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We formulate a bosonic dynamical mean-field theory �B-DMFT� which provides a comprehensive, thermo-
dynamically consistent framework for the theoretical investigation of correlated lattice bosons. The B-DMFT
is applicable for arbitrary values of the coupling parameters and temperature and becomes exact in the limit of
high spatial dimensions d or coordination number Z of the lattice. In contrast to its fermionic counterpart, the
construction of the B-DMFT requires different scalings of the hopping amplitudes with Z depending on
whether the bosons are in their normal state or in the Bose-Einstein condensate �BEC�. A detailed discussion
of how this conceptual problem can be overcome by performing the scaling in the action rather than in the
Hamiltonian itself is presented. The B-DMFT treats normal and condensed bosons on equal footing and thus
includes the effects caused by their dynamic coupling. It reproduces all previously investigated limits in
parameter space, such as the Beliaev-Popov and Hartree-Fock-Bogoliubov approximations, and generalizes the
existing mean-field theories of interacting bosons. The self-consistency equations of the B-DMFT are those of
a bosonic single-impurity coupled to two reservoirs corresponding to bosons in the condensate and in the
normal state, respectively. We employ the B-DMFT to solve a model of itinerant and localized, interacting
bosons analytically. The local correlations are found to enhance the condensate density and the BEC transition
temperature TBEC. This effect may be used experimentally to increase TBEC of bosonic atoms in optical lattices.
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I. INTRODUCTION

The observation of the Bose-Einstein condensation �BEC�
in ultracold, atomic gases has greatly stimulated research
into the properties of this fascinating quantum state of
matter.1 In particular, experiments with alkali atoms confined
in optical lattices2–4 have renewed the theoretical interest5–8

in the physics of strongly correlated bosons on lattices,
which promises significant new insights and even applica-
tions in fields such as quantum computing.9

The investigation of correlated lattice bosons is not only
relevant for ultracold bosonic atoms in optical lattices but
has a long history starting with the formulation of Matsubara
and Matsuda10,11 and Morita12 of a lattice model of liquid
4He. A new direction of research was initiated by Fisher et
al.,13 who studied lattice bosons with and without disorder to
explore the superfluid-insulator transition14–18 and boson lo-
calization observed in 4He absorbed in porous media.19

Granular superconductors forming the weak Josephson junc-
tions have also been described by interacting lattice
bosons.20,21 Recently, quantum phase transitions in magnetic
systems such as TlCuCl3,22 which can be induced by tuning
the magnetic field, have been interpreted as the BEC of
magnons.23 Bosonic supersolids24,25 promise to be yet an-
other fascinating state of bosonic matter.

In this paper, we formulate a comprehensive, thermody-
namically consistent theory of correlated lattice boson sys-
tems, namely, a bosonic dynamical mean-field theory �B-
DMFT� which is applicable for arbitrary values of the
coupling parameters and temperature. The B-DMFT includes
all local, dynamical correlations of the many-boson system
and becomes exact in the limit of infinite space dimensions

in analogy with its successful fermionic counterpart.26–29

With the B-DMFT, we are able to solve a lattice model of
itinerant and localized, interacting bosons. The local correla-
tions lead to an enhancement both in the BEC transition
temperature TBEC and the condensate fraction as compared to
the noninteracting system. Hence, bosonic correlations can
be employed in the laboratory to reach higher values of TBEC.

This paper is organized as follows. In Sec. II, we intro-
duce the bosonic Hubbard model and explain the specific
problems arising in the construction of a B-DMFT in the
limit of large coordination number Z of the lattice, namely,
the problem of how to scale the hopping amplitudes with Z.
The self-consistency equations and the general structure of
the B-DMFT are discussed in Sec. III. The comprehensive
nature of the B-DMFT is demonstrated in Sec. IV by explic-
itly reproducing results previously obtained in special limits
of parameter space and by deriving other bosonic mean-field
theories. In Sec. V, the B-DMFT is employed to solve a
bosonic version of the Falicov-Kimball model and it is
shown that correlation effects lead to an enhancement of
TBEC. Conclusions and an outlook in Sec. VI close the pre-
sentation.

II. CORRELATED LATTICE BOSONS

A. Generalized bosonic Hubbard model

In the following, we consider a many-particle system with
different species of bosons as can be realized in optical
lattices.3,4 This may either involve different atoms as, for
example, in a binary mixture of 87Rb and 7Li, or one type of
atom in different hyperfine quantum states such as 87Rb,
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where the total nuclear spin I=3 /2 adds to the spin S=1 /2 of
the valence s electron, giving states with F= I+S=1 or 2.
Such systems may be modeled by a generalized bosonic
Hubbard Hamiltonian5,10,13,30

H = �
ij�

tij
� bi�

† bj� +
1

2�
i��

U��ni��ni� − ���� � H0 + Hint,

�1�

where ni�=bi�
† bi� is the occupation number operator for

bosons of species �. Furthermore, tij
� are hopping amplitudes

of � bosons and U�� are local density-density interactions
between � and � bosons on the same lattice site. An ex-
change interaction for spinor bosons can be easily included.
In general, the many-boson model �Eq. �1�� in unsolvable.

B. Construction of a comprehensive mean-field theory

The explanation of experiments with correlated lattice
bosons in quantum optics and condensed-matter physics re-
quires a comprehensive theoretical scheme for the investiga-
tion of Hamiltonian �1�. In particular, it must be capable of
describing thermal and quantum phase transitions and thus
provide the phase diagram and the thermodynamics for the
entire range of microscopic parameters. In the case of lattice
fermions, such a framework already exists: the dynamical
mean-field theory �DMFT�.28 Indeed, the DMFT has proved
to be a very successful, comprehensive mean-field theory for
models and materials with strongly correlated electrons.29,31

In particular, it provides a quantitative description of the
Mott-Hubbard metal-insulator transition, photoemission
spectra, magnetic phases, and other correlation induced phe-
nomena. The DMFT has the virtue of becoming exact in the
limit of infinite space dimensions d or, equivalently, infinite
coordination number Z, i.e., number of nearest neighbors
�Z=2d for a d-dimensional hypercubic lattice�.26 This limit is
well known to produce mean-field theories which are dia-
grammatically controlled and whose free energies have no
unphysical singularities �e.g., the Weiss mean-field theory for
the Ising or Heisenberg spin models�.32 To obtain a physi-
cally meaningful mean-field theory, the free energy of the
model has to remain finite in the limit d or Z→�.26 This
requires a suitable scaling of the coupling parameters with d

or Z, e.g., J→ J̃ /Z, where J̃=const, for Ising spins with
nearest-neighbor coupling J. While for the Ising model the
scaling is self-evident, this is not so for more complicated
models. Namely, fermionic or bosonic many-particle systems
are usually described by a Hamiltonian consisting of several
noncommuting terms, each of which is associated with a
coupling parameter, e.g., a hopping amplitude or interaction.
In such a case, the question of how to scale these parameters
has no unique answer since this depends on the physical
effects one wishes to explore.33,34 In any case, the scaling
should be performed such that the model remains nontrivial
and its free energy stays finite in the Z→� limit. By “non-
trivial,” we mean that not only �H0� and �Hint� but also the
competition between these terms as expressed by ��H0 ,Hint��
should remain finite; here, �¯� denotes the quantum and
statistical average of operators. In the literature on lattice

bosons, the d→� limit was so far considered only in con-
nection with the distance-independent �“infinite-range”� hop-
ping of the bosons15,17,18 in which the mean-field theory of
Fisher et al.13 for the Bose-condensed phase becomes exact.
As will be discussed below, this is a static mean-field theory
since normal and condensed bosons are not dynamically
coupled. In particular, in the normal phase, one has
��H0 ,Hint��=0 and the lattice problem is reduced to a single-
site �“atomic”� problem where particles are immobile. An-
other static mean-field theory is the Bogoliubov approxima-
tion, which yields a good weak-coupling mean-field theory
for bosons in a continuum. For lattice bosons, this approxi-
mation fails to describe the Mott superfluid-insulator transi-
tion.

