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We develop an analytical method for solving real time evolution problems of quantum many-body systems.
Our approach is a direct generalization of the well-known canonical perturbation theory for classical systems.
Similar to canonical perturbation theory, secular terms are avoided in a systematic expansion and one obtains
stable long-time behavior. These general ideas are illustrated by applying them to the spin-boson model and
studying its nonequilibrium spin dynamics.
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The theoretical investigation of nonequilibrium quantum
many-body systems has recently become a very active field
of research due to seminal experiments in ultracold atomic
gases �for example, collapse and revival phenomena1�, elec-
tronic nanostructures �for example, transport beyond the
linear-response regime2�, and, generally, qubit dynamics in
the presence of quantum dissipation. While nonequilibrium
classical systems have been long studied, quantum systems
in nonequilibrium hold the promise of many new phenomena
yet to be discovered. On the theoretical side, progress is hin-
dered by the notorious difficulty of solving nonequilibrium
quantum many-body problems. Motivated by the recent ex-
periments, significant progress has been made with powerful
numerical methods such as the time-dependent density-
matrix renormalization group �Ref. 3� or the time-dependent
numerical renormalization group �TD-NRG�.4,5 However,
there are few reliable analytical methods available, especially
for nonperturbative problems �a notable exception is the real
time RG method6�.

A key problem for analytical calculations is the appear-
ance of secular terms in time t that grow with some power of
t. Secular terms appear naturally if one attempts a direct
perturbative expansion, e.g., in the Heisenberg equations of
motion for the observables. Even if secular terms are multi-
plied by a small coupling constant, they inevitably invalidate
perturbation theory for large times even for small coupling
constants and make it impossible to draw conclusions about
the long-time behavior. This problem is also very well
known from classical mechanics, dating back to studies of
planetary motion in the previous centuries. In the context of
analytical mechanics, its solution using canonical perturba-
tion theory is well established and can be found in any text-
book �see, for example, Ref. 7�. The basic idea is to first
transform the Hamiltonian to normal form using a canonical
transformation. One can then easily solve the equations of
motion for the new position and conjugate momentum vari-
ables. Only after integrating these equations of motion does
one re-express the old variables in terms of the new time-
evolved variables. It is well established that this yields a
much improved long-time solution without any secular terms
even if the canonical transformation itself is only done per-
turbatively. Surprisingly, to the best of our knowledge to

date, no attempt has been made to implement an equivalent
scheme based on unitary perturbation theory for quantum
many-body systems. However, one of its key differences
from classical systems is that in quantum many-body sys-
tems, one is often dealing with a continuous energy spec-
trum, which makes naive unitary perturbation theory impos-
sible due to vanishing energy denominators. A way to solve
this specific problem has been established recently by means
of the flow equation method8,9 �for related ideas see also the
similarity renormalization scheme10�. The central idea of the
flow equation method is to diagonalize a many-particle
Hamiltonian through a sequence of infinitesimal unitary
transformations that eliminate interaction matrix elements
with large energy difference first before dealing with smaller
energy differences. In this way one both reorganizes a per-
turbative expansion in an RG-like manner, which allows one
to recover nonperturbative energy scales, and one avoids the
above small energy denominator problem even for a continu-
ous energy spectrum.

In this Brief Report we develop the general framework for
applying the flow equation method to analytically solve real
time evolution problems in quantum many-body systems in
exact correspondence to canonical perturbation theory in
classical mechanics. We will see that likewise secular terms
are avoided and that one can obtain reliable results about the
long-time dynamics even in a perturbative framework. We
will then illustrate our approach by studying the real time
evolution of the spin-boson model with an initially polarized
spin and a relaxed bath. The spin-boson model is the para-
digm of dissipative quantum systems and its nonequilibrium
behavior has recently been investigated using the TD-NRG
method,11,12 which motivates our choice.

