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The Jahn-Teller model with E � � electron-phonon coupling and local �Hubbard-like� Coulomb interaction is
considered to describe a lattice system with two orbitals per site at half filling. Starting from a state with one
electron per site, we follow the tunneling of the electrons and the associated creation of an arbitrary number of
phonons due to electron-phonon interaction. For this purpose we apply a recursive method which allows us to
organize systematically the number of pairs of empty/doubly occupied sites and to include infinitely many
phonons which are induced by electronic hopping. In lowest order of the recursion �i.e., for all processes with
only one pair of empty/doubly occupied sites� we obtain an effective anisotropic pseudospin 1/2 Heisenberg
Hamiltonian Hef f as a description of the orbital degrees of freedom. The pseudospin coupling depends on the
physical parameters and the energy. This implies that the resulting resolvent �E−Hef f�E��−1 has an infinite
number of poles, even for a single site. Hef f is subject to a crossover from an isotropic Heisenberg model �weak
electron-phonon coupling and isotropic hopping� to an Ising model �strong electron-phonon coupling�.
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I. INTRODUCTION

It has been known for a long time that orbital degrees of
freedom in systems with Jahn-Teller coupling can be de-
scribed by an effective pseudospin Hamiltonian.1–4 The cou-
pling parameter of the pseudospin interaction is t2 /U, where
t is the orbital hopping rate and U is the strength of the onsite
Coulomb interaction. This description is of great interest be-
cause it provides a model to study orbital ordering and the
possibility of orbital liquids in terms of conventional spin
theories.

The main problem of treating electrons that couple to
phonons is that even for small systems with one or a few
electrons the Hilbert space is infinite dimensional. This im-
plies a complex spectrum with level crossing and avoided
level crossing.5 There are various treatments of small Jahn-
Teller systems, e.g., exact numerical diagonalization with
truncated phonon spectrum,6–8 Monte Carlo simulations9 or
variational methods.10

In this paper the influence of the electron-phonon cou-
pling strength on the effective pseudospin Hamiltonian will
be studied in detail for electrons on a lattice. In order to keep
the calculations simple only the case of a system with E
� � Jahn-Teller coupling11 is considered, and the electron
spin is neglected. A recursive projection formalism12,13 is ap-
plied to derive the effective pseudospin Hamiltonian. This
approach provides pseudospin coupling parameters that de-
pend on the electron-phonon coupling strength.

The paper is organized as follows. In Sec. II the model is
defined. As a physical quantity the resolvent, related to the
electron-phonon Hamiltonian, is considered. Its relation with
physical quantities is discussed in Sec. II A. The recursive
projection method is briefly described in Sec. III and the
effective pseudospin Hamiltonian, obtained from this
method, is presented in Sec. IV. Finally, the crossover from
weak to strong electron-phonon coupling is studied in Sec.
IV A.

II. THE E‹� JAHN-TELLER MODEL

The Jahn-Teller model describes fermions with pseudo-
spin �= ↑ ,↓, coupled to phonons. It is defined by the Hamil-

tonian H=Ht+H0, where Ht is the hopping term of the fer-
mions between nearest-neighbor sites j and j�,

Ht = − �
�j,j��

�
�=↑,↓

t�,jj�cj�
† cj�� + H.c. �1�

and H0 is a local �Hubbard-like� interaction and a phonon
term:

H0 = �
j

��0bj
†bj + g�bj

† + bj��nj↑ − nj↓� + Unj↑nj↓� �2�

for dispersionless phonons with energy �0. The hopping rate
t�,jj� from orbital � at site j to orbital � at site j� depends on
� such that in general t↑� t↓. Moreover, it is assumed that
hopping between different orbitals is very weak such that
t↑↓=0, similar to the model considered in Ref. 4. For the
subsequent study it is not crucial that the hopping rate de-
pends on the sites. Therefore, it will not be explicitly written.

For a given ensemble of fermions, represented by integer
numbers nj�=0,1, the Hamiltonian H0 can be diagonalized
with product states

�
j

	Nj,nj↑,nj↓� �Nj � 0� . �3�

For nj↑=nj↓=0 �no fermions� Nj=0,1 , . . . is the number of
phonons at site j. That is 	Nj ,0 ,0� is an eigenstate of the
phonon-number operator bj

†bj:

bj
†bj	Nj,0,0� = Nj	Nj,0,0� .

The corresponding states with a single fermion at j are ob-
tained from 	Nj ,0 ,0� as

	Nj,1,0� = cj↑
† exp
−

g

�0
�bj

† − bj��	Nj,0,0� ,

	Nj,0,1� = cj↓
† exp
 g

�0
�bj

† − bj��	Nj,0,0� �4�

and a state with two fermions as
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	Nj,1,1� = cj↑
† cj↓

† 	Nj,0,0� .

