronic tem-
perature determine the dynamics of the electronic state, but
the probe pulses are not short enough to resolve the thermal-
ization of the electronic system in response to the pump
pulse. For this case the electronic state is characterized by its
frequency-dependent spectrum and the photoemission inten-
sity is given by this spectrum, broadened in accordance with
the frequency-time uncertainty.19 Such a broadening can
hamper the determination of the electronic spectrum from
photoemission data; for the experiment of Ref. 7, however, it
plays a minor role.12

By contrast, in this paper we investigate TRPES with ul-
trashort pulses that do resolve the thermalization of the elec-
trons after the pump pulse. We consider systems with a
purely Hamiltonian time evolution involving only electronic
degrees of freedom. The electronic state is then no longer
characterized only by a frequency-dependent spectrum, but
rather by real-time Green’s functions depending on two time
variables. We will show from the general theory of Ref. 19
that in this case the full time dependence on both time vari-
ables cannot be recovered from the time-dependent photo-
emission intensity no matter how the pulse length of the
probe pulse is chosen. While time-resolved photoemission
data can be predicted from calculated nonequilibrium
Green’s functions,19 the converse procedure is thus impos-
sible due to the frequency-time uncertainty relation. We note
that an analogous limitation is absent in time-resolved opti-
cal spectroscopy, where a two-time optical conductivity
	�t , t�� can be measured precisely by making the probe
pulses sufficiently short. In nonequilibrium DMFT, 	�t , t�� is
directly related to momentum-averaged real-time Green’s
functions under certain conditions.25

Below we employ the Falicov-Kimball model,28 which
describes localized and mobile electrons on a lattice interact-
ing via a local Hubbard interaction, to study the relation
between nonequilibrium Green’s functions and time-resolved
photoemission data in detail. We consider an idealized setup
in which the system is suddenly driven out of a metallic or
insulating equilibrium state and subsequently relaxes to a
new phase due to the Hamiltonian dynamics of the electrons.
This model situation was recently solved with nonequilib-
rium DMFT.23 We then study hypothetical time-resolved
photoemission experiments during this relaxation process

and find that some aspects of the formation of the metallic
state are indeed obscured in the photoemission spectrum due
to the frequency-time uncertainty. On the other hand, the
relaxation of an excited Mott insulator leads to characteristic
collapse-and-revival oscillations,29 which result in oscillating
midgap weight in the time-resolved photoemission spectrum.
The above-mentioned uncertainty limitations notwithstand-
ing, TRPES with ultrashort pulses is well suited to charac-
terize nonequilibrium states of correlated electron systems.
However, it will often be necessary to analyze in detail how
the time evolution of the Green’s function translates into the
photoemission signal.

The outline of the paper is as follows. In Sec. II we briefly
outline the microscopic formulation of TRPES derived in
Ref. 19 and further discuss the role of the frequency-time
uncertainty in this theory. We then introduce the Falicov-
Kimball model �Sec. III� and discuss hypothetical time-
resolved photoemission measurements on systems that relax
to a metallic state �Sec. IV� and to an insulating state �Sec.
V�. The discussion in Sec. VI concludes the presentation.

II. TIME-RESOLVED PHOTOEMISSION
SPECTROSCOPY

In photoemission experiments with both temporal and an-
gular resolutions the sample is probed with a finite pulse of
definite wave vector30 q. The detector collects the photoelec-

trons which are emitted in a certain direction k̂e and it is
sensitive to their kinetic energy E=�2ke

2 /2m, but not to their

arrival time �ke= k̂eke is the photoelectron momentum�. The
time-resolved photoemission signal is thus proportional to
the total number of electrons per solid angle d
k̂e

and energy
interval dE,

I�k̂e,E;q,tp� =
dN�k̂e,E;q,tp�

d
k̂e
dE

, �1�

that are emitted in response to a pulse that hits the sample at
time tp.19 This definition includes only photoelectrons ex-
cited by the probe pulse and omits direct photoemission due
to the pump pulse.

In Ref. 19 an expression for the photoemission signal �1�
was derived, using only the so-called sudden
approximation,31 which neglects the interaction of photoelec-
trons with the remaining sample. The photoemission signal is
then only related to matrix elements M�k ,q ;ke� which
couple Bloch states with quasimomentum k in the solid and
one-electron scattering states with asymptotic momentum ke
via absorption of a photon with momentum q and to the
real-time one-particle Green’s function

Gk,k�
� �t,t�� = i Tr��0ck�

† �t��ck�t�� . �2�

The latter incorporates the full nonequilibrium dynamics of
the sample: ck

�†��t�=U�t , tmin�†ck
�†�U�t , tmin� are annihilation

�creation� operators for electrons in the solid with momen-
tum k, whose propagation in time, with U�t , tmin�=T
�exp�−i�tmin

t dH�� /��, includes all external fields except
for the probe. The initial state at some early time tmin is
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usually given by the thermal ensemble at temperature T,
�0�exp�−H�tmin� /T�. The presence of the surface and the
dependence of photoemission spectra on matrix elements can
substantially complicate the comparison of theoretical and
experimental data for specific materials. In order to reveal
general aspects of TRPES we thus resort to further approxi-
mations that are commonly made in this context: �i� we as-
sume that photoemission measures the bulk properties of the
sample which are contained in the momentum-diagonal
Green’s function Gk

��t , t���Gkk
� �t , t�� of the infinite and

translationally invariant system, and �ii� we take matrix ele-
ments to be constant but satisfying momentum conservation
in the plane, M�q ,k ;ke��M�k�+q�,ke�

. The time-resolved pho-
toemission spectrum �1� is then given by19

I�k̂e,E;q,tp� ��
k	
�k�+q�,ke�

Ik	�E − cq −�;tp� , �3�

Ik	��;tp� = − i	 dt	 dt�S�t�S�t��

� ei��t�−t�Gk	
� �t + tp,t� + tp� , �4�

where S�� is the �real� pulse envelope function �centered at
=0� and � is the work function of the solid. Note that Eqs.
�3� and �4� become exact for perfectly layered �two-
dimensional� structures when k denotes the two-dimensional
momentum of the sample. In the following we will discuss
the momentum- and frequency-dependent expression �4�. For
simplicity we will refer to Eq. �4� as the photoemission in-
tensity; observations made for this function presumably per-
sist after summation over some parts of the Brillouin zone
�Eq. �3��.

