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We investigate the effects induced by the interplay of microscopic degrees of freedom. In many cases, one
has to consider spin and orbital degeneracy to explain complex structures of magnetic and orbital order.
Frequently, attention is focused on electronic correlations. We study how the interaction of electrons with
lattice degrees of freedom modifies the pure electronic case. Because of orbital degeneracy we have to deal
with the Jahn-Teller effect. In particular, the E � � Jahn-Teller effect allows a perturbative approach. Assuming
that the excitation energies dominate the hopping rate, we derive an effective model and analyze the
interaction-induced symmetry breaking. The additional orbital degree of freedom results in a spin-orbital
model and phonons are taken into account as modified coupling parameters. A quantum mechanical treatment
of phonons results in an exponentially quenched orbital exchange coupling. Furthermore, by considering
electronic symmetry one obtains symmetry breaking in the orbital sector. This was also found when Hund’s
rule coupling was taken into account, but in this case higher symmetry can be restored by proper choice of
parameters, which is not the case for Jahn-Teller coupling. Surprisingly, adiabatic treatment shows neither
exponential damping nor nonrestorable symmetry breaking in the orbital sector.
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I. INTRODUCTION

The interplay of microscopic degrees of freedom, such as
spin, orbitals, and charge, plays an essential role in the de-
scription of a rich variety of physical phenomena in new and
rediscovered materials.1 Over the last years, most research
activities have been based either on purely electronic pictures
or on electronic models, which include coupling of the elec-
trons to the static lattice degrees of freedom, to understand
the peculiar features and exotic orders of strongly correlated
many-body systems, such as, e.g., manganites and various
spinel compounds.2–5 Less is known about the dynamical
effects on the properties, due to the interplay between
electron-electron and electron-phonon interactions, of
strongly correlated materials. In this context, a large amount
of work has been devoted to the study of the Holstein-
Hubbard model within the dynamical mean field theory
�DMFT�.6 In this highly simplified model, electronic states
from a nondegenerate band are considered and electron-
electron as well as electron-phonon interactions are assumed
to act locally only. It has been shown, for example, that the
presence of electron-phonon interaction may give rise to po-
laronic bands at finite electron density near the Fermi level.7

Most strongly correlated systems of interest to condensed
matter physicists, however, require extensions that take into
account orbital degeneracy in addition to spin degeneracy. In
general, degenerate orbital states couple to degenerate vibra-
tional modes, such that the electronic and vibrational motion
cannot be simply decoupled by a canonical transformation
due to the breakdown of the Born-Oppenheimer
approximation.8 In this paper, we consider an analytically
treatable minimal model in which this type of decoupling is
possible and the local problem can be treated exactly. In this
regard, we are interested mainly in the influence of the
electron-phonon interaction on orbital and spin exchange
processes, which are treated in a spin-orbital model of the

Kugel-Khomskii type.9,10 In this paper, we consider a two-
band Hubbard model at quarter filling and analyze the dy-
namical consequences due to the Jahn-Teller effect of local,
tetragonal E-doublets,11 but the approach also generalizes to
other electron-phonon interacting systems, such as, e.g., T
� � Jahn-Teller coupling12 in cubic systems. Strictly speak-
ing, our model is directly applicable for rare earth �R� com-
pounds, like RVO4 and RAsO4 with, for example, R=Dy3+,
Tb3+, etc.13

The paper is organized as follows. The model is intro-
duced in Sec. II. In Sec. III the interaction-induced symmetry
breaking is discussed. We derive an effective Hamiltonian in
Sec. IV. Its limits and symmetries are studied and compared
with the microscopic Hamiltonian in Sec. V.

II. MODEL

We consider ions with an E-doublet electronic ground
state at lattice sites of tetragonal point group symmetry. The
interaction of the electronic orbitals with ligand displace-
ments has a destabilizing effect on the ionic configuration. In
the above case, symmetry allows a local coupling of the
doubly degenerate electronic state to a nondegenerate vibra-
tional mode: the E � � Jahn-Teller �JT� effect.12–14 We shall
be particularly concerned with 2E states having electronic
spin 1/2 in addition to orbital degeneracy. The highest local
symmetry of the problem is given by the group SU�4� whose
defining representation is spanned by ����i=ci��

† �0� on each
lattice site where the orbital label �=� ,� �refers to the orbit-
als yz and zx� and the spin index �= ↑ ,↓. Ionic displace-
ments break the fourfold symmetry and stabilize a distorted
configuration with orthorhombic point group symmetry,
shown in Fig. 1. The energy minimum is given by Emin=
−�ni�−ni��2Ep, where ni� is the occupation number on site i
in the orbital �. The Jahn-Teller stabilization energy Ep, in
units of the excitation energy of the harmonic oscillator, is
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the squared dimensionless JT coupling g. The associated dis-
tortion is Qmin=2g�ni�−ni��.