�j 	Nj ,nj↑ ,nj↓� is an eigenstate of H0 with energies

E0��Nj,nj↑,nj↓
� = �
j

�0Nj −

g2

�0
�nj↑ − nj↓�2 + Unj↑nj↓� .

�5�

The groundstate of H0 is a product of singly occupied states
from Eq. �4� with Nj=0. The groundstate energy per lattice
site is −g2 /�0.

A. The resolvent

In the following the resolvent

�z − H�−1

shall be studied. It is directly related to a number of physical
quantities. One is linked with the thermodynamic properties
of a statistical ensemble governed by the Hamiltonian H
through the Boltzmann weight at inverse temperature �:

e−�H = �
�

�z − H�−1e−�z dz

2�
. �6�

� is a closed contour that encloses all eigenvalues of H.
Another connection is with the dynamics of quantum states
in a system which is characterized by the Hamiltonian H:
The evolution of a state 	�0� at time 0 to the state 	�t� a later
time t�0 is given by

	�t� = eiHt	�0� .

A Laplace transformation for positive time gives with Imz
	0 the resolvent that acts on the initial state:

�
0




e−izt	�t�dt = �
0




e−izteiHtdt	�0� = �z − H�−1	�0� . �7�

The return probability to the initial state is obtained from the
inverse Laplace transform and reads

��0	�t� =
1

2�
�

−





eizt��0	�z − H�−1	�0�dz . �8�

Using the spectral representation of H with eigenvalues Ej,
the expectation value in the integrand reads

��0	�z − H�−1	�0� = �
j

	�Ej	�0�	2

z − Ej
.

Inserting this into Eq. �8� allows us to apply Cauchy’s Theo-
rem to perform the integration.

In order to evaluate the resolvent a standard procedure is
to expand it in terms of Ht in a Neumann series

�z − H�−1 = �z − H0 − Ht�−1 = �z − H0�−1�
l�0

�Ht�z − H0�−1�l,

and to truncate this series after a finite number of terms. The
poles of any finite truncation are the eigenvalues of the un-
perturbed Hamiltonian H0. This may be insufficient for a

good approximation of �z−H�−1. In the next section a recur-
sive approach is applied that avoids this limitation.

III. RECURSIVE PROJECTION FORMALISM

Considering a restricted Hilbert space for states 	�0�, the
projected resolvent P0�z−H�−1P0 must be evaluated. It is as-
sumed that P0 projects the states of the entire Hilbert space
H to the subspace H0. The projected resolvent satisfies the
identity

P0�z − H�−1P0 = �P0�z − H�P0 − P0HP1�z − H�1
−1P1HP0�0

−1,

�9�

where P1=1− P0 projects onto the Hilbert space H1 that is
complementary to H0. �z−H�1

−1 is the inverse of z−H on the
P1-projected Hilbert space H1, i.e.,

�z − H�1
−1 � P1�P1�z − H�P1�−1P1.

If H obeys the relations

P0HP1 = P0HP2, P1HP0 = P2HP0 �P2 � P1� �10�

�i.e., matrix elements of H connect only states in H0 with
states in H2, where the latter is a subspace of H1�, Eq. �9�
can also be written

P0�z − H�−1P0 = �P0�z − H�P0 − P0HP2�z − H�1
−1P2HP0�0

−1.

�11�

The identity used in Eq. �9� can be applied again to P2�z
−H�1

−1P2 on the right-hand side:

P2�z − H�1
−1P2 = �P2�z − H�P2 − P2HP3�z − H�3

−1P3HP2�2
−1,

�12�

where P3 projects onto the complement of H2 on H1. A
typical Hamiltonian obeys relations analogous to those in Eq.
�10� with the replacements P0→P2 and P1→P3.

This procedure can be applied iteratively, as shown in Fig.
1. It creates a hierarchy of projectors Pk onto Hilbert spaces
Hk: H2j+2 is defined as a subspace of H2j+1 by the properties
of the Hamiltonian:

P2jHP2j+1 = P2jHP2j+2 � Hj,j+1

and

P2j+1HP2j = P2j+2HP2j � Hj+1,j , �13�

and H2j+1 is the complement of H2j with respect to H2j−1. In
terms of the projected resolvents this construction implies a
recursion relation. Using the notation

G2j = P2j�z − H�2j−1
−1 P2j ,

the recursion relation reads

G2j = �z − P2jHP2j − Hj,j+1G2j+2Hj+1,j�2j
−1. �14�

The recursion terminates for j= jt if P2jt
HP2jt+1=0. This is

the case when H is diagonal on H2jt+1.
The special form of the Hamiltonian H in Sec. II as the

sum of two Hamiltonians H=H0+Ht can be used to obtain
projections with the following properties:

K. ZIEGLER PHYSICAL REVIEW B 74, 014301 �2006�

014301-2



�i� H0 stays inside the projected Hilbert space:

H0P0 = P0H0 = P0H0P0.