Equation �4� simplifies when the system is in equilibrium.
In this case Green’s functions depend on the time difference
only, and the Fourier transform is given by32

gk	
� ��� =	 dtei�tGk	

� �t,0� = 2�iAk	���f��� , �5�

where Ak	��� is the equilibrium spectral function32 and
f���=1 / �e�/T+1� is the Fermi function for temperature T.
The photoemission intensity then reduces to

Ik	��� =	 d��
S̃�� + ���
2Ak	����f���� , �6�

which is a convolution of the well-known expression
Ik	����Ak	���f��� for the intrinsic photocurrent in con-
tinuous beam experiments17,18 with the Fourier transform

S̃���=�dtS�t�ei�t of the pulse envelope. Due to the
frequency-time uncertainty of the pulse, the frequency-
dependent spectrum is thus smoothened on a scale ��
�1 /�t when the pulse has a finite length �t, as discussed in
Refs. 12 and 19.

Here we study the case of an electronic system that is not
in equilibrium. The Green’s function Gk	

� �t , t+s� then con-
tains important information both in the absolute time t and in
the time difference s between addition and removal of an
electron. However, when the probe pulse extends only over a
finite length �, the product S�t�S�t�� in Eq. �4� vanishes for

all t− t���, and hence Gk	
� �t , t+s� enters Eq. �4� only for s

��. It is therefore impossible to deduce Gk	
� �t , t+s� from

spectra that were recorded with pulses of length ��s. In
other words, the time resolution �in t� with which Gk	

� �t , t
+s� can be measured is limited by s. This also becomes clear
when attempting to invert the convolution of Gk	

� �t , t�� in Eq.
�4�. Starting from the Fourier transform

Ĩk	�s;tp� =	 d�ei�sIk	��;tp� , �7�

and using, e.g., Gaussian pulses

S�t� = exp�−
t2

2�2� , �8�

we obtain

Ĩk	�s;tp� � exp�−
s2

4�2�
�	 dtGk	

� �tp +
s

2
+ t,tp −

s

2
+ t�exp�−

t2

�2� .

�9�

While the integral in Eq. �9� apparently measures Gk	
� �tp

+s /2, tp−s /2� with a time resolution of �, it is practically
impossible to choose ��s because then the result vanishes

compared to any noise added to Ĩk	�s ; tp� due to the Gauss-
ian prefactor �whose form is due to Eq. �8� but the suppres-
sion of the signal for ��s is independent of the pulse shape�.
We conclude that the nonequilibrium two-time Green’s func-
tion cannot be fully measured by means of TRPES, and one
must always carefully analyze how the time evolution of the
Green’s function translates into the photoemission signal for
a given theoretical model. This will be illustrated for the
Falicov-Kimball model below.

III. FALICOV-KIMBALL MODEL IN NONEQUILIBRIUM

In the remaining part of this paper we concentrate on one
specific model for electronic dynamics in a single band, the
Falicov-Kimball model.28 This lattice model describes itiner-
ant �↓� and immobile �↑� electrons which interact via the
local Coulomb repulsion U. The Hamiltonian is given by

H = �
ij

Vijci↓
† cj↓ + U�

i

ni↓ni↑ − �
i	

�	ni	, �10�

where ci	
�†� are annihilation �creation� operators for the two

species of fermions on lattice site i and ni	=ci	
† ci	 is the

corresponding density �	=↓, ↑�. Hopping between sites i and
j �with amplitude Vij� is possible only for the mobile �↓�
particles. The Falicov-Kimball model has been an important
benchmark for the development of DMFT in equilibrium be-
cause the effective single-site problem for the mobile par-
ticles is quadratic and can be solved exactly.33 This model
currently plays a similar role for nonequilibrium DMFT,22–26

in particular since no appropriate real-time impurity solver is
yet available for the Hubbard model.

In spite of its apparent simplicity the Falicov-Kimball
model has a rich equilibrium phase diagram containing me-
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tallic, insulating, and charge-ordered phases.34 In the follow-
ing we consider only the homogeneous phase at half-filling
for both particle species �n↓=n↑=1 /2�, which in equilibrium
undergoes a metal-insulator transition at a critical interaction
U=Uc on the order of the bandwidth.33–36 This phase is stud-
ied in an idealized nonequilibrium situation by preparing the
system in thermal equilibrium for times t�0 and changing
the interaction parameter U abruptly at t=0.23

In current pump-probe experiments the metal-insulator
transition is usually triggered by a change of the filling4,5,8 or
the energy of the electronic system.7 In this context the in-
teraction quench we consider here should be viewed as a
way to approximate the excited state after the pump by an
equilibrium state of a different Hamiltonian. For example,
the formation of the Mott-insulating state �Sec. V� may be
observable in experiment if the pump pulse increases the
energy of a correlated metal, which would undergo a transi-
tion to the insulator with increasing temperature. In this case
the excited state after the pump presumably has metallic
character and is best approximated by a thermal state at
smaller interaction. The interaction quench thus provides a
reasonably good model to study general aspects of time-
resolved spectroscopies.