Evidently, a dynamical mean-field theory is needed to de-
scribe the rich physics of interacting lattice bosons, e.g., cold
atoms in optical lattices,2 within one conceptual framework.
A comprehensive DMFT for correlated lattice bosons, i.e., a
theory which can describe normal and condensed bosons on
the same footing, did not exist up to now. In the following,
we will discuss the conceptual problems which prevented the
formulation of such a bosonic DMFT and how they can be
overcome.

C. Lattice bosons in infinite dimensions: Different scaling
for Bose-Einstein condensed and normal bosons

A macroscopically large number of bosons can condense
into a single quantum state. This BEC may be detected in the
spectral decomposition of the one-particle density matrix,

�ij = �bi
†bj� = �

�

���i�
� � j�, �2�

where bi
† and bi are creation and annihilation operators, re-

spectively, for a boson at a lattice site i, with �i� as the
corresponding wave function. For simplicity, we discuss here
only a single species of bosons so that the index � can be
omitted. When BEC occurs, one of the eigenvalues becomes
macroscopically large, �0=N0	O�N�, where N is the total
number of bosons. The density matrix then decomposes into

�ij = N0�i0
� � j0 + �̃ij , �3�

where the second term corresponds to the noncondensed,
“normal” bosons. The first term has the remarkable property
that it does not decrease even at large distance Rij = 
Ri
−R j
 between the bosons at sites i and j. Here, 
R
 denotes
the length of R obtained by counting the minimal number of
links between two sites on a lattice. By contrast, the second
term in �ij decreases with increasing Rij.

This has immediate consequences for the kinetic part of
the Hamiltonian

H0 = − t�
�ij�

bi
†bj , �4�

with −t as the amplitude for hopping between nearest neigh-
bor sites i and j. For a uniform BEC with density n0
=N0 /NL, where NL is the number of lattice sites, one has
�i0

� � j0=1 /NL such that the kinetic energy is given by
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Ekin = − t�
�ij�

�ij = Ekin
BEC + Ekin

normal, �5�

where

Ekin
BEC = − t�

�ij�
N0, Ekin

normal = − t�
�ij�

�̃ij . �6�

To derive a mean-field theory for lattice bosons via the limit
of high spatial dimensions, the energy density Ekin /NL needs
to remain finite for d or Z→�. Since the energy density of
the condensate, Ekin

BEC /NL=Ztn0, is proportional to Z, a non-
trivial limit Z→� is obtained only if the hopping amplitude
is scaled as t= t̃ /Z, with t̃=const.17,18 In the case of normal
lattice bosons �or fermions�, the situation is characteristically
different. Since �̃ij is the transition amplitude for the hopping
of a boson from j to one of the Z neighboring sites i, the
respective normalized hopping probability is ��̃ij�2	1 /Z,
whence �̃ij 	1 /�Z. For the energy density of the normal
bosons, Ekin

normal /NL	Zt�̃ij, to remain finite for Z→�, the
hopping amplitude must therefore be scaled as in the case for
fermions, namely, as t= t̃ /�Z.26 In the more general case of
hopping between sites i and j which are not nearest neigh-
bors, the amplitudes tij have to be scaled as

tij = t̃i j/�ZRij�s, �7�

where s=1 �“integer scaling”� if the bosons are quantum
condensed and s=1 /2 �“fractional scaling”� if they are in the
normal state.

The total energy of a single species ��=1� of correlated
lattice bosons described by Hamiltonian �1� is given by

E = − t�
�i,j�

N0 − t�
�i,j�

�̃ij +
1

2
U�

i

�ni�ni − 1�� . �8�

If the scaling of the hopping amplitudes in the limit Z→� is
performed on the level of the Hamiltonian �or the energy E�,
two cases have to be distinguished:

�i� N0=0: In the absence of a BEC, fractional scaling �t
= t̃ /�Z� has to be employed to arrive at a finite value of E for
Z→�. We note that the interaction is purely local and hence
independent of the spatial dimension of the system; conse-
quently, U need not be scaled at all.

�ii� N0�0: In this case, integer scaling �t= t̃ /Z� has to be
employed. Thereby, the contribution of the condensate �first
term in Eq. �8�� remains. However, at the same time, the
contribution of the noncondensed �normal� bosons to the ki-
netic energy is suppressed 	1 /�Z. The normal bosons thus
become immobile. It can be shown rigorously that the mean-
field equations obtained in this way are equivalent to those
derived by Fisher et al.,13 which are known to be exact in the
limit of infinite-range hopping �see Sec. IV C�.

The above discussion shows that the construction of a
mean-field theory via the limit Z→�, which is based on a
scaling of the hopping amplitudes in the Hamiltonian, is ei-
ther restricted to the normal state or removes the normal
bosons from the problem. This is unsatisfactory since the
important dynamical coupling of normal and condensed
bosons is then eliminated from the outset. During the last 15

years, the problem of how to scale the hopping amplitudes
without eliminating the normal bosons presented an unsur-
mountable obstacle for the formulation of a bosonic DMFT.
Indeed, our discussion shows that such a theory cannot be
formulated on the level of a fully microscopic Hamilton op-
erator, i.e., without making an additional Bogoliubov mean-
field-type assumption.35

At this point, it should be pointed out that there exists no
a priori condition according to which the scaling of the hop-
ping amplitudes has to be performed in the Hamiltonian.
Indeed, for the free energy of the model to remain finite in
the limit Z→�, the scaling can equally be performed in the
partition function �or in the action entering in the functional
integral which determines the partition function�, from which
the free energy is calculated.

III. BOSONIC DYNAMICAL MEAN-FIELD THEORY

A. General structure of the bosonic
dynamical mean-field theory

We will now show that the long-standing problem of the
scaling of the hopping amplitudes with the coordination
number Z or the dimension d can be resolved by considering
the large dimensional limit not in the Hamiltonian but in the
action determining the Lagrangian density. Namely, integer
scaling is employed whenever a hopping amplitude is asso-
ciated with anomalous expectation values �bi� and �bi

†� while
fractional scaling is used otherwise. The B-DMFT obtained
in this way treats normal and condensed bosons on equal
footing and is thus able to describe both phases, including
the transition between them, in a thermodynamically consis-
tent way.

