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We revisit the Kotliar-Ruckenstein �KR� slave boson saddle point evaluation for a two-site correlated
electron model. As the model can be solved analytically, it is possible to compare the KR saddle point results
with the exact many-particle levels. The considered two-site cluster mimics an infinite-U single-impurity
Anderson model with a nearest-neighbor Coulomb interaction: one site is strongly correlated with an infinite
local Coulomb repulsion, which hybridizes with the second site, on which the local Coulomb repulsion
vanishes. Making use of the flexibility of the representation, we introduce appropriate weight factors in the KR
saddle point scheme. Ground-state and all excitation levels agree with the exact diagonalization results. Ther-
modynamics and correlation functions may be recovered in a suitably renormalized saddle point evaluation.
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The unusual properties of the high-temperature supercon-
ductors or the colossal magnetoresistance and orbital order-
ing in transition-metal oxides1 are calling for new techniques
and concepts to describe these phenomena. A formalism de-
vised to deal specifically with strongly correlated electron
systems is provided by the slave boson approach pioneered
by Barnes2 for the single-impurity Anderson model �SIAM�
and further extended to the Hubbard model by Kotliar and
Ruckenstein.3 The approach implements a local decomposi-
tion of electronic excitations into charge and spin compo-
nents, which is achieved by the introduction of composite
operators for all local �on-site� excitations. The composite
operators separate into canonical bosonic and fermionic op-
erators where—in the Barnes approach—the charge �spin�
degrees of freedom are represented by bosonic �fermionic�
operators. However, the latter are enslaved in the sense that
their respective number operators have to fulfill a local con-
straint. The original idea was to decouple spin and charge
degrees of freedom. In the Kotliar-Ruckenstein �KR�
scheme, a bosonic mode is attributed to each type of excita-
tion, which allows one to study the correlated system in a
saddle point approximation for all degrees of freedom.3–5

This latter approach has been impressively successful when
compared to numerical simulations: ground-state energies6

and charge structure factors show excellent agreement.7

The slave boson approach has several intriguing proper-
ties. First, the approach is exact in the large degeneracy
limit.4,8 Moreover, the paramagnetic mean-field solution re-
produces the Gutzwiller approximation in the KR rep-
resentation.3 It obeys a variational principle in the limit of
large spatial dimensions where the Gutzwiller approximation
and the Gutzwiller wave function are identical.9 These for-
mal properties signify that the approach captures character-
istic features of strongly correlated electrons as the suppres-
sion of the quasiparticle weight and the Mott-Hubbard/
Brinkman-Rice transition10 to an insulating state at half
filling with increasing on-site Coulomb interaction.

Second, as the fields are canonical within this approach,
long-range correlations are more amenable to analyses.
Moreover, one can easily introduce a long-range Coulomb
interaction. In a radial gauge representation of the slave

bosons, long-range Coulomb interactions can even be cast
into a bilinear form.11 In other approaches, which satisfacto-
rily implement local correlations, long-range Coulomb inter-
actions are typically difficult to handle.

The flexibility of the slave boson approach has contrib-
uted to its success in many fields from Kondo physics12,13

and Kondo/Anderson lattices14–16 to interfaces of correlated
electronic systems.17,18 It separates in a straightforward way
the high- and low-energy scales. By now the respective
mean-field evaluations are well documented �see, e.g., Refs.
6 and 19–22� and a number of fluctuation calculations have
been performed,7,23–25 even though the choice of the proper
framework has been intensely debated.4,11,23,26,27 In the case
of the SIAM, one rather resorts to diagrammatic approaches,
which include slave boson techniques �for a recent reference
see Ref. 28�.

It was doubted that the low-energy physics is imple-
mented consistently in the mean-field evaluations because
the decomposition is a local scheme. In the present Brief
Report, we want to access all energy scales for a specific
model and compare the saddle point evaluation of the KR
slave boson approach with exact results. Comparing exact
and saddle point calculations analytically represents a diffi-
cult task when handling a large system. Therefore, as a first
step, we restrict our considerations to a two-site cluster,
which can be diagonalized exactly but still incorporates char-
acteristics of a strongly correlated electron system: the con-
sidered two-site cluster presents a truncated infinite-U SIAM
with a nearest-neighbor Coulomb interaction. One site is
strongly correlated with an infinite local Coulomb repulsion,
which hybridizes with the second site, on which the local
Coulomb repulsion vanishes. From the investigation of this
model another benchmark of the slave boson approach is
provided here and, moreover, two essential questions may be
addressed: how do thermodynamics and correlation func-
tions compare between exact and saddle point evaluations?
How is the intersite Coulomb interaction appropriately intro-
duced in the KR slave boson approach?