Since the exact DMFT solution for the interaction quench
is available23 we can directly relate Green’s functions and
photoemisson signals. In particular, we will focus on two
specific phenomena, namely, �i� the formation of narrow qua-
siparticle resonances during the buildup of the metallic state
�Sec. IV� and �ii� coherent collective oscillations after an
excitation of the insulating phase �Sec. V�. In the following
we analyze the time-resolved photoemission signal of the
mobile �↓� electrons using Gaussian pulses �8� and omit the
time-independent contribution of the immobile �↑� electrons.
As in Ref. 23 we assume a semielliptic density of states
����=4V2−�2 / �2�V2� with half-bandwidth 2V for the
single-particle energies �k, which are the eigenvalues of the
hopping matrix Vij. This semielliptic density of states allows
to solve the DMFT equations analytically.23 It corresponds to
nearest-neighbor hopping on the Bethe lattice21 or long-
range hopping on the hypercubic lattice.37 The equilibrium
properties for this case36 are qualitatively similar to the hy-
percubic lattice with nearest-neighbor hopping,34 which has a
Gaussian density of states. Exact expressions for the real-
time Green’s functions Gk

��t , t�� of the mobile electrons are
given in the Appendix �from now on we suppress the index ↓
of the mobile electrons�. We take V=1 as the unit of energy
so that the full bandwidth is 4 and the critical interaction is
given by Uc=2V=2.36 We will also set �=1, setting the unit
of time as � /V. For example, for V=1 eV we have � /V
=0.66 fs.

IV. PUMPING THE INSULATOR
INTO A METALLIC STATE

In this section we investigate the formation of a metallic
state in real time, similar to pump-induced insulator-to-metal
transitions on ultrashort time scales.4,5,7,8 In the Falicov-
Kimball model, such a process takes place after a quench
from an insulating state to the metallic parameter regime,

which we consider now. We prepare the initial state at U
=3 and temperature T=0 and change the interaction abruptly
to U=0.5 at time t=0. Subsequently the system relaxes to a
new stationary state, in which Green’s functions depend on
time difference only.23 In the following we first discuss the
real-time Green’s functions for this process and then the cor-
responding time-resolved photoemission signal.

A. Real-time Green’s functions

The difference between the initial and final states is evi-
dent from the momentum-diagonal Green’s function
Gk
��t , t�� of the mobile particles �Eq. �2�� and its Fourier

transform

gk�
� ��� � lim

t→��
	 dsei�sGk

��t + s,t� �11�

in the limit t=��, respectively. While gk−
� ��� has a broad

maximum �Fig. 1�a��, a sharp peak in gk+
� ��� indicates that

quasiparticle excitations have a long lifetime in the final state
�Fig. 1�b��. Note that for a quench in the Falicov-Kimball
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FIG. 1. �Color online� The momentum-dependent Green’s func-
tion gk�

� ��� �Eq. �11�� in the initial �a� and final �b� states for the
quench from U=3 to U=0.5 �nc=nf =1 /2; temperature T=0�. Due
to the local self-energy in DMFT, Gk

��t , t�� depends on k only via �k
in the homogeneous phase. �c� Density nk�t� for momentum k with
�k=−1 �thick �red� curve in �a� and �b��. The horizontal line is at
nk���. �d� Green’s function Gk

��t+s , t� for the same �k. Differences
between the Green’s functions for t=0 and t=� are best visible
around s=0; their decay is almost identical.
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model the final state always retains memory on the initial
configuration.23 This memory is contained in a nonuniversal
occupation function F��� which replaces the Fermi function
f��� in Eq. �5�, i.e., gk+

� ���=2�iAk���F��� �see Appendix�.
The development of the metallic state with its sharp qua-

siparticlelike resonances can be observed from the full time
dependence of the momentum-diagonal Green’s function
Gk
��t , t��. In particular, we characterize the transition by

means of �i� the total spectral weight, i.e., the momentum
occupation nk�t�=−iGk

��t , t�, and �ii� the decay of Gk
��t , t

+s� as a function of s�0. From the latter one can read off
the lifetime of a hole which is created at time t in the non-
equilibrium state. The time evolution of these two quantities
is similar for all k; it is shown for one representative value of
k in Figs. 1�c� and 1�d� �namely, �k=−1, marked by the thick
red line in Figs. 1�a� and 1�b��: �i� Relaxation of the momen-
tum occupation nk�t� takes place on a time scale on the order
of the inverse bandwidth; after this very short time interval
the final value nk��� is almost reached and a slower relax-
ation follows �Fig. 1�c��. A similar behavior was observed
previously for the time dependence of the number of doubly
occupied sites.23 �ii� As a function of s, the Green’s function
Gk
��t , t+s� decays slow compared to the inverse bandwidth

�Fig. 1�d��. For t=�, this is in accordance with the sharp
peak in gk+

� ���. However, the fast decay is observed even for
holes that are created at t=0+, when the system is still in the
insulating state, indicating that the lifetime of hole excita-
tions depends only weakly on the time of their creation. The
reason for this behavior is that in the Falicov-Kimball model
scattering occurs only between mobile and immobile par-
ticles and is thus determined by the Hamiltonian and the
�initial� configuration of the immobile particles. If scattering
occurred between two mobile electron species �e.g., as in the
Hubbard model�, then we would expect the shape of the
quasiparticle resonances to depend on the quantum state of
the mobile particles as well and therefore would expect it to
change considerably during the relaxation process.

B. Photoemission spectrum

As discussed in the Introduction, it is a central question
whether the time-resolved photoemission spectrum Ik�� ; tp�
�Eq. �4�� contains the same information as the Green’s func-
tion Gk

��t , t��. For the present case, the answer is no. In Sec.
IV A we saw that holes decay at a rate ��V /�, which de-
pends only weakly on the time t when the hole is created,
even for short times 0� t�� /V. To establish this behavior
from the photoemission intensity, however, one would have
to measure Gk�t , t+1 /�� with time resolution better than
� /V, which is impossible according to the discussion at the
end of Sec. II.

The effect of the frequency-time uncertainty can be seen
in detail in the redistribution of spectral weight in the pho-
toemission signal Ik�� ; tp� as a function of the probe time tp
�for �k=−1, Fig. 2�. When the system is probed in a station-
ary state �tp=���, the intensity is given by gk�

� ��� folded

with the spectrum 
S̃���
2=2��2 exp�−�2�2� of the probe
pulse �cf. Eq. �6��. This broadening completely washes out
the peak for short pulses ��=0.66 in units of � /V, Fig. 2�c��.