The Hamiltonian of the coupled electron-phonon system,
including electronic correlations and electronic and vibra-
tional motion, reads H=Ht+Hph+HJT+Hee, where

Ht = − t �
�ij���

ci��
† cj��, �1a�

Hph = �
i

bi
†bi, �1b�

HJT = − g�
i

�bi
† + bi��ni� − ni�� , �1c�

Hee = U �
i�=�,�

ni�↑ni�↓ + Uo�
i

ni�ni�

+
J

2 �
i���

�
����

ci��
† ci����

† ci���ci���. �1d�

�ij� denotes nearest neighbors. ci��
�†� is the annihilation �cre-

ation� operator for an electron on site i in the orbital � with
spin �. bi

�†� are bosonic annihilation �creation� operators for
phonons on site i. The orbital occupation operator is given by
ni�=ni�↑+ni�↓.

The dynamics of the electrons is modeled within Ht �Eq.
�1a��, which describes an orbital-conserving hopping be-
tween nearest-neighbor JT ions with isotropic hopping rate t.
The decoupled motion of the vibrational � mode in terms of
a harmonic oscillator on each site is governed by Hph �Eq.
�1b��. HJT �Eq. �1c�� is the bilinear JT coupling.12 The elec-
tronic correlations are modeled by a two-band Hubbard
model. The electron-electron interaction is expressed as Hee
�Eq. �1d��.15 Double occupancy requires an energy U �Uo�
for electrons in the same �different� orbital�s�. Furthermore,
we deal with Hund’s rule coupling J that favors spin triplets
compared to singlets. The energies are given in units of ��0
and the parameters are assumed to be positive. Correlations
and JT coupling are treated as on-site interactions and non-
local interactions, such as nearest-neighbor Coulomb repul-
sion or phonon-phonon coupling as well as on-site pair hop-
ping, are disregarded.

In the following section, we analyze the symmetry prop-
erties of the Hamiltonian �1a�–�1d� depending on the choice
of interaction parameters. The aim is the identification of
conserved quantities which can be used to reduce the dimen-
sion of the Hilbert space and to characterize the eigensystem.

III. SYMMETRY AND CONSERVED QUANTITIES

We investigate symmetries related to electronic and
phononic degrees of freedom. It is assumed that the lattice
symmetry is tetragonal. Below we study the interaction-
induced symmetry breaking of the Hamiltonian �1a�–�1d�.
The aim is the classification of symmetry breaking caused by
on-site interactions and comparison with various models in
the current literature. Furthermore, symmetry analysis allows
the identification of conserved quantities. Utilizing these
quantities enables a decomposition of the electronic Hilbert
space.

To discuss electronic symmetry properties, it is conve-
nient to introduce electronic spin-1/2 and orbital spin-1/2
�pseudospin� operators. These operators are defined in terms
of the Pauli matrices �	 for 	=x ,y ,z,

Si�
	 =

1

2 �
���

ci��
† ����

	 ci���, �2a�

Ti�
	 =

1

2�
���

ci��
† ����

	 ci���, �2b�

Si = Si� + Si�, Ti = Ti↑ + Ti↓. �2c�

It is easily verified that the angular momentum operators
defined in this way satisfy the standard SU�2� commutation
relations

�Si
	,Sj


� = �iji�	
�Si
�, �3a�

�Ti
	,Tj


� = �iji�	
�Ti
�, �3b�

and in addition

�Si
	,Ti


� = 0. �3c�

The same relations hold true for the global operators S	

=�iSi
	 and T	=�iTi

	. The total site spin Si generates SU�2�
rotations in the spin sector, whereas total pseudospin Ti gen-
erates SU�2� rotations in the orbital sector and they satisfy
�Si

	�2= �Ti
	�2= 1

41 in the single-particle representation. Equa-
tion �3c� shows that the local site spin and pseudospin alge-
bras are decoupled, which in general does not hold for the
components Si�

	 and Ti�
	 , respectively.