The general structure of the B-DMFT is shown in Fig. 1.
In the limit d→�, the bosonic many-body lattice problem is

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

time

Boson reservoir (normal)

Boson reservoir (BEC)

Correlated lattice
bosons

FIG. 1. �Color online� Bosonic dynamical mean-field theory �B-
DMFT�: within the B-DMFT, the full many-body lattice problem is
reduced to a single-site problem which is coupled to two reservoirs
corresponding to bosons in the Bose-Einstein condensate and in the
normal state. The integer occupation of the site changes in time and
is determined by the local interactions and the time-dependent prop-
erties of the particle reservoirs. Although the total number of bosons
is preserved, particles are scattered between the normal and the
condensate reservoirs via the single site as shown by arrows. This
schematic picture visualizes the idea of DMFT for lattice bosons in
analogy to the fermionic counterpart described in Ref. 29.
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mapped onto a single-site problem with integer occupation.
This site is coupled to two-particle reservoirs: one represent-
ing the normal and the other the quantum condensed bosons.
These reservoirs represent the Weiss-type molecular fields of
the B-DMFT. Their properties are determined self-
consistently by the B-DMFT equations. The particles hop
onto and off the site as a function of time, thus changing the
total number of bosons of the reservoirs. Therefore, local
correlations lead to a dynamical depletion or filling of the
condensate.

B. Bosonic dynamical mean-field theory equations

Here, we present the self-consistency equations of the
B-DMFT for model �1�; their derivation is discussed in detail
in Appendix A. The time evolution of � bosons on the single
site i=0 is represented by the local propagator �Green’s func-
tion�

G��
� = − �T
b��
�b�
†�0��Sloc

, �9�

where we used the imaginary time, the finite temperature
formalism, and the Nambu notation b�

†��b�
� ,b��; T
 is the

time ordering operator. The diagonal elements of the Green’s
function matrix in the Nambu space represent the quantum-
mechanical probability amplitude for creating a boson on a
site at one particular time and annihilating it after a time 
 or
the time inverted process. The off-diagonal elements, present
only in the BEC phase, represent the amplitudes for creating
or annihilating two bosons at different times. In the path-
integral formalism, the probabilities of such processes are
determined by the local action, which in the B-DMFT is
given by

Sloc = − 

0

�

d


0

�

d
��
�

b�
†�
�G�

−1�
 − 
��b��
��

+ 

0

�

d
�
��

U��

2
n��
��n��
� − ����

+ 

0

�

d
�
�

����
†�
�b��
� . �10�

Here, �� is a numerical factor depending on the lattice struc-
ture, i.e., ����i�0t̃i0

� /ZRi0 for d→� and ����i�0ti0
� for an

approximation in finite dimensions. The free �“Weiss”28�
mean-field propagator G�

−1, which is determined by the prop-
erties of the reservoir of normal � bosons, is related to the
local propagator G� by the Dyson equation,

G�
−1�i
n� = G�

−1�i
n� + ���i
n� � �i
n�3 + ��1� − ���i
n� ,

�11�

where G and � are also matrices in the Nambu space. Here,

n=2�n /� are even Matsubara frequencies with the inverse
temperature �=1 /kBT and ���i
n� is the momentum-
independent �local� self-energy. The quantity �� describes
the resonant broadening of quantum-mechanical states on a
lattice site and may be interpreted as a hybridization of
bosons on that site with the surrounding bosonic bath. This

hybridization function is determined by the local correlations
through Eq. �10�. The third term in Eq. �10� describes the
coupling of a local boson to the condensate, the latter being
represented by an order parameter ��

†�
�. In our formulation,
this term arises naturally in the case of BEC and does not
require a Bogoliubov substitution.35

The second B-DMFT equation is given by the lattice Hil-
bert transform,

G��i
n� = �
k

��i
n�3 − ��k
� − ���1� − ���i
n��−1, �12�

where �k
� is the dispersion relation of noninteracting �

bosons, �� the chemical potential, k the wave vector, 1 a
unity matrix, and �3 the Pauli matrix with �1 on the
diagonal.27,28 Equations �9� and �12� are the counterparts to
the self-consistency equations of the DMFT for correlated
lattice fermions. However, here these equations contain the
condensate wave function ��, i.e., the order parameter of the
BEC, which enters as a source field in the action �Eq. �10��.
It can be determined exactly by calculating the average

���
� = �b��
��Sloc
�13�

together with Eqs. �9� and �12�. We note that in equilibrium,
the time dependence enters via a trivial exponential factor
e−��
 which can be eliminated by a gauge transformation.36

Equations �9�–�13� constitute the B-DMFT solution of the
generalized bosonic Hubbard model �Eq. �1��. These equa-
tions are exact in the d→� limit and provide a comprehen-
sive, thermodynamically consistent and conserving approxi-
mation in finite dimensions. In other words, the B-DMFT
derived here is the first mean-field theory for correlated lat-
tice bosons, which has all the attractive features characteriz-
ing the now well-established fermionic DMFT.28,29 In par-
ticular, the B-DMFT can be expected to be the best
approximation to many-boson problems with strong local
correlations since the on-site quantum fluctuations of the
spin or density are treated exactly. Spatial correlations are
neglected but can be restored, e.g., within cluster extensions
of the B-DMFT. Furthermore, long-range ordered phases can
be described within the B-DMFT by properly choosing the
self-consistency conditions in analogy with the fermionic
case.28

C. Bosonic dynamical mean-field theory
and Gross-Pitaevskii equation

The exact Euler-Lagrange equation of motion for the field
b�
� is obtained from the stationary conditions
�Sloc�b�

† ,b�� /�b�
†=0 of the local B-DMFT action and is given

by

�
b��
� − 

0

�

d
����
11�
 − 
��b��
�� + ��

12�
 − 
��b�
†�
���

+ ��b��
� + �
�

U��b�
† �
�b��
�b��
� = ��b��
� . �14�

If one replaces each field b�
� by its expectation value �the
order parameter ���, one arrives at
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�
���
� − 

0

�

d
����
11�
 − 
�����
�� + ��

12�
 − 
����
��
���

+ �����
� + �
�

U������
��2���
� = �����
� . �15�

This is a generalization of the standard Gross-Pitaevskii
mean-field equation, a nonlinear differential equation for the
condensed bosons which can be derived within the time-
dependent Hartree-Fock approximation.35 At present, it is not
clear whether the replacement b��
�→���
�, i.e., the factor-
ization of the correlation function, holds rigorously as in
other mean-field theories.37–40 Equation �15� is the classical
equation of motion of the condensate of lattice bosons in the
d→� limit. The second term on the left-hand side of Eq.
�15� describes the retarding effects of normal bosons on the
condensate and makes the generalized Gross-Pitaevskii equa-
tion a nonlinear integrodifferential equation. We note that in
the standard Gross-Pitaevskii equation, the hybridization
term �� is missing. Once �� has been determined by solving
the B-DMFT self-consistency, Eqs. �15� can be used to de-
termine ���
� and then calculate any response function of
the condensate due to external perturbations, e.g., to describe
the Bragg scattering. In equilibrium, �� can be expected to
be independent of 
. Then, the stationary solution of Eq. �15�
is easily obtained by solving a set of linear equations. For
example, for the spinless bosonic Hubbard model �no index
��, we obtain ���2= ��−�+�11�
n=0�+�12�
n=0�� /U. The
condensate density depends explicitly on the zero mode
components of the hybridization functions for the normal
subsystem.