On the other hand, pulses much longer than the inverse band-
width do not resolve the fast relaxation which is essentially
complete for t�2, but rather show a time dependence even
for t�2 ��=10, Fig. 2�a��. For intermediate pulse length
neither time nor frequency dependence is resolved ��=2,
Fig. 2�b��.

For a quantitative analysis we now consider the weight in
the central region of the peak in the photoemission spectrum

W��tp� � 	
a

b

d�Ik��;tp� . �12�

In the present case we use a=−2.39 and b=−2.17 as indi-
cated by the vertical dashed lines in Fig. 2; they enclose
twice the full width at half maximum of a Lorentzian fit to
the peak in Ak���. We then define a time ��� at which the
relaxation of W��tp� is essentially complete

W������ − W��− ��
W���� − W��− ��

= � , �13�

with � close to one; we use �=0.95. In Fig. 3�a� we see first
of all that ��� is proportional to the pulse length for large �,
which is due to the fact that long pulses merely average the
spectrum of the final and initial states. Hence ��� does not
yield any information about intrinsic relaxation times for �
�2. On the other hand, for ��2 the ratio W���� /W��−��
approaches the value nk��� /nk�−�� that one would obtain by
integrating over the whole spectrum instead of the peak re-
gion alone �Fig. 3�b��; this is due to the insufficient energy
resolution. Therefore only the relaxation time of the whole
spectral width, i.e., of the momentum occupation nk�t�, can
be determined reliably.
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FIG. 2. �Color online� Photoemission signal �Eq. �4�� �arb.
units� for the same situation as the Green’s functions in Fig. 1 ��k
=−1� using Gaussian probe envelopes �8� with �a� �=10, �b� �=2,
and �c� �=0.66. The vertical dashed lines are explained in the text.
tp and � are in units of � /V=1.
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V. OSCILLATIONS OF AN EXCITED MOTT INSULATOR

In this section we investigate the relaxation dynamics of a
Mott insulator in which a metallic state has been created by
the pump pulse. In the Falicov-Kimball model this can be
simulated in the strongly interacting regime �U=10� by pre-
paring the system in a metallic state �U=1, temperature T
=0� at t=0. Again we first discuss the real-time Green’s
functions for this situation and then the time-resolved photo-
emission signal that corresponds to them.

A. Real-time Green’s functions

In the present case the momentum-dependent Green’s
function evolves from a well-defined quasiparticle band at t
=−�, which is cut off by the Fermi function �Fig. 4�a��, to a
gapped spectrum at t=� �Fig. 4�b��. Note that in the final-
state spectral weight remains in the upper band because the
system is strongly excited with respect to the insulating
ground state at U=10 and there is no coupling to an envi-
ronment to which this excess energy could be passed during
the relaxation process.

As in Sec. IV we consider a representative momentum
��k=1�, chosen such that nk is small in the metallic state and
increases after the quench �Fig. 4�c��. Again this relaxation
takes place on a very short time scale �on the order of the
inverse bandwidth�, but now nk passes through a series of
damped oscillations with period 2� /U before reaching its
final value. These oscillations are characteristic for the dy-
namics of a Mott insulator which is dominated by a
Hubbard-type density interaction U�ini↑ni↓. In fact, if the
Hamiltonian was given only by this interaction term, then the
time evolution operator exp�−itU�ini↑ni↓� would itself be
2� /U periodic29 and hence oscillations would occur in all
nonlocal quantities. These so-called collapse-and-revival os-
cillations were observed and described in experiments with
ultracold atomic gases,29 where the Hamiltonian of the sys-
tem can be designed in a controlled way. We will now dis-
cuss the fingerprint of these oscillations in the time-resolved
photoemission spectrum.

B. Photoemission spectrum

In Fig. 5 the angular-resolved photoemission spectrum
Ik�� ; tp� is plotted for the same fixed momentum ��k=1,
using Gaussian pulses �8��. All features of the spectrum ex-
cept for its total weight, which is proportional to nk�t�, are
washed out for short pulses ��=0.2, Fig. 5�c��, whereas long
pulses show the formation of a gap, but cannot resolve the
oscillating nature of the state ��=0.66, Fig. 5�a��. For inter-
mediate pulses, however, both the 2� /U periodicity and the
gap become visible ��=0.33, Fig. 5�b��.

Interestingly, the coherent oscillations are most pro-
nounced in the center of the gap �Fig. 5�b��. This observation
can be understood from the atomic limit of the Hamiltonian
�10�, i.e., for Vij =0. In the strongly interacting regime U
�V the atomic limit gives a good description of the transient
behavior at short times t�� /V. For the interaction term
alone, HU=U�ini↑ni↓−�i	�	ni	, the time evolution of anni-
hilation operators is given by eiHUtcj	e−iHUt=ei�	t�cj	
+ �e−itU−1�cj	ni	̄�. For t , t��0, the Green’s function then fol-
lows as

Gk	
� �t,t�� = iei�	�t−t���Ak	 + Bk	eit�U + Bk	

� e−itU + Ck	eiU�t�−t�� ,

�14a�

with
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FIG. 3. �Color online� �a� Relaxation time ��� �Eq. �13�, �
=0.95� for the spectral width in the central peak region of the pho-
toemission spectrum at �k=−1 �region between the vertical dashed
lines in Fig. 2�, plotted against the pulse length �. �b� Ratio
W���� /W��−��. The horizontal dashed line is at nk��� /nk�−��.
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FIG. 4. �Color online� The momentum-dependent Green’s func-
tion gk�

� ��� �Eq. �11�� �arb. units� in the �a� initial and �b� final
states for the quench from U=1 to U=10 �nc=nf =1 /2; temperature
T=0�. �c� Density nk�t� for momentum k with �k=1 �thick �red�
curve in �a� and �b��. The vertical dashed lines are at multiples of
the fundamental oscillation period 2� /U. The horizontal line is
nk���.
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Ak	 = �
ij

eik�Ri−Rj���1 − nj	̄�cj	
† ci	�1 − ni	̄��0, �14b�

Bk	 = �
ij

eik�Ri−Rj��nj	̄cj	
† ci	�0, �14c�

Ck	 = �
ij

eik�Ri−Rj��nj	̄cj	
† ci	ni	̄�0, �14d�

and �·�0 is the expectation value in the �arbitrary� state at t
=0 immediately after the pump. Inserting this expression
into Eq. �4� we find, for tp��,