Explicit calculations establish the following relations that
are useful for making the symmetry of the Hamiltonian
�1a�–�1d� particularly transparent:

Si
2 + Ti

2 = 1
2ni�4 − ni� , �4a�

Si
2 + Ti

2 + 2�Ti
z�2 = 2ni − 2ni�ni�, �4b�

Si
2 + Ti

2 − 2�Ti
z�2 = ni − 2�

�

ni�↑ni�↓, �4c�

x

y

Emin

−Qmin Qmin

Q

Energy
|θ〉 |ε〉

FIG. 1. On-site energy splitting of a doubly degenerate elec-
tronic state under a nondegenerate distortion Q that lifts the elec-
tronic degeneracy in first order and gives rise to a twofold degen-
eracy of the coupled electronic-ionic �vibronic� system: E � �
instability of the symmetric configuration Q=0.
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�Ti
z�2 =

1

2
�Si

2 + Ti
2� −

2

3�
�

Si�
2 , �4d�

where the on-site occupation operator is given by ni
=���ni��. At a first glance, Eqs. �3a�–�3c� suggest that the
identity �4a� is SO�4�	SU�2�SU�2� invariant, but a closer
inspection reveals that Eq. �4a� is actually SU�4� invariant.16

Furthermore, Hund’s rule coupling can be expressed in
terms of either spin or pseudospin operators,

HJ = − J�
i

2Si� · Si� +

ni�ni�

2
� �5a�

=J�
i

�Ti
2 − �Ti

z�2� −
J

2
Ne, �5b�

where Ne=�ini is the total number of electrons.
In the following sections we point out symmetry proper-

ties of the Hamiltonian �1a�–�1d� concerning phononic and
electronic degrees of freedom.

A. Electronic symmetry

Due to particle conservation, one finds U�1�� symmetry
generated by �ini�. This symmetry holds as long as the hop-
ping is considered as orbital conserving and on-site pair hop-
ping is neglected. Otherwise only the total particle number
Ne is conserved.

To discuss the electronic symmetry of the Hamiltonian
�1a�–�1d�, we take advantage of the fermion realization of
angular momentum algebras, Eqs. �2a�–�2c� and �3a�–�3c�, as
well as of the identities �4a�–�4d�, �5a�, and �5b�. Neglecting
a constant, this yields

Hee + HJT = − �
i

�bSSi
2 + bTTi

2 + bz�Ti
z�2 + 2g�bi

† + bi�Ti
z� ,

�6�

where bS= 1
2 �U+Uo�, bT= 1

2 �U+Uo−2J�, and bz=−U+Uo+J.

1. SU(4) and SU(2)spinÃSU(2)orb symmetry

The highest symmetry in the electronic sector, i.e., the
largest number of conserved quantities, is SU�4�, which can
be obtained by setting U=Uo and J=g=0. The defining rep-
resentation is spanned by the four states ��↑�i, ��↓�i, ��↑�i,
and ��↓�i at each site. Hee in Eq. �6� can be rewritten in the
form

Hee
SU�4� = − U�

i
�Ti

2 + Si
2� =

U

2 �
i

ni�ni − 4� , �7�

where we have neglected a constant. Since the particle num-
ber is conserved, the Hamiltonian �7� has SU�4� symmetry.
Even when hopping is taken into account the Hamiltonian
has global SU�4� symmetry.

Including Hund’s rule coupling and assuming U=Uo+J,
but neglecting JT coupling, leads to a rotational invariance in
spin and orbital space. The resulting symmetry is SU�2�spin
SU�2�orb. The generators are S	 and T	. Equation �6�

shows that bz vanishes and the Hamiltonian is isotropic in the
spin and orbital sectors. The electron-electron interaction
term can be rewritten as a sum of the SU�4�-invariant form
given in Eq. �7� and a Ti

2 term that breaks this symmetry.

2. Jahn-Teller and Hund’s rule coupling

Both JT and arbitrary �U�Uo+J� Hund’s rule couplings
break the symmetry only in the orbital sector, whereas the
spin sector stays isotropic. These interactions yield a linear
and a quadratic term in Ti

z, respectively. Hund’s rule coupling
reduces SU�2�orb to U�1�orb with generator Tz.17 Setting J
=0 and analyzing the symmetry breaking of the JT term, one
has to take into account that Ti

z commutes also with the spin
operators with orbital index S�

	. These commutating opera-
tors yield an enlarged symmetry in the spin sector U�1�orb
SU�2��SU�2�� which can also be interpreted as U�1�orb
SO�4�.16 The significance of this augmented spin symme-
try is the rotational invariance in the spin space for each
orbital. Rewriting of the Hamiltonian Hee+HJT �6� illustrates
that symmetry. One finds

�Hee + HJT�J=0 = − �
i
�
bs +

1

2
bz��Si

2 + Ti
2� −

2

3
bz�

�

Si�
2

+ 2g�bi
† + bi�Ti

z . �8�

The first contribution of Eq. �8� is SU�4� invariant while the
remaining terms reduce the symmetry to U�1�orbSU�2��

SU�2��. Arbitrary J results in a Ti
2 contribution with inde-

pendent coupling parameter and leads to reduction from
SU�2��SU�2�� to SU�2�spin.