Let us briefly review the basic ideas of the flow equation
approach �for more details, see Ref. 9�. A many-body Hamil-
tonian H is diagonalized through a sequence of infinitesimal
unitary transformations with an anti-Hermitian generator
��B�,

dH�B�
dB

= ���B�,H�B�� , �1�

with H�B=0� as the initial Hamiltonian. The “canonical”
generator8 is the commutator of the diagonal part H0 with
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the interaction part Hint of the Hamiltonian, ��B�

=
def

�H0�B� ,Hint�B��. Under rather general conditions the
choice of the canonical generator leads to an increasingly
energy-diagonal Hamiltonian H�B�, where interaction matrix
elements with energy transfer �E decay as exp�−B�E2�. For
B=� the Hamiltonian will be energy diagonal and we denote

parameters and operators in this basis by a tilde, e.g., H̃
=H�B=��.

The key problem of the flow equation approach is generi-
cally the generation of higher and higher-order interaction
terms in Eq. �1�, which makes it necessary to truncate the
scheme in some order of a suitable systematic expansion
parameter �usually the running coupling constant�. Still, the
infinitesimal nature of the approach makes it possible to deal
with a continuum of energy scales and to describe nonper-
turbative effects. This had led to numerous applications of
the flow equation method where one utilizes the fact that
Hilbert space is not truncated as opposed to conventional
scaling methods. Examples are the evaluation of correlation
functions on all energy scales in equilibrium problems9 and
nonequilibrium problems, where one cannot focus on low-
energy degrees of freedom anyway �see, for example, the
time-dependent Kondo model13 or the Kondo model with
voltage bias14�.

We will now utilize these features to develop an analog of
canonical perturbation theory in classical mechanics for
quantum many-body problems. The general setup is de-
scribed by the diagram in Fig. 1, where ��i� is some initial
nonthermal state whose time evolution is the one in which
we are interested. However, instead of following its full time
evolution it is more convenient to study the real time evolu-
tion of a given observable A. This is done by transforming
the observable into the diagonal basis in Fig. 1 �forward
transformation�;

dO�B�
dB

= ���B�,O�B�� , �2�

with the initial condition O�B=0�=A. The central observa-
tion is that one can now solve the real time evolution with

respect to the energy-diagonal H̃ exactly, thereby avoiding
any errors that grow proportional to time �i.e., secular terms�.
This yields Ã�t�. Now since the initial quantum state is given
in the B=0 basis, one undoes the basis change by integrating
Eq. �2� from B=� to 0 �backward transformation� with the

initial condition O�B=��= Ã�t�. One therefore effectively
generates a different nonperturbative scheme for solving the
Heisenberg equations of motion for an operator A�t�
=eiHtA�0�e−iHt in exact analogy to canonical perturbation
theory. Notice that it is the last step of the backward trans-
formation that distinguishes this scheme from the flow equa-
tion evaluation of equilibrium correlation functions.9 The
equilibrium ground state or thermal states are in fact more

easily expressed in the B=� basis �since H̃ is energy diago-
nal� than in the B=0 �interacting� basis. It should be men-
tioned that the same forward-backward transformation
scheme with respect to some given initial quantum state has
also been successfully employed recently by Cazalilla16 for
studying the nonequilibrium Luttinger model. The main dif-
ference to our approach is that the bosonized Luttinger
Hamiltonian becomes quadratic, which makes it possible to
work out the unitary transformation exactly in Ref. 16 �the
same holds in Ref. 13�. Therefore stability questions regard-
ing secular terms for a generic interacting system do not
arise, which are the main focus of our work.