Ik	��;tp� � Ak	
S̃�� + �	�
2 + Ck	
S̃�� + �	 − U�
2

+ 2 Re�S̃���S̃�� + �	 − U�Bk	eitpU� . �15�

The first two terms are centered in the upper and lower Hub-
bard bands at �=−�	 and �=U−�	 and do not change with
time. The third term, which oscillates with period 2� /U, has

its maximum where S̃��+�	� and S̃��+�	−U� overlap. For
Gaussian pulses, this is precisely the center of the gap be-

cause S̃���S̃��−U��e−��− U / 2�2/2�2
e−U2/�2

.
This discussion shows that on short-time scales the ob-

served time-dependent spectrum in the Falicov-Kimball
model for large interactions resembled that of the atomic
limit. Note that the initial state at t=0 determines only the
weight of the three components, but not the frequency of the
oscillations. The oscillating midgap weight is thus a univer-
sal property of the Mott insulator, which is largely indepen-
dent of the excitation process. Via this universal feature it

may eventually become possible to observe collapse-and-
revival oscillations in TRPES experiments on correlated ma-
terials.

VI. CONCLUSION

In this paper we analyzed hypothetical time-resolved pho-
toemission experiments on correlated electron systems that
are not in equilibrium, building on the general theory of Ref.
19. We showed that the two-time Green’s function, which
characterizes the nonequilibrium state of the electrons, can-
not be fully measured with TRPES no matter how long or
short the probe pulses are chosen. For example, using DMFT
for the Falicov-Kimball model we found that in the buildup
of the metallic state the Green’s function of the transient
state cannot be determined from the photoemission signal.
On the other hand, if an excited Mott insulator is created by
the pump pulse, its characteristic collapse-and-revival oscil-
lations can nevertheless be inferred because they correspond
to oscillating weight in the center of the Mott gap in the
time-dependent photoemission spectrum.

It would be interesting to perform similar investigations
for the Hubbard model. As discussed at the end of Sec. IV A,
the formation of the metallic state is expected to be very
different from the Falicov-Kimball model. It remains to be
seen whether these differences are visible in the TRPES sig-
nal. On the other hand, the collapse-and-revival oscillations
in the Mott phase resemble the behavior of the model in the
atomic limit and should be similar for the Hubbard model.

TRPES is in some sense complementary to time-resolved
optical spectroscopy, which measures the two-time optical
conductivity 	�t , t��. Under certain conditions, the latter is
obtained in DMFT from a momentum-averaged product of
two Green’s functions that also enter the expression for the
photoemission spectrum.25 The dependence of 	�t , t�� on
both t and t� can be measured precisely with sufficiently
short probe pulses, unaffected by any minimum uncertainty,
but unlike in photoemission spectroscopy there is no sensi-
tivity toward specific momenta k.

In conclusion, we showed that in spite of the frequency-
time uncertainty of the probe pulse, TRPES has the potential
to discover fascinating details of the electronic thermaliza-
tion process. Unlike for conventional photoemission on sys-
tems in equilibrium, however, the time-dependent photo-
emission signal does not yield the real-time Green’s function
directly, so that more detailed comparisons to theoretical pre-
dictions are needed.

ACKNOWLEDGMENTS

We thank Dieter Vollhardt for valuable discussions. M.E.
acknowledges support by Studienstiftung des Deutschen
Volkes. This work was supported in part through Contract
No. SFB 484 of the Deutsche Forschungsgemeinschaft.

APPENDIX: CALCULATION OF DMFT
GREEN’S FUNCTIONS

1. Contour Green’s functions

In this appendix, which is a direct extension of the work
presented in Ref. 23, we give the detailed derivation of the
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FIG. 5. �Color online� Quench from U=1 to U=10. Photoemis-
sion signal �arb. units� �Eq. �4�� for �k=1, and Gaussian probe en-
velopes �8� with �a� �=0.66, �b� �=0.33, and �c� �=0.2. Pulse
lengths � are in units of � /V=1.
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real-time Green’s functions for the interaction quench in the
Falicov-Kimball model using DMFT for nonequilibrium.22

The retarded, advanced, and lesser Green’s functions are
defined by

Gk	
r �t,t�� = − i��t − t��Tr��0�ck	�t�,ck	

† �t���� , �A1a�

Gk	
a �t,t�� = i��t� − t�Tr��0�ck	�t�,ck	

† �t���� , �A1b�

Gk	
� �t,t�� = i Tr��0ck	

† �t��ck	�t�� , �A1c�

respectively, where ck	�t� and �0 are defined below Eq. �2�.
DMFT for nonequilibrium is based on the Keldysh
formalism,38,39 which yields the contour-ordered Green’s
function Gk	�t , t��=−i�TCck	�t�ck	

† �t��� with time arguments
on the contour C that run from tmin to tmax on the real axis,
then from tmax to tmin, and finally to tmin− i� on the imaginary
time axis �� is inverse temperature�. Retarded, advanced, and
lesser Green’s functions �A1� are obtained from the real-time
components of the contour Green’s function39

Gk	
r �t,t�� = �Gk	

11 �t,t�� − Gk	
12 �t,t��� , �A2a�

Gk	
a �t,t�� = �Gk	

11 �t,t�� − Gk	
21 �t,t��� , �A2b�

Gk	
� �t,t�� = Gk	

12 �t,t�� , �A2c�

where superscripts refer to the two time arguments: 1, 2, and
3 indicate whether a time argument is on the upper, lower, or
vertical part of the contour, respectively. These relations and
also the symmetries