IV. BOSONIC DYNAMICAL MEAN-FIELD THEORY
IN DIFFERENT LIMITS OF PARAMETER SPACE

The B-DMFT is a comprehensive mean-field theory for
correlated bosons on a lattice, which means that the theory is
valid for all input parameters and temperatures. This is an
essential prerequisite for obtaining a reliable, approximate
description of those parts of the phase diagram which cannot
be studied perturbatively. Above all, the B-DMFT repro-
duces all known results obtained in special limits of the pa-
rameter space as depicted in Fig. 2. In particular, the exactly
solvable limits of free and immobile bosons and of well-
known static mean-field approximations can be obtained di-
rectly from the B-DMFT. In the following, we discuss these
limits in detail.

A. Free bosons

In the noninteracting limit, U��=0, the problem is trivi-
ally solvable in all dimensions. Since there is no interaction,
all correlation functions factorize and the cavity method em-
ployed in Appendix A becomes exact. In this case, the BEC
is described within the grand-canonical ensemble by a non-
vanishing order parameter �. However, the off-diagonal
Green’s �hybridization� functions of the normal bosons are
zero. Explicitly, the local action has a bilinear �Gaussian�
form,

Sloc
noninteracting = − 


0

�

d


0

�

d
��
�

b�
†�
�G�

−1�
 − 
��b��
��

+ 

0

�

d
�
v

����
†�
�b��
� , �16�

with G�
−1�
−
��= �−�
�3+��1���
−
��−���
−
��. All the

known equations, e.g., that for the particle number or the
compressibility, can be easily derived from this action �see
Appendix B�. We note that in the noninteracting limit, the
hopping amplitudes need not be scaled for d��. However,
to obtain a meaningful limit d→�, the scaling scheme intro-
duced in this paper is necessary. Otherwise, the condensate
and normal bosons would not be treated on equal footing.
That is, if only fractional scaling is employed, one obtains
spurious infinities in the condensate phase, whereas if only
integer scaling is used, the normal bosons �which contribute
significantly at temperatures close or above TBEC� become
immobile.

B. Immobile bosons (“atomic limit”)

In the atomic limit, tij
� =0, all lattice sites are decoupled

and the particles are immobile. In this case, the order param-
eter ��=0, since no condensation is possible, and also the
hybridization function ��=0. For arbitrary dimensions, the
exact action is then given by a sum over all equivalent sites
with the same local action,

Sloc
atomic = − 


0

�

d
�
�

b�
†�
��− �
�3 + ��1�b��
�

+ 

0

�

d
�
��

U��

2
n��
��n��
� − ���� , �17�

as obtained from the action �Eq. �10�� with ��=0 and
���
�=0 in G�

−1�
−
��= �−�
�3+��1���
−
��−���
−
��.
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FIG. 2. �Color online� Relation of the B-DMFT to other ap-
proximations and exact limits; see Sec. IV.
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C. Mean-field theory of Fisher et al. (Ref. 13)

The mean-field field theory of Fisher et al.13 is known to
be the exact solution of the bosonic Hubbard model when the
hopping amplitude is independent of distance and is scaled
with the number of lattice sites NL, i.e., tij = t̃ /NL.13,41 This is
also called the limit of infinite-range hopping.13,41,42 The free
energy density of the bosonic Hubbard model in this limit
has the form

Finfinite-range = Fat − kT ln�T
�exp�− 

0

�

d
��
��

���
†b��
����

Hat

− �
�

������2. �18�

Here, the atomic part Fat=−kT ln Tr exp�−�Hat� is given by
the Hamiltonian Hat, which is obtained from the lattice
Hamiltonian by setting all hopping amplitudes equal to zero.
The average in the second term is taken with respect to Hat.
The stationarity condition for the free energy �Eq. �18�� with
respect to ��, i.e., �Finfinite-range /���=0, then yields the self-
consistent mean-field equation,

���� = kT

�T
b��exp�− 

0

�

d
��
����

†b��
����
Hat

�T
�exp�− 

0

�

d
��
����

†b��
����
Hat

.

�19�

Since the normal bosons are immobile, and thus not dynami-
cally coupled to the condensed bosons, the theory of Fisher
et al.13 is a static mean-field theory.

We now show that the mean-field �Eq. �19�� can also be
obtained in the d→� limit as put forward in Refs. 15, 17,
and 18. Indeed, by employing the cavity method for lattice
bosons and using only integer scaling for the hopping ampli-
tudes, the local action in the d→� �Z→�� limit takes the
form

Sloc
d→�,integer scaling = − 


0

�

d
�
�

b�
†�
��− �
�3 + ��1�b��
�

+ 

0

�

d
�
��

U��

2
n��
��n��
� − ����

+ 

0

�

d
�
�

����
†�
�b��
� . �20�

This expression differs from the local action in the atomic
limit �Eq. �17�� by the presence of the last term which de-
scribes the condensate. However, in equilibrium, the BEC
order parameter is time independent in which case Eq. �20�
yields the free energy density as

Fd→�,integer scaling = Fat − kT ln�T
 exp�− 

0

�

d


��
�

����
†b��
���

Hat

. �21�

The BEC order parameter �� obeys the self-consistent equa-
tion,

�� =
1

Zloc
d→�,integer scaling ·
 D�b,b��b�e−Sloc

d→�,integer scaling�b,b�;���.

�22�

Other correlation functions and observables can be deter-
mined similarly.

The free energy density �Eq. �21�� is seen to differ from
Eq. �18� only by the absence of the last term proportional to
the density of the condensate. Nevertheless, the equations for
the BEC order parameter as well as correlation functions and
observables are the same. Thus, the approximation of con-
stant hopping amplitude �infinite-range hopping� and the d
→� limit with integer scaling give rise to the same mean-
field equations. At T=0, these equations can also be derived
by yet another approximation, namely, a variational method
using a Gutzwiller-type wave function.15,43 The mean-field
theory of Fisher et al.13 and its generalization to spinful
bosons were widely used to investigate quantum phase tran-
sitions and the phase diagrams of correlated lattice boson
systems and of mixtures of lattice bosons and
fermions.3–8,44–46

Equation �21� and �22� can also be obtained directly from
the B-DMFT self-consistency equations by neglecting the
hybridization function, i.e., by setting ��=0. Then, the local
action of the B-DMFT �Eq. �10�� is the same as that in Eq.
�20�. Furthermore, Eq. �12� is satisfied automatically in this
limit since only the state with k=0 is taken into account. It
should be noted, however, that in the absence of the hybrid-
ization function ��, the noninteracting limit of the normal
bosons cannot be reproduced; i.e., the mean-field theory of
Fisher et al.13 does not describe the limit of free, normal
bosons.

D. Weak-coupling (Bogoliubov) mean-field theory

A perturbation expansion to first order in U�� is equiva-
lent to the Hartree-Fock-Bogoliubov approximation with the
static self-energy ��

11=2��U��n̄�
BEC−2�
n,�U��G��
n� /�

and ��
12=��U��n̄�

BEC. For such a self-energy, the self-
consistency condition �Eq. �12�� is equivalent to the self-
consistent Hartree-Fock-Bogoliubov approximation �some-
times called the “first-order Popov” approximation�.35,36 This
self-consistent approximation is known to lead to a gapped
spectrum in the condensed phase because off-diagonal ele-
ments in the self-energy are calculated in higher order due to
self-consistency. By contrast, the Bogoliubov
approximation35,36 is obtained if only particular diagrams
corresponding to the self-energies ��

11=2��U��n̄�
BEC and

��
12=��U��n̄�

BEC are taken into account.
The second-order expansion contains many diagrams �see

Refs. 35 and 36�. Checking term by term, we find that the
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B-DMFT reproduces the Beliaev-Popov approximation
�sometimes called the “second-order Popov
approximation”�35 if, in addition, in the latter approximation
only local irreducible self-energy diagrams �consistent with
the d→� limit� are retained.