The electronic symmetries are summarized in Table I.

B. Vibronic symmetry

So far we have been concerned with continuous electronic
symmetries. We now consider the influence of the lattice and
in particular the symmetry of the coupled vibronic system,
giving rise to discrete space group symmetries.

The � mode, shown in Fig. 1, transforms according to the
B1g representation of the point group D4h. The associated
matrix group is Z2, i.e., elements of D4h are mapped onto �1
in the B1g representation. Elements with +1 form the sub-
group D2h. Hph is written as the sum of the squares of the
distortion and the momentum and hence is invariant with
respect to D4h. The electronic operator has the same trans-
formation properties as the coordinates. Hence HJT is invari-
ant with respect to D4h. In Sec. III A it was shown that Tz is
a conserved quantity, and therefore a rotation with arbitrary
angle about this axis leaves the Hamiltonian invariant. How-
ever, due to the coupling term HJT, we have to consider
symmetry elements of the vibronic system, i.e., take both
electronic and phononic degrees of freedom into account.
The appropriate on-site operators Pi

	, 	=x ,y, consist of
phononic and electronic parts Ri and Fi

	 and are given by8

Pi
	 = RiFi

	

where
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Ri = exp�i�bi
†bi� and Fi

	 = exp�i�Ti
	� . �9�

Ri changes the sign of the distortion and the momentum
while Fi

	 describes � rotations about the Ti
	 axis. For the

electronic and bosonic operators, it follows that

Ri
†bi

�†�Ri = − bi
�†�, �10a�

�Fi
	�†ci�Fi

	 = i�	ci� where ci� = 
ci��

ci��
� . �10b�

The identities �10a� and �10b� imply the invariance of the
Hamiltonian under P	. Hence, to describe symmetry proper-
ties of the coupled electron-phonon system, we must use
vibronic operators.

IV. EFFECTIVE HAMILTONIAN

In this section we derive an effective Hamiltonian, which
describes the ground state properties and low-lying excita-
tions. We consider excitations from the quarter-filled ground
state without phonons and consider hopping processes to
second order. The quantum mechanical nature of phonons is
included, and one obtains a spin-orbital model of the Kugel-
Khomskii type9,10 with modified coupling parameters com-
pared with the pure electronic case. The dimension of the
Hilbert space of such a model is given by the electronic
degrees of freedom while JT coupling �1c� gives rise to an
infinite-dimensional Hilbert space due to phononic excita-
tions. In the effective model, the couplings are modified by
the phononic excitations and appear in the form of infinite
series.

We start by applying the Lang-Firsov �LF�
transformation18 ULF=�iUi to the Hamiltonian �1a�–�1d�,
where

Ui = exp�g�bi
† − bi��ni� − ni��� , �11a�

ULF
† bi

�†�ULF = bi
�†� + g�ni� − ni�� , �11b�

ULF
† ci��

�†� ULF = ci��
�†� Xi�

�†�, �11c�

and Xi�
† =Xi�=exp�−g�bi

†−bi�� are shift operators that change
the electronic to polaronic operators. The transformed

Hamiltonian is given by H̃=ULF
† HULF= H̃0+ H̃t with the on-

site interaction

H̃0 = �U − 2Ep��
i�

ni�↑ni�↓ + �Uo + 2Ep��
i

ni�ni�

+
J

2 �
i���

�
����

ci��
† ci����

† ci���ci��� + �
i

bi
†bi − EpNe

�12�

and the hopping term

H̃t = − t �
�ij���

ci��
† cj��Xi�

† Xj�. �13�

Ep=g2 is the energy gain due to JT coupling and Ne is the
total number of electrons. The inter- and intraorbital Cou-
lomb interaction is modified in such a way that U is reduced
by 2Ep while Uo is increased by a similar contribution. The
reason is that the JT term vanishes for double occupancy of
different orbitals �JT inactive� while the energy is further
reduced by the double occupancy of the same orbital �JT
active�. The local states for single and double occupancy and
the related energies are shown in Fig. 2.

The transformed Hamiltonian H̃, Eqs. �12� and �13�,
serves as a starting point to derive the effective model. We

study the low-energy properties of H̃ by perturbation theory.

TABLE I. Electronic symmetries of the microscopic Hamiltonian �1a�–�1d� and the effective Hamiltonian
�16�, respectively.