We now illustrate the general idea of our approach by
studying the spin-boson model, which serves as a paradigm
in dissipative quantum physics and for qubit dynamics �for a
review, see, for example, Ref. 17�,

H = −
�

2
�x +

1

2
�z�

k

�k�bk
† + bk� + �

k

�kbk
†bk. �3�

It describes a two-state system coupled to a bath of harmonic
oscillators. The effect of this dissipative environment is en-

coded in the spectral function J��� =
def

�k�k
2	��−�k�. In the

sequel, �k is considered as a small expansion parameter. In
this Brief Report we will only study the zero-temperature
case T=0, although the generalization to nonzero tempera-
ture is straightforward. We use the following generator for
the unitary flow:18

��B� = i�y�
k

�k
�y��bk + bk

†� + �z�
k

�k
�z��bk − bk

†�

+ �
k,l

�kl:�bk + bk
†��bl − bl

†�: , �4�

with B-dependent coefficients

�k
�y� = −

�k

2
�

�k − �

�k + �
, �k

�z� = −
�k

2
�k

�k − �

�k + �
,

�kl =
�k�l�l�

2��k
2 − �l

2�
��k − �

�k + �
+

�l − �

�l + �
	 . �5�

Normal ordering is denoted by :¯ :, which serves as a sys-
tematic scheme to truncate the infinite sequence of higher
and higher operators generated by Eq. �1�. Higher normal-
ordered terms than the ones contained in Eq. �3� are ne-
glected in the flow of the Hamiltonian, which amounts to
neglecting small �of the order �k

2� higher-order cumulants in
the Hamiltonian �this approximation is reliable for any super-
Ohmic bath and for an Ohmic bath with 
�0.2 �for more
details, see Refs. 9 and 18�. If one is interested in equilib-

FIG. 1. The forward-backward transformation scheme induces a
nonperturbative solution of the Heisenberg equations of motion for
an operator. U denotes the full unitary transformation that relates
the B=0 to the B=� basis �Ref. 15�.
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rium properties, normal ordering is performed with respect to
the equilibrium ground state bkbk�

†
¬bkbk�

† : +	kk�n�k�, where
n�k� is the Bose-Einstein distribution. However, later we will
be interested in the real time evolution of a nonthermal initial
state ��i�. Hence, in order to minimize our truncation error,
we write more generally bkbk�

†
¬bkbk�

† : +	kk�n�k�+Ckk�,

where Ckk� =
def


�i�bkbk�
† ��i�−	kk�n�k�. The flow of H�B� gen-

erated by this � is

d�

dB
= − ��

k

�k
2�k − �

�k + �
, �6�

d�k

dB
= − ��k − ��2�k + 2�

l

�kl�l. �7�

The derivation of Eqs. �6� and �7� is discussed in detail in
Refs. 9 and 18. The diagonalized Hamiltonian for B=� is

H̃ = −
�̃

2
�x + �

k

�kbk
†bk, �8�

where �̃=��B=�� is the renormalized tunneling matrix ele-
ment. For example for an Ohmic bath, J���=2
����c−��,
the renormalized tunneling matrix element derived from the
solution of the flow equations9,18 has the correct nonpertur-

bative behavior �Ref. 17� �̃
��� /�c�
/�1−
�.
The observables in the B=� basis are given by solving

Eq. �2� for a suitable ansatz for the flowing observable.9 For
example,

�x�B� = h�B��x + �z�
k

��k�B�bk + �̄k�B�bk
†�

+ 
�B� + i�y�
k

��k�B�bk − �̄k�B�bk
†� , �9�

where higher normal-ordered terms generated in O��k
2� dur-

ing the flow �2� are again neglected. The differential equa-
tions describing this flow take the following form:

dh

dB
= − �

k

��k
�y���k + �̄k� + �k

�z���k + �̄k��

− 4�
k,l

�k
�y�Ckl��l + �̄l� ,

d�k

dB
= 2h�k

�y� + �
l

��kl��l + �̄l� + �lk��̄l − �l�� ,

d�k

dB
= 2h�k

�z� − �
l

��lk��l + �̄l� + �kl��l − �̄l�� ,

d


dB
= �

k

��k
�y���k + �̄k� + �k

�z���k + �̄k�� , �10�

with the initial conditions h�B=0�=1 and �k�B=0�=�k�B
=0�=
�B=0�=0. For ��supp J��� the observable decays

completely, h̃ =
def

h�B=��=0, implying decoherence.9 The
ground-state expectation value of �x is then given by 
̃