V. BOSONIC DYNAMICAL MEAN-FIELD
THEORY SOLUTION OF THE BOSONIC

FALICOV-KIMBALL MODEL

We now apply the B-DMFT to study BEC in a mixture of
two different species of bosons: itinerant b bosons and im-
mobile f bosons. We assume the b bosons not to interact with
each other but only with f bosons, while f bosons interact
also mutually, i.e., Ubb=0, Ubf �0, and Uf f �0 in Eq. �1�.
We call this the bosonic-Falicov-Kimball �BFK� model since
it is a bosonic generalization of the Falicov-Kimball model
for fermions, which has been widely studied in condensed-
matter physics.47 Experimentally, such a system can be real-
ized by loading an optical lattice either with a mixture of two
different species of bosonic alkali atoms �e.g., 7Li and 87Rb�
or by one kind of atom with two different hyperspin states
�i.e., with F=1,2 and specific values of the z component of
F�. In addition, the electric fields generating the potentials of
the optical lattice and the external magnetic field controlling
the Feshbach resonances should be tuned such that one spe-
cies of particles is immobile and the other is noninteracting
�or only weakly interacting�. The realization of a fermionic
Falicov-Kimball model by cold fermionic atoms in an optical
lattice was discussed in Refs. 48 and 49.

It is important to note that, in spite of the immobility of
the f bosons, the BFK model is still a many-body problem
because the immobile particles are thermodynamically
coupled to the mobile particles by the interaction. In particu-
lar, the optimal configuration of the localized bosons depends
on the interaction, temperature, and density of the particles.
In the fermionic counterpart, one finds that the position of
the immobile particles is either random or long-range or-
dered; phase separation between these two components can
also occur. The numerical solution of the Falicov-Kimball
model is limited to small lattices and requires an annealed
average over a large number of configurations of immobile
particles.

For the BFK model, the local impurity problem can be
integrated analytically. The self-consistency equations can be
then solved by standard numerical techniques. Since the f
bosons are immobile, their number on each site is conserved.
Hence, the f-boson subsystem cannot undergo BEC and the
occupation number operator nf of the single site becomes a
classical variable with nf =0,1 ,2 , . . .. The local action �Eq.
�10�� is then quadratic in the bosonic operators. Conse-
quently, the local propagator Gb�i
n� for b bosons and the
local partition function Zloc��b ,� f�, and thereby the BEC
transition temperature TBEC for the b bosons, can be evalu-
ated directly. The local partition function of the BFK model
is determined by

Zloc��b,� f� = �
nf=0,1,2,. . .

�

e�nf��f−Uf fnf/2�Zloc
0 ��b − Ubfnf,� f� ,

�23�

where

Zloc
0 ��b,� f� 	 e−�b��b�2/�b−�b�0��


n

� 1

i
n + �b − �b�i
n��
�24�

is the partition function for Ubf =0. The local propagator for
normal b bosons is given by

Gb�i
n� = �
nf=0,1,2,. . .

� wnf

i
n + �b − Ubfnf − �b�i
n�
. �25�

Here,

wnf
= e�nf��f−Uf fnf/2�Zloc

0 ��b − Ubfnf,� f�
Zloc��b,� f�

�26�

is the probability for the single site to be occupied by exactly
nf =0,1 ,2 , . . . bosons. For hard-core f bosons �Uf f =��, this
leads to wnf=1= n̄f and wnf=0=1− n̄f. In this case, n̄f rather
than � f is used as an independent thermodynamical variable.
Propagator �25� describes quantum and thermal fluctuations
of normal bosons. In the absence of the interaction between b
bosons, off-diagonal terms in the local propagator are zero.
The Gross-Pitaevskii equation is then obviously exact and
reduces to a homogeneous, linear equation of the form
�−i
n−�b+�b+�b�i
n���b�i
n�=0 for each Fourier compo-
nent. For 
n�0, the only solution is �b�
n�0�=0. The
static �
n=0� component of the BEC order parameter is fi-
nite if �b=�b+�b�0� and must be determined by fixing the
average density of b bosons.

A striking result obtained for this model is an enhance-
ment of TBEC for increasing repulsion between the b and f
bosons, with a maximum of TBEC at intermediate values of
Ubf and a saturation at large Ubf. This behavior is explicitly
seen in Fig. 3�a� for hard-core f bosons �Uf f =�, i.e., nf
=0,1� on a simple cubic lattice where we plotted the relative
change in TBEC with respect to TBEC

0 in the noninteracting
system. The increase in TBEC is due to the blocking of a
fraction of sites by heavy atoms, which increases the density
of the b bosons. However, this argument cannot explain the
nonmonotonicity of TBEC vs Ubf shown in Fig. 3�a�. In fact,
the maximum is due to the correlation induced band splitting
and the narrowing of the lower subband �see Fig. 3�c�� which
lead to an increase and decrease in TBEC, respectively. Fur-
thermore, at fixed temperature T, the average condensate
density n̄b

BEC�T� is also found to increase with increasing re-
pulsion �see Fig. 3�b��, although the interaction induced scat-
tering between bosons usually removes particles from the
condensate, thereby reducing its density.50 At zero tempera-
ture, all b bosons are in the condensate. Similar results are
found for other lattices �cf. Fig. 4�.

These results originate from local correlations which are
captured exactly by the B-DMFT but not by conventional
approximations. The consequences can be inferred by con-
sidering the total density of b bosons,

n̄b = n̄b
BEC�T� +
 d


Ab�
 + �b�
exp�
/T� − 1

. �27�

The second term gives the contribution of normal b bosons
for which the spectral function Ab�
�=−Im Gb�
� /� is
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shown in Fig. 3�c� for different Ubf values. The spectral
weight is seen to be strongly redistributed, forming lower-
and upper-Hubbard subbands at low and high energies 
,
respectively, which are separated by the energy Ubf. We note
that the splitting and rounding of the shapes are genuine
correlation effects. The occupation probability of normal b
bosons, i.e., the Bose-Einstein distribution function, decays

exponentially with increasing 
. This implies an extremely
small particle number in the upper-Hubbard subband at large
Ubf. Since the total number of b bosons is constant, the par-
ticles are necessarily transferred into the condensate. Hence,
at fixed temperature, n̄b

BEC increases, thereby enhancing
TBEC. The spectral weight contributing to the upper-Hubbard
subband is also proportional to n̄f, implying that TBEC in-
creases with n̄f too.

The B-DMFT prediction of an increase in TBEC and in the
condensate density due to local correlations are expected to
be observable in mixtures of mobile and localized bosons on
three-dimensional optical lattices. Such correlations can thus
be employed in the laboratory to enhance TBEC of bosonic
condensates. We also note that on bipartite lattices with spe-
cial densities of bosons, e.g., n̄f = n̄b=0.5, long-range order in
the density of the f subsystem and, in turn, a supersolid
phase in the b subsystem is expected to form. In such a phase
periodically arranged, localized bosons will coexist with a
condensate of mobile bosons whose density is likewise peri-
odically modulated. Obviously, the physics of this seemingly
simple bosonic model is extraordinarily rich.