Gk	
r �t,t�� = Gk	

a �t�,t��, �A3a�

Gk	
� �t,t�� = − Gk	

� �t�,t�� �A3b�

hold for all contour Green’s functions considered here. Fur-
thermore, the contour Green’s functions obey antiperiodic
boundary conditions in both contour arguments

Gk	
�1�t,tmin� = − Gk	

�3�t,tmin − i�� , �A4a�

Gk	
1��tmin,t�� = − Gk	

3��tmin − i�,t�� �A4b�

for �=1,2 ,3.
For the lattice Hamiltonian �10�, the interacting contour

Green’s function satisfies a Dyson equation39

��Gk	
−1 − �k	� � Gk	��t,t�� = �C�t,t�� , �A5a�

where �k	�t , t�� is the contour self-energy and Gk	�t , t�� is
the noninteracting Green’s function, whose inverse

Gk	
−1�t,t�� = �C�t,t����i�t

C + �	� − �k	�t�� �A5b�

can be written as differential operator on the contour. Here
we assumed a homogeneous state, and �k	=� jVij

	 exp�ik�R j
−Ri�� are the single-particle band energies. We also intro-
duced the convolution �f �g��t , t��=�Cdt̄f�t , t̄�g�t̄ , t�� of two
functions along the contour, the contour delta function
�C�t , t�� �defined by �Cdt̄f�t̄��C�t̄ , t�= f�t��, and the contour
derivative �t

C.22 Taking into account the boundary conditions

�A3�, the integrodifferential Eq. �A4� has a unique solution
for Gk	�t , t��.

2. DMFT equations

In DMFT the self-energy is assumed to be local in space
and hence independent of k for a homogeneous state. This
approximation is exact in the limit of infinite spatial
dimensions,27 both for equilibrium and for the Keldysh
self-energy.22 The local self-energy �	�t , t�� and the local
Green’s function G	�t , t���Gii	�t , t��=�kGk	�t , t�� are then
calculated from an auxiliary problem in which the degrees of
freedom at a single lattice site i are coupled to some un-
known environment, which must be determined self-
consistently. For the Falicov-Kimball model, the auxiliary
problem is quadratic22,33 such that the equations of motion
can be solved explicitly.

The DMFT equations for the interaction quench in the
Falicov-Kimball model were derived in Ref. 23. In the fol-
lowing we state these equations without derivation and then
give details of the solution. In particular we calculate the
momentum-dependent Green’s function Gk�t , t���Gk↓�t , t��
of the mobile �↓� particles, which is needed for the photo-
emission intensity �4�. From now on we consider only prop-
erties of the mobile particles and omit the index ↓.

The local Green’s function of the mobile particles is given
by the sum

G�t,t�� = w0Q�t,t�� + w1R�t,t�� �A6a�

of the local Green’s functions Q�t , t�� and R�t , t�� at sites
with zero and one immobile �↑� particle, respectively,
weighted with the average density w1=1−w0 of immobile
particles. The functions Q�t , t�� and R�t , t�� obey the equa-
tions of motion

�i�t
C + ��Q�t,t�� − � � Q��t,t�� = �C�t,t�� , �A6b�

�i�t
C + � − U�t��R�t,t�� − � � R��t,t�� = �C�t,t�� ,

�A6c�

and boundary conditions �A4�. For a quench the interaction
is piecewise constant in time, U�t�=��t�U++��−t�U−. The
effective-medium propagator  �t , t�� must be determined
self-consistently. For a semielliptic density of states of the
mobile particles, which we adopt in the following, the self-
consistency cycle can be condensed into closed form23

 �t,t�� = V2G�t,t�� , �A7�

where 2V is the half-bandwidth of the density of states.
Equations �A7� form a complete set of equations for the local
Green’s function. The local self-energy � of the mobile par-
ticles is then obtained from the Dyson equation of the local
problem, ��i�t

C+��G�t , t���− �� +���G��t , t��=�C�t , t��. To-
gether with Eq. �A6�, this is easily transformed into

w1U�t�R�t,t�� = �� � G��t,t�� . �A8�

Finally the local self-energy ��t , t�� is inserted into the lattice
Dyson equation �A5�,
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�i�t
C + � − �k�Gk�t,t�� − �� � Gk��t,t�� = �C�t,t�� , �A9�

which yields the k-dependent Green’s functions. Note that
Gk�t , t�� depends on momentum only via the single-particle
energy �k because we assumed a homogeneous state.

3. Langreth rules

To solve the contour Eqs. �A6b�, �A6c�, �A8�, and �A9�
we first rewrite them in terms of their retarded and lesser
components using the identities �A2�. In effect, this means
that contour derivatives C�t , t��=�t

CA�t , t�� are replaced by
real-time derivatives39

Cr�t,t�� = �tA
r�t,t�� , �A10a�

C��t,t�� = �tA
��t,t�� , �A10b�

and convolutions C�t , t��= �A�B��t , t�� of two contour
Green’s functions A and B are expressed in terms of their
retarded, advanced, and lesser components according to the
Langreth rules39

Cr�t,t�� = 	
t�

t

dt̄Ar�t, t̄�Br�t̄,t�� , �A11a�

C��t,t�� = 	
−�

t�
dt̄A��t, t̄�Ba�t̄,t�� + 	

−�

t

dt̄Ar�t, t̄�B��t̄,t�� .

�A11b�

The integral boundaries account for the fact that retarded
�advanced� Green’s functions Ar�a��t , t�� vanish when t� t�
�t� t��. Furthermore, we shifted tmin→−� in the second
equation, such that the convolution extends over the whole
axis but contributions from the vertical part at tmin− i can be
dropped. This step is discussed in further detail below.

The contour delta function on the right-hand side of Eqs.
�A6b�, �A6c�, and �A9� vanishes when the lesser component
is taken, and it is replaced by the usual delta function ��t
− t�� for the retarded components. However, because any re-
tarded function Ar�t , t�� vanishes for t� t�, retarded equations
of motion are only considered for t� t� and the initial value
at t= t� is determined by the weight of the delta function and
the derivative operator. In particular, we obtain

Gk
r�t,t� = Rr�t,t� = Qr�t,t� = − i �A12�

from Eqs. �A6b�, �A6c�, and �A9�. These conditions follow
also directly from the anticommutation relation of creation
and annihilation operators.