Interacting two-site cluster. We introduce the SIAM-type
Hamiltonian
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H = �
�

��cc�
† c� + �dd�

† d� + V�c�
† d� + H.c.��

+ Ud↑
†d↑d↓

†d↓ + Indnc, �1�

which is defined on two sites. The operators c�
† �c�� and d�

†

�d�� represent the creation �annihilation� of “band” and “im-
purity” electrons with spin projection �. The energies �c and
�d are the band and impurity energy levels, respectively,
while the hybridization energy is V. Here U is the on-site
repulsion, which is the largest energy scale in the model and
it will be set to infinity as in the standard infinite-U SIAM.
Finally, HI� Indnc represents the nonlocal Coulomb interac-
tion.

This extended two-site SIAM may be solved exactly, ei-
ther by diagonalization of the Hamiltonian, Eq. �1�, or, in the
Lagrangian language,29,30 through the exact evaluation of the
path integrals representing the desired quantities within a
slave boson representation in the radial gauge.11 The two-
particle basis for the Hamiltonian matrix consists of two sin-
glet states and three triplet states. Indeed, one finds a three-
fold degenerate eigenvalue of H,

E�t� = ��c + �d + I� , �2�

corresponding to the triplet states and two nondegenerate
eigenvalues controlled through ���c−�d,

E�
�s� =

1

2
�3�c + �d + I � ��� − I�2 + 8V2� , �3�

corresponding to the singlet states.
KR slave boson scheme. The goal is now to formulate an

effective theory, which correctly reproduces the expectation
value of the charge density and the charge- and spin-density
correlation functions. The requirement to work with canoni-
cal fermionic or bosonic operators �or rather “fields” in the
Lagrangian language� leads to the slave boson scheme with
which we intend to evaluate the free energy in the KR slave
boson mean-field or, equivalently, saddle point �SBMF� ap-
proximation. The first step in the scheme is to enlarge the
Fock space for the impurity site by introducing auxiliary
fermions f�

�†� and slave bosons e�†� and p�
�†�, where e�†� acts on

an empty and p�
�†� on a singly occupied impurity site. A field

for double occupancy of the impurity site is omitted as we
restrict the evaluation to infinite U. The electron operator on
the impurity is then represented as a composite operator,

d�
† = f�

† p�
† e, d� = e†p� f�. �4�

These fields are subject to three constraints,

e†e + �
�

p�
† p� = 1,

p�
† p� = f�

† f�, � = ↑,↓ , �5�

which are enforced by three Lagrange multipliers, denoted
by � and ��, respectively. If strictly enforced, only empty
and singly occupied states in the physical space remain.

Now, in the second step of the setup, the KR technique
renormalizes the coupling parameters of the Hamiltonian or
Lagrangian. It thereby makes use of the freedom to choose

different �operator� representations of the respective coupling
terms, which are all equivalent in the physical subspace. This
freedom originates from the decomposition of the electron
field into auxiliary fields. Kotliar and Ruckenstein3 intro-
duced z factors into the hybridization term, which then reads
for the SIAM

HV = V�
�

�c�
† d� + H.c.� = V�

�

�c�
† z� f� + H.c.� . �6�

A straightforward choice would be z�=e†p�, which directly
translates the relation Eq. �4� within HV. However, the well-
established substitution is rather

z� = e†�1 − p�
† p��−1/2�1 − e†e − p−�

† p−��−1/2p�, �7�

which reproduces the U=0 spinless case and, when properly
extended to account for double occupancy, the Gutzwiller
approximation3 in the saddle point evaluation and which
leads to the excellent agreement of the SBMF with numerical
simulations in the case of the single band Hubbard model.
We note that HV has the same matrix elements in the physi-
cal subspace for any of these representations for z�.