Parameters Coupling Symmetry

U=Uo and J ,g=0 �+=�−=�+=�−=� SU�4�

Adiabatic, Ep= �1 /4��U−Uo�and J=0 �+=�−=�+=�−=� SU�4�

Arbitrary U ,Uo ,g, and J=0 �+=�−, �+=�−, � given by �̄ U�1�orbSU�2��SU�2��

U=Uo+J and g=0 �+=�+=� and �−=�− SU�2�orbSU�2�spin

Adiabatic, Ep= �1 /4��U−Uo−J� �+=�+=� and �−=�− SU�2�orbSU�2�spin

Adiabatic �+=�+ and �−=�− U�1�orbSU�2�spin

Arbitrary U ,Uo ,g ,J �+, �−, �+, �−, � given by �̄ U�1�orbSU�2�spin

1√
2

±θ

ε

Uo − J Uo ∓ J
JT active

U − 4Ep

JT inactive

single occupancy

ε

θ JT active

double occupancy

−Ep

FIG. 2. Local states with single and double occupancy without
excited phonons.
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H̃0 is taken as the zeroth-order Hamiltonian while H̃t is re-
garded as a perturbation. To evaluate Heff, we consider a
quarter-filled lattice with single occupancy and no excited
phonons. Excitations from the ground state are given via six
possible doubly occupied states labeled with ��j	�, shown in
Fig. 2, plus phononic excitations relative to shifted harmonic
oscillators caused by the LF transformation. To ensure the
singly occupied ground state for a system without hopping
we have to assume U−2Ep�0 and Uo−J+2Ep�0. Up to
second order, we obtain the effective Hamiltonian

Heff = ph�0�H̃tAH̃t�0�ph with A = �
j

Aj

and

Aj = �
�n�=0

�

�
	=1

6
��j	���n����n����j	�

− NeEp − E�

, �14�

where �0�ph is the phononic vacuum and ��n�� is the phononic
configuration associated with the energy n. The zeroth-order
Hamiltonian is given by −NeEp and is neglected. Contribu-
tions from the first-order perturbation vanish. The excitations
consist of a doubly occupied and a nearest-neighbor empty
site and phononic excitations. The ground state energy is
−NeEp. The excitation energies E� are U−4Ep− �Ne−2�Ep
and Uo�J− �Ne−2�Ep for intra- and interorbital doubly oc-
cupied sites, respectively �left and right lower panels in Fig.
2�. Additional phonon excitations entail a nonzero n.

To derive an effective model we have to take into account
the hopping processes shown in Fig. 3. Processes for nearest-
neighbor electrons in the same orbital �upper panel� lead to
the same energy gain, independent of whether spin exchange
occurs or not. These processes and the role of changing the
lattice configuration have been discussed in the context of
bipolaron formation in the Holstein-Hubbard model.19,20 The
situation differs for processes with nearest-neighbor elec-
trons in different orbitals �lower panel�. The energy gain of
such processes, caused by Hund’s rule coupling, depends on
whether the doubly occupied state is a spin singlet or triplet
state. We distinguish these situations with the label �. Pro-
cesses conserving the orbital occupancy relative to the initial
state are preferred compared with processes that change the
orbital configuration. This last conclusion was also found
from studies of the bipolaron problem of the model.21 In
other words, changing the orbital configuration reduces the
energy gain. The different contributions from the hopping

processes yield a symmetry breaking in the orbital sector and
SU�2�orb cannot be restored by a special choice of param-
eters. This is in contrast to the case without electron-phonon
interaction or in the adiabatic limit. We will discuss this point
later on. The isotropy in the spin sector results in SU�2�spin.

Evaluation of Eq. �14� results in products of an electronic
creation and annihilation operator on sites i and j. These
fourfold products can be rewritten in terms of spin and pseu-
dospin operators in the following way. One considers the
action of cj��

† cj���� on a state with quarter filling �ici�i�i

† �0�el

and finds the translation rules15

��� ���

�� → 1
2 + Tz ↑↑ → 1

2 + Sz

�� → 1
2 − Tz ↓↓ → 1

2 − Sz

�� → T+ ↑↓ → S+

�� → T− ↓↑ → S−

. �15�

For instance, the operator cj�↓
† cj�↓ can be expressed as Tj

+� 1
2

−Sj
z�. One finds the effective Hamiltonian

Heff = �
�ij�


− �+Ti · Tj + ��+ + �+ − 2��Ti
zTj

z −
�

2
−

�+

4
�Pij

S=0

+ 
�−Ti · Tj + ��− − �−�Ti
zTj

z −
�−

4
�Pij

S=1, �16�

where the coupling parameters, shown in Fig. 4, are

�� = �̄�Uo � J + 2Ep,2Ep� ,

�� = �̄�Uo � J + 2Ep,− 2Ep� ,

� = �̄�U − 2Ep,− 2Ep� , �17�

where

+ phonons

+ phononsθ
ε

θ Ht

HtHt

ε
Ht

∝ γ

∝ γ

∝ β±

∝ α±

FIG. 3. Hopping processes of second order. The dots stand for
electrons. The label � indicates whether the intermediate state is a
spin singlet or triplet. The coefficients ��, ��, and � are given in
Eq. �17�.
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FIG. 4. Coupling parameters in units of 2t2 versus the JT stabi-
lization energy Ep=g2 for U=4, U0=3, and J=1.
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�̄��,y� = 2t2e−2Ep�
n=0

�
�− y�n

n ! �n + ��
.

The spin singlet and triplet operators on a bond are given by

Pij
S=0 = 1

4 − Si · Sj and Pij
S=1 = Si · Sj + 3

4 . �18�

Interorbital processes differ in intermediate spin singlet ��+,
�+� and triplet ��−,�−� states. Due to their lower excitation
energy the triplet states lead to an enhanced energy gain. In
the following, � und � without the label � indicate coupling
parameters for J=0. Moreover, one has to distinguish be-
tween changed ���� and conserved ���� orbital configura-
tions. The former results in an alternating series and leads to
exponential quenching for increasing Ep, while the latter be-
haves algebraically as shown in Fig. 4. In the limit of strong
JT coupling, i.e., Ep�1, one obtains the approximation

�� �
2t2e−4Ep

Uo � J
, �� �

2t2

Uo � J + 4Ep
, � �

2t2

U
.

�19�

Without JT coupling one finds the parameters known from
the two-band Hubbard model

�� = �� =
2t2

Uo � J
, � =

2t2

U
. �20�

To discuss spin-orbital models of terms of the Kugel-
Khomskii type, it is useful to rewrite Heff in isotropic spin,
orbital, and mixed coupling and anisotropic contributions.
This yields

Heff = �
�ij�

JSSi · Sj + JTTi · Tj + JST�Ti · Tj��Si · Sj� + �TTi
zTj

z

+ �STTi
zTj

z�Si · Sj� + C . �21�

The coupling parameters, also shown in Fig. 4, are deter-
mined from Eq. �16�. Starting from SU�2�spinSU�2�orb for
g=0, one finds vanishing anisotropy coefficients �T and �ST.
JS varies smoothly while the orbital exchange parameters JT
and JST are exponentially damped with Ep. It is remarkable
that �T changes sign. This anisotropic orbital coupling alters
from antiferro-orbital to ferro-orbital.

V. LIMITS AND SYMMETRY

It is instructive for later discussions to briefly summarize
some results of bare electronic models available in the cur-
rent literature to point out the potential significance of
electron-phonon interaction in strongly correlated materials.

In this context, particular emphasis is set on symmetry as-
pects associated with electron-phonon coupling.

A. Symmetries of the isotropic model

We start from the case of highest symmetry SU�4� which
is obtained for U=Uo and J=g=0. The coupling parameters
of the effective model �21� achieve JS=JT= 1

4JST and �T
=�ST=0.22,23 One obtains

HSU�4� = JST�
�ij�


Si · Sj +
1

4
�
Ti · Tj +

1

4
� , �22�

where we have neglected a constant. This model, also with
additional interaction terms and in higher dimensions, has
been intensively studied.22,24–30 In one dimension, SU�N�
models are integrable.31 It is known that, in the thermody-
namic limit32 and if the number of sites is a multiple of 4,33

the ground state of the SU�4� symmetric model is a SU�4�
singlet.

The isotropic model ��T=�ST=0� with free parameters
x=JS /JST and y=JT /JST, respectively, was found to be
SU�2�spinSU�2�orb invariant, and a rich phase diagram and
points with exact solutions were discussed34–43 and the anal-
ogy to spin ladders was studied.44–46 To achieve this symme-
try we have to take U=Uo+J and g=0, which produces a
line in the �x ,y� diagram from the SU�4� point for J=0 to
�−1 /4,3 /4� for the maximum value of J=U /2.