4. Stationary states

For the interaction quench we treat the equations of mo-
tion separately in the four regions where both t and t� do not
change sign; we introduce additional subscripts + and −
which indicate whether the time arguments are greater or less
than zero, respectively. Inserting Eqs. �A10a� and �A11a�
into Eq. �A6� yields a closed set of equations for Rr�t , t�� and
Qr�t , t��,

 r�t,t�� = V2�w1Rr�t,t�� + w0Qr�t,t��� , �A13a�

�i�t + ��Qr�t,t�� = 	
t�

t

dt̄ r�t, t̄�Qr�t̄,t�� , �A13b�

�i�t + � − U�t��Rr�t,t�� = 	
t�

t

dt̄ r�t, t̄�Rr�t̄,t�� ,

�A13c�

which must be solved for t� t� using the initial condition
�A12�. The self-consistency Eq. �A7� was used in Eq.
�A13a�. Note that in Eq. �A13�, Green’s functions with both
time arguments greater or less that zero, i.e., the �++� and
�−−� components, do not mix with other components. Be-
cause U�t� is constant for t�0 and t�0, respectively, the
solutions of Eq. �A13� are thus translationally invariant in
time when both t and t� have the same sign and we make the
ansatz

A��
r �t,t�� = a�

r �t − t�� , �A14a�

ã�
r �z� = 	

0

�

ds eizsa�
r �s� �A14b�

for all contour functions A=G, R, Q,  , Gk, and � �with a
=g, r, q, !, gk, and 	, respectively�. Using this ansatz in Eq.
�A13� we obtain a set of cubic equations

g̃ �
r �z� = w0q̃ �

r �z� + w1q̃ �
r �z� , �A15a�

q̃ �
r �z� = �z + � − V2g̃ �

r �z��−1, �A15b�

r̃ �
r �z� = �z + � − V2g̃ �

r �z� − U��−1 �A15c�

that can be solved analytically. These cubic equations are
well known from the DMFT solution of the Falicov-Kimball
model in equilibrium.35 This is of course expected when both
t and t��0 because before the quench the system indeed is
in an equilibrium state. In a similar way, the retarded �++�
and �−−� components of � and Gk are obtained from Eqs.
�A8� and �A9�

	̃ �
r �z� = w1U�r̃ �

r �z�/g̃ �
r �z� , �A16�

g̃ k�
r �z� = �z + � − �k − 	̃�

r �z��−1. �A17�

Furthermore, advanced Green’s functions are directly related
to the retarded ones by symmetry �A3� so that we have

A��
a �t,t�� = a�

a �t − t�� , �A18a�

ã�
a �z� = 	

−�

0

ds eizsa�
a �s� = ã�

r �z���. �A18b�

The lesser Green’s functions are translationally invariant
in time only for both t and t��0 ��−−� component� when the
system is still in equilibrium. One then has39

A−−
� �t,t�� =	 d�

2�
ei��t�−t�ã −

���� , �A19a�
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ã −
���� = f����ã −

a��� − ã −
r ���� , �A19b�

where f���=1 / �e�/T+1� is the Fermi function and ã−
a���

− ã−
r ���=−2i Im a−

r ��� is proportional to the spectrum of the
equilibrium Green’s function. Mathematically this follows
from the solutions of the equations of motion on the full
contour, including the vertical part, and taking into account
the antiperiodic boundary conditions. For the quench we use
Eq. �A18� as initial condition for the lesser components; only
then can we then let tmin→−� and disregard the vertical part
in the Langreth rule �A11b�.

On the other hand, we show below that in the limit where
both t and t� tend to � �but their difference is finite�, the
lesser �++� components take a form very similar to Eq.
�A18�

lim
t→�

A++
� �t + s,t� =	 d�

2�
e−i�sã +

���� , �A20a�

ã +
���� = F����ã +

a��� − ã +
r ���� . �A20b�

The function F��� is common for all a=g, r, q, 	, and gk.
One can in fact directly see from the equations of motion
�A6b�, �A6c�, �A8�, and �A9� for the lesser component that if
the stationary limit �A20a� exists, then Green’s functions
ã +
���� must have this common factor F���. To find this

factor, however, the equations of motion must be solved be-
cause it contains the entire information about the initial state.

5. Double Fourier transforms

We now consider the cases with one or two positive time
arguments, i.e., after the quench. We introduce double Fou-
rier transforms

Ã+−
r �z,�� = 	

0

�

dteizt	
−�

0

dt�ei�t�A+−
r �t,t�� , �A21a�

Ã−+
a ��,z� = 	

0

�

dteizt	
−�

0

dt�ei�t�A−+
a �t�,t� �A21b�

for retarded and advanced components,

	 d�

2�
e−i�t�Ã+−

� �z,�� = 	
0

�

dt eiztA+−
� �t,t�� , �A22a�

	 d�

2�
e−i�t�Ã−+

� ��,z� = 	
0

�

dt eiztA−+
� �t�,t� �A22b�

for the lesser components with mixed time arguments �which
holds for t��0�, and

Ã++
� �z,�� = 	

0

�

dteizt	
0

�

dt�ei�t�A++
� �t,t�� �A23�

for the lesser Green’s function with both time arguments af-
ter the quench. In this section we derive explicit expressions