In the third step of the scheme, the bosonic fields, includ-
ing the Lagrange multipliers, are replaced by their respective
saddle point values. Here we emphasize that z�

2 is in fact the
quasiparticle weight, as may be confirmed by a straightfor-
ward evaluation of ���	�

�	 =1− 1
z�

2 , where ��	� represents the
impurity site self-energy.

Before we discuss the KR SBMF results, the renormaliza-
tion of the nonlocal Coulomb interaction I has to be intro-
duced,

HI = Indnc = I�
�

�1 − y�
†y��nc,�. �8�

The natural choice would be y�=e �spin independent� as �1
−e†e� is the density operator. However, on the saddle point
level, we rather expect that y�=z�

† should account for a more
appropriate representation. As z�

†z� is related to the quasipar-
ticle weight, 1−y�

†y� characterizes the incoherent part of an
electronic excitation. Here it refers to a local process �Eq.
�8��. Correspondingly, we define

y�
† = e†�1 + 
 − p�

† p��−1/2�1 − e†e − p−�
† p−��−1/2p�. �9�

An infinitesimal convergence factor 
�0 has been intro-
duced to ensure the property y�=0 for e=0 also on the
saddle point level. This singular assignment of y�=0 may
occur if the hybridization is suppressed either due to the
formation of a triplet state or on account of the special choice
V=0. Otherwise 
 may be set to zero from the outset. Such a
convergence factor is not necessary for z� in the hybridiza-
tion �Eq. �6��. We emphasize again that replacing Indnc by
the expression on the right-hand side of Eq. �8� with y�

† from
Eq. �9� does not hurt the correctness of the representation,
i.e., all matrix elements of HI are unaffected in the physical
subspace. Moreover, by extending the scheme developed in
Refs. 29 and 30 to the KR representation, it can be shown by
direct evaluation of the path integral that the exact partition
function is recovered when using Eqs. �8� and �9�.

KR SBMF. The saddle point evaluation is now easily
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implemented: �i� the bosonic fields are replaced by real vari-
ables and �ii� these variables are found from the minimiza-
tion of the grand canonical potential. With �i� we identify the
fermionic matrix as

�E�� = �Ec,� z�V

z�V Ef ,�
	 , �10�

with Ec,�=�c+ �1−y�
2�I−� and Ef ,�=�d+��−�. Its eigenval-

ues are

E�,� =
1

2
�Ec,� + Ef ,� � ��Ec,� − Ef ,��2 + 4z�

2V2� . �11�

For convenience, we have introduced a joint chemical poten-
tial � for all electrons �on the d and c sites� to control the
filling.

Part �ii� of the evaluation depends crucially on the number
of electrons N in the system. We first consider the
two-electron case �N=2�. The free energy F reads
F�N=2,T�=−T��,r=�ln�1+exp�−Er,���−����p�

2 −��1−e2

−��p�
2�+2�, where the first log term is standard and the

terms with the Lagrange multipliers �� and � were generated
through the constraints. The phases of the slave boson fields
do not enter into the saddle point evaluation, so e and p� are
now real numbers, as well as � and ��. The quadratic term e2

is to be identified with the hole number x on the correlated
site, i.e., x=e2. We take the temperature T in units of kB and
=1 /T. For the limit T→0, we have F�N=2,0�=��E−,�
−����p�

2 +��e2+��p�
2 −1�+2�. The minimization of the

ground state F�N=2,0� is cumbersome but straightforward.
We obtain

F�N = 2,T = 0� − 2�d = ���1 + x� + I�1 − x� − 2V�2x�1 − x� .

�12�

Here, the hole number on the correlated site obeys the ana-
lytical relation �with �=−1 and x−=x�,

x� =
1

2
1 + �
� − I

��� − I�2 + 8V2� , �13�

which displays a monotonous decay with increasing ��
− I� /V. The ground state is paramagnetic and �with p�

2 = p−�
2

� p2� the constraint yields the correct relation p2= �1−x� /2
for the expectation value of single occupancy on the corre-
lated site. Notably, these relations �Eqs. �12� and �13�� are
exact. This statement is consistent with the observation that
the lowest two-particle state acquires the energy
�E−,↑+E−,↓�=E−

�s� of the lower antiferromagnetic singlet
�Eq. �3�� for the saddle point solution of the bosonic fields.