B. Pure electronic case

The frequently studied spin-orbital models with electronic
correlations are given by setting g=0.15,33,40,47–49 Although
the lattice symmetry considered in these references differs
from our case, the structure of the effective model is the
same because of the high symmetry of Hee. In the underlying
model �1a�–�1d� with isotropic orbital-conserving hopping
and without on-site pair hopping, one finds U�1�orb
SU�2�spin symmetry with generators Tz and S	. The effec-
tive Hamiltonian written in these operators, neglecting a con-
stant, is given by

Heff
g=0 = HSU�4� + 
JT −

JST

4
��

�ij�
�Ti · Tj − Si · Sj�

− 4�T�
�ij�


Ti
zTj

z +
1

4
�
Si · Sj −

1

4
� . �23�

The dot products of spin and pseudospin operators lower the
SU�4� symmetry to SU�2�orbSU�2�spin. The last term re-
duces the symmetry further to U�1�orbSU�2�spin and van-
ishes for U=Uo+J.

The limits and symmetries above are well-known proper-
ties of spin-orbital models that take solely electron-electron
interaction into account. Let us now consider the limits in-
cluding JT coupling and investigate their effects on magnetic
and orbital order. Finally, we discuss the consequences of an
adiabatic treatment and show that the anisotropy caused by
different contributions from changed and conserved orbital
configurations is missing.
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C. Ferro-orbital and ferromagnetic case

The restriction to single-orbital occupation results in a
Heisenberg model with an antiferromagnetic coupling con-
stant �. Neglect of the electron-phonon interaction yields the
well-known t�U limit of the Hubbard model with the
Heisenberg coupling 2t2 /U. This model belongs to the class
of SU�N� models and is solvable in one dimension,31,50 too.

Neglecting the spin degree of freedom and taking only
ferromagnetic configurations into account, one ends up with
a model describing orbital degrees of freedom in terms of
spinless fermions. This formulation results in an XXZ pseu-
dospin model51 with an anisotropy parameter �=� /��1.
The XXZ model is solvable, e.g., via the Bethe ansatz.52–54 In
the limit g=0 or within the adiabatic treatment the XXZ
model becomes isotropic ��=1�. ��1 corresponds to the
quantum mechanical picture of the JT problem. One obtains
exponential increase of the anisotropy parameter caused by
Ep and the nature of the model shifts from Heisenberg to
Ising type. Hence the coupling to phonons favors antiferro-
orbital order. This cooperative effect is induced by hopping
of electrons, in contrast to the cooperative JT effect mediated
by phonon-phonon coupling.

D. Hund’s rule coupling J=0

Vanishing Hund’s rule coupling results in U�1�orb
SU�2��SU�2�� symmetry. Hence, one finds five con-
served quantities compared to three in the case with Hund’s
rule coupling and without JT coupling. Furthermore, the
symmetry breaking caused by J can be extenuated through
particular choice of the parameters U=Uo+J, while this is
not possible in terms of JT coupling. The symmetry proper-
ties for J=0 can be seen by rewriting the effective Hamil-
tonian �16� in terms of generators of the group U�1�orb
SU�2��SU�2��, which means Tz and S�

	. One finds

Heff
J=0 = HSU�4� +

�ST

2 �
�ij��

Si� · Sj� + �T�
�ij�

Ti
zTj

z, �24�

where we have neglected a constant. Here we take advantage
of the fact that, at quarter filling, the two-particle operators
Ti

zSi
	 can be replaced by 1

2 �Si�
	 −Si�

	 �.
The Heisenberg coupling �ST /2 for the spin in each or-

bital changes sign for U�Uo. Weak JT coupling favors fer-
romagnetic �FM� order and the system switches to antiferro-
magnetic �AFM� coupling with increasing values of the
coupling. Analogously the Ising coupling �T changes from
antiferro-orbital to ferro-orbital �FO�. Hence, in the strong
coupling limit Ep�1, one expects an AFM-FO ground state.
Hund’s rule coupling favors FM order and, therefore, com-
petes with JT coupling.

E. Adiabatic limit

Let us consider the adiabatic limit. One finds that the shift
operators in Eq. �13� vanish in that limit, and therefore the
coupling constants are the same as in the purely electronic
case apart from a renormalization of the Coulomb interac-
tions. Hence, the intraorbital �interorbital� repulsion U �Uo�
is converted to an effective repulsion U−2Ep �Uo+2Ep� and

the anisotropy and the exponential behavior of the orbital
exchange processes vanish. One obtains

�ad
� = �ad

� =
2t2

Uo � J + 2Ep
and �ad =

2t2

U − 2Ep
. �25�

Hence the SU�4� condition U=Uo and J=0 without JT cou-
pling changes in the adiabatic limit to Ep= 1