VI. CONCLUSIONS

In this paper, we derived the first comprehensive, thermo-
dynamically consistent theoretical framework for the inves-
tigation of correlated lattice bosons—a B-DMFT. In analogy
to its fermionic counterpart, the B-DMFT becomes exact in
the limit of high spatial dimensions d or coordination number
Z and may be employed to compute the phase diagram and
thermodynamics of interacting lattice boson systems in the
entire range of microscopic parameters. The B-DMFT re-
quires a different scaling of the hopping amplitude with Z
depending on whether the system is in the normal or in the
Bose-condensed phase. This additional difficulty compared
to the fermionic case prevented the formulation of the
B-DMFT in the past. As shown here, it can be overcome by
performing the scaling not in the Hamiltonian but in the
action. The B-DMFT equations consist not only of a bosonic
single-impurity problem51 in the presence of a self-
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FIG. 3. �Color online� Bose-Einstein condensation of a mixture
of itinerant and localized, correlated lattice bosons: �a� Enhance-
ment of the BEC transition temperature with increasing interaction
strength Ubf in a two component boson mixture with different den-
sities n̄f of the localized f bosons. �b� Dependence of the condensate
fraction n̄b

BEC�T� / n̄b on temperature for different interactions Ubf at
n̄f =0.8. �c� Spectral functions for different values of Ubf at n̄f

=0.8. The increase in TBEC and the condensate fraction with in-
creasing Ubf and n̄f is caused by correlation effects leading to a
redistribution of the spectral weight for the b-bosonic subsystem.
The correlation gap opens when Ubf exceeds a critical value which
depends on n̄f. The opening of the gap is not associated with a
phase transition of the mobile bosons. Results are obtained for a
three-dimensional cubic lattice with unit bandwidth and n̄b=0.65. In
the hard-core limit, the spectral functions are temperature indepen-
dent because the occupation probability of f bosons is either n̄f or
1− n̄f.
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FIG. 4. �Color online� Bose-Einstein conden-
sation of a mixture of itinerant and localized, cor-
related lattice bosons: In contrast to Fig. 2, results
here are obtained for a Bethe lattice with infinite
Z, unit bandwidth, and n̄b=0.5. They are exact for
the bosonic-Falicov-Kimball model. �a� Enhance-
ment of the BEC transition temperature with in-
creasing interaction strength Ubf in a two compo-
nent boson mixture with different densities n̄f of
the localized f bosons. �b� Dependence of the
condensate fraction n̄b

BEC�T� /nb on temperature
for different interactions Ubf at n̄f =0.8. �c� Spec-
tral functions for different values of Ubf at n̄f

=0.8. The increase in TBEC and the condensate
fraction with increasing Ubf and n̄f is caused by
correlation effects leading to a redistribution of
the spectral weight for the b-bosonic subsystem.
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consistency condition �the momentum integrated Dyson
equation� but involve an additional coupling to the conden-
sate wave function.

We documented the comprehensive nature of the
B-DMFT by explicitly reproducing results previously ob-
tained in special limits of parameter space and by deriving
other bosonic mean-field theories. For example, by calculat-
ing the local self-energy of the B-DMFT in the weak-
coupling regime, U / t�1, in perturbation theory and by in-
cluding all normal and anomalous terms to first order in U / t,
one obtains the Hartree-Fock-Bogoliubov self-consistent
mean-field approximation.35 By neglecting the anomalous
terms, the standard Bogoliubov theory for lattice bosons is
recovered. The inclusion of the second-order corrections to
the local self-energy corresponds to the Beliaev-Popov ap-
proximation �with the additional assumption of a local self-
energy�. Furthermore, by neglecting all terms containing the
hybridization function in the local action, one obtains the
mean-field theory developed in Refs. 13, 17, and 18, which
corresponds to the exact solution of the bosonic Hubbard
model �Eq. �1�� in the large dimension limit if only integer
scaling is applied.

In contrast to the previous mean-field theories, the
B-DMFT constructed here treats normal and condensed
bosons on equal footing. In particular, the B-DMFT takes
into account the effects due to finite hopping and dynamical
broadening of the quantum levels. The inclusion of corre-
lated normal bosons and their dynamic coupling to the con-
densate revises the results of static mean-field theories in
several ways; in particular, these effects are as follows:

�i� modify the phase diagram of the spinless bosonic
Hubbard model at finite temperatures �for example, the cusp-
like shape of the phase boundary between the Mott and the
superfluid phases13,16,17 is expected to be changed or perhaps
even eliminated by the appearance of an intermediate normal
fluid and/or metallic phase�;

�ii� change the condensation temperature TBEC;
�iii� renormalize two-particle correlation functions, which

determine the compressibility and other susceptibilities, e.g.,
the magnetic susceptibility in the case of spinful bosons.

Furthermore, since the B-DMFT is applicable even in the
noncondensed phase �T�TBEC�, it also provides a computa-
tional framework for investigations of normal bosons, e.g.,
of the Mott transition. Here, it is interesting to note that the
correlation-induced broadening of the Hubbard � peaks in
the spectral functions implies that the Mott transition occurs
already when these bands begin to overlap. All these issues
are highly relevant for a comprehensive explanation of the
on-going experiments with cold bosonic atoms in optical
lattices4 but are not systematically address within the exist-
ing static mean-field theories.

We note that the B-DMFT is not merely a perturbative
improvement of the static mean-field theory13,17,18,20 with re-
spect to the hybridization since in the B-DMFT the hybrid-
ization function is included to all orders. We applied the
B-DMFT to solve the bosonic-Falicov-Kimball model, i.e.,

a lattice model of itinerant and localized, interacting bosons.
Due to the localized nature of the interacting bosons �provid-
ing a type of annealed disorder to the system since the local-
ized particles are thermodynamically coupled to the itinerant
bosons�, the problem reduces to a set of algebraic equations.
We find that local correlations enhance the transition tem-
perature into the condensate and can thus be employed in the
laboratory to increase TBEC.