=
def


�B=��.
For real time evolution problems we now solve the

Heisenberg equations of motion in the diagonal basis �̃z�t�
=eiH̃t�̃ze

−iH̃t. The result is straightforward,

�̃k�t� = ��̃k�0�cos��̃t� + i�̃k�0�sin��̃t��e−i�kt,

�̃k�t� = ��̃k�0�cos��̃t� + i�̃k�0�sin��̃t��e−i�kt, �11�

while h̃ and 
̃ remain unchanged. In complete analogy to
canonical perturbation theory, we next undo the unitary

transformation �2�. The values of h̃, 
̃, �̃k�t�, and �̃k�t� are
used as initial values in the system of differential Eqs. �10� at
B=�, which is then integrated backward to B=0. This yields
h�t�, 
�t�, �k�t�, and �k�t�, which parametrize the time-
evolved operator �x,

�x�t� = h�t��x + �z�
k

��k�t�bk + �̄k�t�bk
†�

+ 
�t� + i�y�
k

��k�t�bk − �̄k�t�bk
†� �12�

in the original basis of the problem. Thereby the forward-
backward transformation scheme induces a nonperturbative
solution of the Heisenberg equations of motion �compare
Fig. 1�.

For the purposes of this Brief Report, we focus on the
numerical solution of the above differential equations by dis-
cretizing the bosonic bath with O�103� modes �notice that an
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FIG. 2. Real time evolution of the spin expectation value 
�z�t��
starting from a polarized spin in the z direction with a relaxed
Ohmic bath �see text� for two different values of 
 and �c /�=10.
The full lines are the flow equation results, the dashed lines are
TD-NRG curves for �=2.0, and the dotted lines are for �=1.41.
The TD-NRG results are courtesy of Anders �see Ref. 11�.The vari-
ous curves agree extremely well except for very long times shown
in the insets.
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approximate analytical treatment is equally possible�. The
initial quantum state ��i� is taken as spin up, 
�i��z��i�=
+1, with a relaxed bath with respect to this fixed spin. This
yields Ckk�=�k�k� /4�k�k�. We have implemented the nu-
merical solution for all components of the spin degree of
freedom. In order to assess the accuracy of our approach, the
time evolution of 
�z�t�� is shown in Fig. 2 and compared
with TD-NRG data for two values of the discretization pa-
rameter �. One finds excellent agreement except for very
long time scales �shown in the insets of Fig. 2�, where the
TD-NRG discretization error becomes noticeable �since the
curves depend on ��. The flow equation solution for the
observable 
�x�t�� shows that it approaches its flow equation
equilibrium expectation value 
�x�gs with an absolute error
below 10−2 for long times. A comparison of 
�x�gs with exact
numerical results using NRG �Ref. 19� in Fig. 3 again shows
very good agreement.

Summing up, we have shown how to implement an analo-
gous scheme to canonical perturbation theory for quantum
many-body systems. Using a simple but nontrivial example,
we could demonstrate that the well-established advantages of
canonical perturbation theory versus naive perturbation
theory were carried over to our unitary perturbation approach
as well, in particular the absence of secular terms in real time
evolution problems. Our results are stable in the long-time
limit �see Figs. 2 and 3� and can be improved systematically
in a uniform manner �as a function of time� by higher orders
of the calculation. The underlying scheme of infinitesimal
unitary transformations permits one to study nonperturbative
effects.20 Similarly to the role of canonical perturbation

theory in analytical mechanics, our approach should be use-
ful for other real time evolution problems from impurity sys-
tems to lattice models in quantum many-body physics.21
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FIG. 3. Ground-state expectation value of �x. Comparison of
flow equation results �curves� and NRG data �squares� from Ref. 19
for an Ohmic bath with damping 
. The results are for �c /�
=25,28.6,33.3,40,50,66.7,100 from top to bottom.
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