for Ã+−
r �z ,��, Ã+−

� �z ,��, and Ã++
� �z ,��; the remaining are

then obtained by symmetry �A2�

Ã−+
a ��,z� = Ã+−

r �− ��,− z���, �A24a�

Ã−+
� ��,z� = − Ã+−

� �− z�,− ���. �A24b�

Using Langreth rules �A10� once again yields for convolu-
tions C=A�B,

C̃+−
r �z,− �� = Ã+−

r �z,− ��b̃−
r ��� + ã +

r �z�B̃+−
r �z,− �� ,

�A25a�

C̃+−
� �z,− �� = Ã+−

� �z,− ��b̃−
a��� + ã +

r �z�B̃+−
� �z,− ��

+ Ã+−
r �z,− ��b̃−

���� , �A25b�

C̃++
� �z,�� = Ã++

� �z,��b̃+
a�− �� + ã +

r �z�B̃++
� �z,��

+	 d�

2�
�Ã+−
� �z,− ��B̃−+

a ��,��

+ Ã+−
r �z,− ��B̃−+

� ��,��� . �A25c�

Furthermore, the derivative C=�t
CA�t , t�� translates into

C̃+−
� �z,�� = zÃ+−

� �z,− �� − iã −
���� , �A26b�

C̃++
� �z,�� = zÃ++

� �z,�� − i	 d�

2�
Ã−+
� ��,�� , �A26c�

where one must use the continuity of the components at the
boundary t=0 and t�=0, e.g., A+−

r �0, t��=A−−
r �0, t��.

Using Eqs. �A25� and �A26� one can rewrite Eq. �A6� for
the various components and solve them using the self-
consistency Eq. �A7�. For instance, we obtain the �+−� com-
ponent of the retarded Green’s functions as

R̃+−
r �z,�� = � ̃+−

r �z,�� + i�r+
r �z�r−

r �− �� , �A27�

Q̃+−
r �z,�� = � ̃+−

r �z,�� + i�q+
r �z�q−

r �− �� , �A28�

where Eq. �A15� was used once. Together with the self-
consistency �A7�, this is a simple linear equation for
 +−

r �z ,��. In a similar way all components are determined
successively. Starting from the retarded �+−� and advanced
�−+� components, the results enter the lesser �+−� and lesser
�−+� components �cf. Eqs. �A25c� and �A26c��, which in turn
enter the equations for the lesser �++� component �cf. Eqs.
�A25c� and �A26c��. The procedure is repeated for Eqs. �A6�
and �A8�, and finally for the lattice Dyson equation �A9�,
which yields the momentum-dependent Green’s function
Gk�t , t��.

For completeness we state the final result for G, R, and
Gk. For this we introduce the abbreviations

M"�
xy = �1 − V2�w1r̃ "

x r̃ �
y + w0q̃"

x q̃�
y ��−1, �A29a�

#"
x = r̃ "

x q̃"
x /g̃"

x , �A29b�
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K"�
xy = 1 + w1w0U+U−#"

x#�
y M"�

xy , �A29c�

with superscripts x ,y� �r ,a� and subscripts ", �� �+,−�, we
use the convention that the variables of a function a"

x is �i� z
when x=r and "=+, �ii� −� when x=a and "=+, and �iii� �
when "=−. In terms of these expressions the final result is

G̃+−
r �z,− �� = iV −2�M+−

rr − 1� , �A30a�

R̃+−
r �z,− �� = ir̃ +

r r̃ −
r M+−

rr , �A30b�

G̃k+−
r �z,− �� = ig̃ k+

r g̃ k−
r K+−

rr , �A30c�

and

G̃+−
� �z,− �� = if����M+−

ra − M+−
rr �/V2, �A31a�

R̃+−
� �z,− �� = if���r̃ +

r �r̃ −
aM+−

ra − r̃−
r M+−

rr � , �A31b�

G̃k+−
� �z,− �� = if���g̃ k+

r �g̃ k−
a K+−

ra − g̃ k−
r K+−

rr � . �A31c�

The lesser �++� component can be written in the form

A++
� �z,�� = F̃�z,��

ã +
a − ã +

r

� + z
+ FA�z,�� �A32a�

for A=G, R, and Gk, where

F̃�z,�� =	 d�

2�
f���

M+−
rr + M+−

aa − M+−
ra − M+−

ar

z + � + V2�g̃ +
a − g̃ +

r �
,

�A32b�

and

FG�z,�� = F̃�z,��/V2, �A32c�

FR�z,�� = r̃ +
r r̃ +

a 	 d�

2�
f����r̃ −

aM+−
aa M+−

ra − r̃−
r M+−

rr M+−
ar � ,

�A32d�

FGk
�z,�� = g̃ k+

r g̃ k+
a �− F̃�z,�� +	 d�

2�
f���

� �w0w1U+
2#̃ +

r #̃ +
a�#̃ −

aM+−
aa M+−

ra − #̃−
r M+−

rr M+−
ar �

+ g̃ k−
a K+−

aaK+−
ra − #̃ k−

r K+−
rr K+−

ar �� . �A32e�

6. Back transformation

To obtain the physical real-time Green’s functions, we
have to invert the double Fourier transformations �A23� us-
ing the final expressions �A29�–�A32�. Here we give an ex-
plicit formula for the partially Fourier-transformed lesser
component

Ã���,t� =	 dsei�sA��t + s,t� , �A33�

�A=G, R, and Gk�. The singularity at �+z=0 in Eq. �A32a�
determines Eq. �A33� in the limit t→�,

ã +
���� � lim

t→�
Ã���,t� = Im F̃��,− ���ã +

a��� − ã +
r ���� ,

�A34�

which is of the form discussed above �cf. Eq. �A20��, with

F���=Im F̃�� ,−��. The full result is given by

Ã���,t� = �
�

���t��ã �
���� + e−i�t	 d�

2�
e−it�Â���,��� ,

�A35a�

where

Â−��,�� = Ã+−
� ��,�� +

ã −
��− �� − ã −

����
i�� + ��

, �A35b�

Â+��,�� = 2i Im
F̃��,���ã +

a�− �� − ã +
r ����

� + �
+ FA��,��

+	 d��

2�i

Ã−+
� ���,��

� − i0 − ��
, �A35c�

and the components for A=G, R, and Gk were given in Ap-
pendix 5. Note that the first term on the right-hand side of

Eq. �A35c� is regular at �=−� because both F̃�� ,�� and
ã +

a�−��− ã +
r ��� are then purely imaginary.
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