4 �U−Uo� and J
=0. The SU�4� point expands to a line shown in Fig. 5�a�.
Alternatively, it is possible to restore SU�2�spinSU�2�orb by
setting Ep= 1

4 �U−Uo−J� instead of U=Uo+J and g=0. The
restrictions Uo�3J−U and Uo+J�U ensure positive exci-
tation energy Uo−J+2Ep and JT energy Ep. These inequali-
ties are satisfied within the shaded area in Fig. 5�b�. The lines
satisfy the SU�2�spinSU�2�orb condition Ep= 1

4 �U−Uo−J�
for constant values of Ep /U. The restoration of these high
symmetries is solely possible in the adiabatic limit. Taking
phononic excitations into account results in anisotropic be-
havior and one finds ��� and hence U�1�orb symmetry.

0

1

1

2

Uo

U

Ep

U

SU(4) line

SU(4) point

for
Ep

U
�= 0

1

4

1

2

for
Ep

U
= 0

0

1

1

J

U

Ep

U
= 0

1

2

Uo

U

Ep

U
↗

Ep

U
=

1

4

1

3

1

2

(a)

(b)

FIG. 5. Symmetry in the adiabatic limit. �a� Possible values for
SU�4� symmetry given by Ep= �1 /4��U−Uo� and J=0. �b� The
shaded area shows values of Uo /U and J /U, where SU�2�
SU�2� symmetry is possible without violating Ep�0 and U0−J
+2Ep�0. Points on lines satisfy the SU�2�SU�2� condition Ep

= �1 /4��U−Uo−J� for constant values of Ep /U.
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The relations between coupling coefficients for special
choices of parameters and related symmetries are given in
Table I.

VI. CONCLUSION

In this paper, we have considered a two-band Hubbard
model including both on-site Coulomb interactions and
Hund’s rule coupling as well as the local E � � Jahn-Teller
effect.

Treating delocalization of the electrons within the frame-
work of degenerate perturbation theory and taking into ac-
count the quantum nature of the Jahn-Teller effect yields an
effective spin-orbital model for the description of electronic
and lattice degrees of freedom. In this effective model, the
coupling parameters are strongly modified in comparison to
pure electronic models, owing to phononic Jahn-Teller exci-
tations. Additionally, the occupancy of the initial and final
orbitals involved in the various virtual hopping processes
plays an important role. In particular, we find that orbital
exchange ����� due to virtual nearest-neighbor hopping is
exponentially suppressed with the strength of the Jahn-Teller
coupling and even completely quenched in the limit Ep�1.
This is in contrast to orbital-conserving processes �����,
which show algebraic renormalization of the bare electronic
coupling constants. Spin exchange processes ���� are basi-
cally proportional to the value of systems without phonons.
If we treat the lattice as static, the exponential quenching is
absent. Instead, we find algebraic contributions for all ex-
change processes. Particularly in this limit, orbital-changing
and -conserving processes of neighboring electrons in differ-
ent orbitals result in the same contribution ���=���. The
same holds true for the effective model without Jahn-Teller
coupling.

Hence, the main features that arise for the quantum me-
chanical but not for the adiabatic treatment are the depen-
dence of the energy gain due to virtual hopping processes on
the orbital occupancy and the exponential damping for or-
bital exchange processes. This considerations result in an
anisotropic effective spin-orbital model, which means an
XXZ type of orbital. Since the spin sector is isotropic, one
obtains a Heisenberg-type result for the spin degree of free-
dom. In the limit of strong electron-phonon coupling �Ep
�1�, the Ising term dominates the orbital part, because the
contributions from orbital exchange processes are exponen-
tially suppressed. Note that this damping is caused by the
quantum mechanical treatment of the Jahn-Teller coupling.

In addition, the facts mentioned above produce remark-
able results for consideration of the symmetry properties. We
studied the interaction-induced symmetry breaking for both
the microscopic and the effective Hamiltonian. The rota-
tional invariance of the spin in each orbital appears as
SU�2��SU�2��. This symmetry is not affected by the Jahn-
Teller effect but is broken to SU�2�spin through Hund’s rule
coupling. That the SU�2�spin symmetry is not affected by the
couplings we considered can be seen by the formulation of
the interaction contributions in terms of Si

2 and the local
pseudospin operators, given in Eq. �6�. Referring to the sym-
metry breaking in the orbital sector, one finds for the adia-
batic limit, just as in the case without Jahn-Teller coupling,
that both SU�4� and SU�2�spinSU�2�orb symmetry are re-
storable through proper choice of parameters. However, in-
cluding phononic excitations breaks SU�2� symmetry in the
orbital sector down to U�1�.
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