In general, the effective single-site problem of a bosonic
impurity coupled to two baths �the condensate and normal
bosons� has to be solved numerically. The development of a
reliable bosonic single-impurity solver52 is a challenging
task, which took several years in the case of the fermionic
DMFT. This process can also involve a formulation of the
proper bosonic impurity Hamiltonian corresponding to the
B-DMFT action derived here. One of the main goals of this
paper is to present the foundations of a comprehensive mean-
field theory for correlated bosons and thereby instigate fur-
ther research by analytical and numerical means.
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APPENDIX A: DERIVATION OF THE BOSONIC
DYNAMICAL MEAN-FIELD THEORY

SELF-CONSISTENCY EQUATIONS

Here, we derive the B-DMFT equations for the general-
ized bosonic Hubbard Hamiltonian �Eq. �1�� by applying the
cavity method.28 To this end, the partition function

Z =
 D�b�
�,b��exp�− S�b�

�,b��� �A1�

is calculated within the grand-canonical ensemble, making
use of the path-integral approach over complex coherent
states.53 The action

S�b�
�,b�� = 


0

�

d
��
i�

bi�
� �
���
 − ��bi��
� + H�
��

�A2�

is split into a single-site term with i=0,

S0 = 

0

�

d
��
�

b0�
� �
���
 − ��b0��
�

+
1

2�
��

U��n0��n0� − ����� , �A3�

a term representing the coupling between this site and the
rest of the lattice �i�0�,
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�S = 

0

�

d
�
i�

�t0i
� b0�

† bi� + ti0
� bi�

† b0�� � 

0

�

d
�S�
� ,

�A4�

and a remaining part with site indices i , j�0,

S�0� = 

0

�

d
� �
i�0�

bi�
� �
���
 − ��bi��
� + H�0��
�� , �A5�

such that

S�b�
�,b�� = S0 + �S + S�0�. �A6�

In the next step, we expand the exponential function with
respect to the action �S and perform the functional integral
over all variables with site indices i�0. As a result, we
obtain a formally infinite series with all possible many-
particle correlation functions, i.e.,

Z =
 D�b0�
� ,b0��e−S0�b0�

� ,b0��Z�0��1 − 

0

�

d
��S�
��S�0�

+
1

2!



0

�

d
1

0

�

d
2��S�
1��S�
2��S�0� + ¯� , �A7�

where �. . .�S�0� denotes the average taken with respect to S�0�

�the action where the site i=0 is excluded� and Z�0� is the
corresponding partition function. In contrast to the fermionic
case,28 there remain anomalous correlation functions in the
Bose-condensed phase such as �bi��
��S�0�, �bi��
�bj��
���S�0�,
�bi�

� �
�bj��
��bk��
���S�0�, etc. The lowest first-order terms
take the form



0

�

d
��S�
��S�0� = 

0

�

d
�
�

�
j

��t0j
� b0�

� �
��b�j�
��S�0�

+ tj0
� b0��
��bj�

� �
��S�0�� , �A8�

where the prime on the summation symbol indicates that the
lattice indices are different from 0, i.e., j�0 in Eq. �A8�. The
second-order terms read

1

2!



0

�

d
1

0

�

d
2��S�
1��S�
2��S�0� =
1

2!



0

�

d
1

0

�

d
2�
�

�
jk

��tj0
� tk0

� �bj�
� �
1�bk�

� �
2��S�0�b0��
1�b0��
2�

+ tj0
� t0k

� �bj�
� �
1�bk�
2�S�0�b0��
1�b0�

� �
2� + t0j
� tk0

� �bj��
1�bk�
� �
2��S�0�b0�

� �
1�b0��
2�

+ t0j
� t0k

� �bj��
1�bk��
2��S�0�b0�
� �
1�b0�

� �
2�� . �A9�

Higher-order terms are obtained similarly. Defining the �con-
nected� correlation functions for the condensate,

� j��
� = �bj��
��S�0�, �A10�

� j�
� �
� = �bj�

� �
��S�0�, �A11�

Eq. �A8� can be written as



0

�

d
��S�
��S�0� = 

0

�

d
�
�

�
j

��t0j
� b0�

� �
�� j��
�

+ tj0
� b0��
���j

� �
�� . �A12�

Similarly, we define connected correlation functions for the
one-particle excitations above the condensate as

Gjk�
11�0��
1 − 
2� = − �T
bj��
1�bk�

� �
2��S�0�, �A13�

Gjk�
22�0��
1 − 
2� = − �T
bj�

� �
1�bk��
2��S�0�, �A14�

Gjk�
12�0��
1 − 
2� = − �T
bj��
1�bk��
2��S�0�, �A15�

Gjk�
21�0��
1 − 
2� = − �T
bj�

� �
1�bk�
� �
2��S�0�, �A16�

which permits us to express the second-order contribution
�Eq. �A9�� as

1

2!



0

�

d
1

0

�

d
2��S�
1��S�
2��S�0� = −
1

2!



0

�

d
1

0

�

d
2�
�

�
jk

��tj0
� tk0

� Gjk�
21�0��
1 − 
2�b0��
1�b0��
2�

+ tj0
� t0k

� Gjk�
22�0��
1 − 
2�b0��
1�b0�

� �
2� + t0j
� tk0

� Gjk�
11�0��
1 − 
2�b0�

� �
1�b0��
2�

+ t0j
� t0k

� Gjk�
12�0��
1 − 
2�b0�

� �
1�b0�
� �
2� − tj0

� tk0
� � j�

� �
1��k�
� �
2�b0��
1�b0��
2�

− tj0
� t0k

� � j�
� �
1��k��
2�b0��
1�b0�

� �
2� − t0j
� tk0

� � j��
1��k�
� �
2�b0�

� �
1�b0��
2�
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− t0j
� t0k

� � j��
1��k��
2�b0�
� �
1�b0�

� �
2�� . �A17�

Here, the first four terms are due to connected contributions
and the last four terms due to disconnected contributions;
higher terms can be written in a similar way.

A nontrivial limit d→� is obtained by scaling the hop-
ping amplitudes tij

� of � bosons, as described in Sec. II B.
Namely, integer scaling is applied if tij

� appears together with
at least one anomalous average �i��
�= �bi��
��S�0� involving
the BEC, while fractional scaling is employed otherwise. For
example, in the first-order term �Eq. �A8��, the sum over j
gives a contribution of the order O�ZR0j� so that the hopping
amplitude t0j

� must be scaled with �i.e., divided by� a factor
ZR0j because � j� does not depend on the distance. On the
other hand, in the first four terms of the second-order contri-
bution to the partition function �Eq. �A9��, the hopping am-
plitudes must be scaled with ZR0j/2 because the one-particle
correlation functions are already proportional to 1 /ZR0j/2, as

discussed in the Sec. II B. In the last four terms of the
second-order contribution, the hopping amplitudes must be
scaled with ZR0j. In the calculation of higher-order terms, one
has to distinguish the cases where all site indices are differ-
ent from those where some, or all, are the same. In analogy
to the fermionic case, discussed in detail in Ref. 28, we find
that all connected higher-order terms vanish at least as
O�1 /Z�. Consequently, in the Z→� limit, only connected
contributions containing � j� or Gjk�

ab�0� or disconnected contri-
butions made of products of connected contributions remain,
provided the infinite series converges at least conditionally.
Finally, we assume that the system is homogeneous, i.e., that
�i�=�� is site independent. Applying the linked cluster theo-
rem and collecting only connected contributions in the expo-
nential function, one obtains the local action

Sloc = 

0

�

d
b0�
� �
���
 − ��b0��
� + 


0

�

d
�
�

���b0�
� �
����
� + b0��
���

��
��

− 

0

�

d
1

0

�

d
2�
�

�
jk

��t̃ j0
� t̃k0

� Gjk�
21�0��
1 − 
2�b0��
1�b0��
2� + t̃ j0

� t̃0k
� Gjk�

22�0��
1 − 
2�b0��
1�b0�
� �
2�

+ t̃0j
� t̃k0

� Gjk�
11�0��
1 − 
2�b0�

� �
1�b0��
2� + t̃0j
� t̃0k

� Gjk�
12�0��
1 − 
2�b0�

� �
1�b0�
� �
2�� +

1

2�
��

U��n0��n0� − ���� , �A18�

where the numerical factor ��=�i�0t̃i0
� /ZRi0 for d→� de-

pends on the lattice structure.
To simplify notations, we introduce the Nambu

formalism54 by defining a spinor boson operators bi�
= �bi� ,bi,�

† � and corresponding complex variables in the path-
integral representation. Thereby, anomalous averages for the
condensate

�i��
� � �bi��
��S�0� �A19�

and connected propagators for normal bosons

Gij�
�0��
 − 
�� � − �T
bi��
�b j�

† �
���S�0� �A20�

can be written in a compact vector or matrix form. Introduc-
ing the hybridization matrix function,

���
 − 
�� = − �
ij

�t̃i0
� t̃ j0

� Gij�
�0��
 − 
�� , �A21�

and employing the free �Weiss� mean-field propagator G�,
one can express the B-DMFT local action in the form of Eq.
�10�. Here, the site index i=0 is omitted for simplicity.