However, it is not only the lowest energy state in the
two-particle sector, which is solved exactly in the KR SBMF
scheme. The approach also provides the exact solutions for
the single-particle �N=1� and the three-particle �N=3� sec-
tors and, moreover, the triplet solution for �N=2�. These lat-
ter cases are not as surprising as the two-particle solution for
the paramagnetic ground state. Nevertheless, these states will
be important for the calculation of correlation functions.

Here it suffices to emphasize that the KR approach was
set up with the proviso that the spin polarized limit is cor-

rectly implemented through the weight factors z�.3 In fact,
we find for N=1 the hole expectation value in the correlated
site x= 1

2 �1−� /��2+4V2� and the fermionic matrix �Eq.
�10�� reduces to the simple 2�2 matrix with entries �c and
�d on the diagonal and V as the off-diagonal matrix elements.
This represents correctly a two-level problem. The N=2 trip-
let state and the N=3 case are exactly reproduced because
these are local states with vanishing kinetic term HV and the
weight factors y� for the nearest-neighbor interaction I have
been chosen suitably in Eq. �9�. Truly, for the triplet state, we
could verify that �E−,↑+E+,↑�=E�t� for E�,↑ from the corre-
sponding saddle point solution. There, the solution becomes
the ground state if the model free energy is extended by a
magnetic term, linear in the external field.

The high-energy singlet state presents �for the limit V
→0� a local singlet with the two electrons on the uncorre-
lated site. For V�0, this singlet becomes nonlocal as the
electronic states hybridize with the correlated site. It is im-
portant to observe that the KR SBMF scheme is flexible
enough to accommodate also this second nonlocal two-
particle state correctly. In order to gain the exact expression
E+

�s� of Eq. �3�, the saddle point evaluation for the bosonic
fields has to be retraced, however, with �E+,↑+E+,↓� for the
two-particle state. We find for the hole number in the corre-
lated site x=x+ �see Eq. �13�� and �E+,↑+E+,↓�=E+

�s�. In other
words, here we minimize the energy in the subspace of the
Hilbert space that is orthogonal to the ground state.

Spin-correlation function. The spin-correlation function
involves transitions between states in the singlet and triplet
spin sectors, which are separated by E�t�−E−

�s�. For the two-
site model, we can easily evaluate the spin-correlation func-
tion ���

�s�S+�t�S−�0���
�s�� where ��

�s� refers to the singlet
states and S−�0�=d↓

†d↑=S+
†�0� acts on the correlated �impu-

rity� site. The singlet state ket vector is

��
�s�� = a�c↑

†c↓
†�0� � b�d↑

†c↓
† + c↑

†d↓
†�0� , �14�

where the fermionic operators act on their vacuum state 0�
and the normalization factors are a=�x and b=�1

2 �1−x�. In
fact, the total spin operator S+/−

�tot� for the two sites correctly
yields the singlet state property S+/−

�tot���
�s��=0. The spin-

correlation function for the correlated site is, e.g., for T
�E�t�−E−

�s� and �− I�0, and for a chemical potential which
fixes the particle number to two,

��−
�s�e−He−itHd↑d↓

†eitHd↓d↑
†�−

�s�� .

The procedure for its evaluation in the KR technique is
straightforward: the exponential Hamiltonian terms are taken
in their respective mean-field forms, which act on the states
generated by the spin operators. As the saddle point evalua-
tion delivers the exact energy levels, we identify

�S+�t�S−�0�� =
1

2
�1 − x�eit�E�t�−E−

�s��, �15�

where the partition function Z=e−E−
�s�

cancels the tempera-
ture factor. Similarly, the exact spin-correlation function with
a trace, which includes also the triplet and the high-energy
singlet, is recovered for arbitrary temperature values.

It is the remarkable flexibility of the slave boson tech-
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nique which correctly renders certain limits of strongly cor-
related electron systems. This adaptability originates in the
freedom to choose appropriate weight factors for the interac-
tion terms in the projected field theory. For the two-site
SIAM, the generic choice of these weight factors already
leads to the exact solution of the model. The choice is ge-
neric in the sense that it was introduced early on for the
Hubbard model in the original work on the KR slave boson
scheme.3 It is striking to observe that even the inclusion of a

nonlocal Coulomb repulsion in this model does not break the
exactitude of the saddle point evaluation in this scheme.
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