Finally, the lattice self-consistency condition �Eq. �12��
needs to be derived. For this, we apply the relation between
the Green’s function Gij�

�0��
−
��, where the site i=0 is re-
moved, and the full lattice Green’s function, i.e.,

Gij�
�0� = Gij� − Gi0�G00�

−1 G0j�, �A22�

which holds for a general lattice. In the B-DMFT self-
consistency �Eqs. �9�–�13�� for a homogeneous system, only
the site index i=0 enters which is therefore dropped.

APPENDIX B: FREE BOSONS ON THE BETHE TREE
WITH INFINITE COORDINATION NUMBER

In this appendix, we employ the B-DMFT to study a
single species ��=1� of noninteracting bosons on the Bethe
lattice with Z=�.55,56 Although this problem is exactly solv-
able by different methods,57 it is instructive to see how the
B-DMFT works in detail in this case.
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1. Green’s function method

In order to obtain the Matsubara Green’s function,

Gij�
 − 
�� = − �T
bi�
�bj
†�
��� �B1�

for noninteracting bosons described by Hamiltonian �4�, we
use the Bogoliubov transformation to separate the operator bi

into a normal �noncondensate� part b̃i and the condensate
wave function �i as

bi = b̃i + �i,

bi
† = b̃i

† + �i
�. �B2�

Assuming the system to be homogeneous, �i=�, this yields

Gij�
 − 
�� = − ���2 + G̃ij�
 − 
�� , �B3�

where G̃ij is the Green’s function of the normal bosons. In
the noninteracting case considered here, the anomalous
Green’s function is absent. The density of particles is given
by

n = − lim

�→
+

1

NL
�

i

Gii�
 − 
�� = ���2 − lim

�→
+

1

NL
�

i

G̃ii�
 − 
�� ,

�B4�

where NL is the number of lattice sites.
The diagonal Green’s function of normal bosons is given

by

G̃ii�
 − 
�� =
1

�
�

n

e−i
n�
−
��G̃ii�
n� , �B5�

where

G̃ii�
n� =
1

NL
�
�

1

i
n + � − �
=

1

i
n + � − ��
n�
, �B6�

and � are the exact energy eigenstates of the lattice Hamil-
tonian. The recursion relation

G̃ii�
n� =
1

i
n + � − t̃2G̃ii�
n�
, �B7�

which is exact for the Bethe lattice,55,56 allows one to express
the hybridization function as

��
n� = t̃ 2G̃ii�
n� . �B8�

Equation �B7� determines G̃ii as

G̃ii�
n� =
i
n + � − ��i
n + ��2 − 4t̃2

2t̃2
. �B9�

In particular, the equation for the particle density follows as

n = ���2 −
2

�
�

n

ei
n0+

i
n + � + ��i
n + ��2 − 4t̃2
. �B10�

Cauchy’s theorem allows one to express the infinite sum as
an integral over the spectral function multiplied by the Bose-
Einstein distribution function36,53,54 such that the density
equation takes the form

n = ���2 +
1

2�t̃2

−2t̃

−2t̃

d

�4t̃2 − 
2

e��
−�� − 1
. �B11�

For temperatures T�TBEC, the condensate vanishes, ���=0,
in which case the equation determines � as a function of the
density n. For T�TBEC, the chemical potential is pinned at
the value �=−2t̃ and Eq. �B11� determines ���2, the density
of the condensate. The condensation temperature TBEC itself
is thus obtained for �=−2t̃ and ���=0. Expanding the Bose-
Einstein function into a Taylor series and changing the inte-
gration variable into 
=2t̃ cos �, one obtains a transcenden-
tal equation for TBEC,

n =
4�t̃2

x
�
k=1

�
e−kx

k
I1�kx� , �B12�

where x=2t̃ /TBEC and I1 is a modified Bessel function.58

2. Bosonic dynamical mean-field theory

We now show that the same results can be derived di-
rectly from the B-DMFT equations. The local action takes
the explicit form

Sloc = − 

0

�

d


0

�

d
�b��
�G−1�
 − 
��b�
��

+ t̃

0

�

d
�b��
���
� + ���
�b�
�� , �B13�

where the local Weiss Green,s function �an operator� is given
by

G−1�
 − 
�� = ��
 − 
���− �
 + �� − ��
 − 
�� . �B14�

The hybridization function ��
� is determined self-
consistently by Eqs. �11� and �12�. As in the fermionic case,
the relation ��
n�= t̃2G�
n� also holds for noninteracting
bosons on the Bethe lattice in the limit Z→�.

In the absence of interactions, the Euler-Lagrange equa-
tion of motion for the classical field ��
� is given by

0 = ��Sloc�b,b��
�b��
�

�
b�
�=��
�

= ��
 − ����
�

+ 

0

�

d
���
 − 
����
�� + t̃��
� .

�B15�

By Fourier transformation, Eq. �B15� becomes a linear equa-
tion,

�i
n + � − t̃ − ��
n����
n� = 0. �B16�

Employing Eqs. �B9� and �B10�, this equation takes the form
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�i
n + � − 2t̃ + ��i
n + ��2 − �2t̃�2���
n� = 0. �B17�

In the static limit, 
n=0, corresponding to n=0, this equation
has the solution �=0 when ��−2t̃, implying that the
chemical potential lies outside the bosonic band, or the solu-
tion ��0 when �=−2t̃. In the latter case, the actual value of
��� �which determines the BEC fraction� must be computed
from the equation for the particle density �Eq. �B11��. In the
dynamical case, 
n�0, i.e., for n�0, Eq. �B17� only has the
solution ��
n�=0 because the expression in the bracket
never vanishes. This shows that for noninteracting bosons,
the condensate order parameter is time independent.

After Fourier transformation, the local action takes the
form

Sloc = �
n

bn
��i
n + � − ��
n��bn + t̃�bn=0

� � + bn=0��� ,

�B18�

where the numbers bn are the Fourier coefficients of b�
� in
the Matsubara frequency space. The zero frequency compo-
nent bn=0 is shifted by the Bogoliubov transformation �Eq.

�B2�� as bn=0= b̃n=0+�. Because of Eq. �B16�, the local ac-

tion is seen to be quadratic in b̃n and the functional integral
yields the same equation for the particle density as Eq.
�B11�. Thus, we showed that the B-DMFT correctly repro-
duces all results for noninteracting bosons on the Bethe lat-
tice both in the normal and in the BEC phase.
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