�ii� Ht maps from H2j to H2j+2:

Ht:H2j → H2j+2,

where H2j is orthogonal to H2j+2. In the next section these
properties will be used to construct an effective Hamiltonian.

IV. THE EFFECTIVE HAMILTONIAN

The projection formalism is now applied to the Hamil-
tonian H=H0+Ht of Sec. II. The Hilbert space separates sub-
spaces with a fixed number of fermions with pseudospin ↑
and a fixed number with pseudospin ↓ because H cannot
change it with a diagonal pseudospin term. The case is con-
sidered here where P0 projects onto singly occupied sites
with Nj=0. Ht is off diagonal with respect to the phonons
and changes the number of pairs of empty/doubly-occupied
sites �PEDS� by one. Therefore, P2j �j�1� projects onto
states with j PEDS and Nj�0. According to this construc-
tion, the matrix elements of P2jHP2j+2= P2jHtP2j+2 and
P2j+2HP2j = P2j+2HtP2j are all nonzero with respect to differ-
ent phonon numbers. P2jH0P2j is diagonal in the basis �4�
with matrix elements:

�0�
j

Nj − 2�M − j�g2/�0 + Uj ,

where 2�M − j� counts the number of singly-occupied sites
and j the number of doubly-occupied sites on a lattice with
2M sites. Thus the recursion relation of Eq. �14� becomes

G2j = 
z − �0�
j

bj
†bj + 2�M − j�g2/�0 − Uj

− Hj,j+1G2j+2Hj+1,j�
2j

−1
�15�

with Hj,j+1 defined in Eq. �13�. The recursion terminates on a

finite lattice �M 	
� if j=M, since at most M PEDS can be
created and, therefore, P2M+1 is a projection onto the empty
space. G2M is diagonal with matrix elements

1

z − �0�
j

Nj − UM
.

This can serve as a starting point for the iterative approxi-
mation of G0. The poles of G2M are

zN = �0�
j

Nj + UM = �0N + UM �N = �
j

Nj = 0,1, . . . � .

They are very large in comparison with the groundstate en-
ergy −2Mg2 /�0 of Eq. �5� due to the doubly occupied sites
that contribute the interaction energy U per site. The main
interest is in the low-lying states �i.e., in states near the
groundstate�. Then z is restricted to values close to
−2Mg2 /�0. It is convenient to introduce the energy E that
measures the excitation energy with respect to the ground-
state energy of the system with Hamiltonian H0:

E = z + 2Mg2/�0. �16�

In terms of E the recursion relation reads

G2j = 
E − �0�
j

bj
†bj − �2g2/�0 + U�j − Hj,j+1G2j+2Hj+1,j�

2j

−1
.

�17�

On the right-hand side the diagonal term,

− E + �0�
j

bj
†bj + �2g2/�0 + U�j ,

can be compared with the off-diagonal term,

Hj,j+1G2j+2Hj+1,j .

For j=M −1 the diagonal term is of order −E+ �2g2 /�0

+U��M −1� and the off-diagonal term is of order �−E
+ �2g2 /�0+U�M�−1. It is assumed that 2g2 /�0+U is suffi-
ciently large, i.e., either the electron-phonon or the Hubbard
interaction is strong. In this case the off-diagonal term can be
neglected in comparison with the diagonal term. Conse-
quently, G2M−2 is diagonal in this approximation. This type
of approximation can be repeated for each recursion step j
=M −2,M −3, . . . ,1, always leading to a diagonal resolvent
G2j, because the diagonal term is of the order −E+ �2g2 /�0

+U��j−1� and the off-diagonal term is of order �−E
+ �2g2 /�0+U�j�−1. Finally, the approximated G2 reads

G2 � �E − �0�
j

bj
†bj − 2g2/�0 − U�

2

−1
. �18�

This approximation corresponds with a truncation of all scat-
tering processes with more than one PEDS. It is valid for
weak hopping, i.e., for t� small in comparison with 2g2 /�0
+U. Subsequently, it will turn out that an effective expansion
parameter for the truncation is t�t�� / �U /�0+2g2 /�0

2�.
Equations �17� and �18� give for G0 the expression

FIG. 1. �Color online� The schematic structure of the recursive
projection method that reduces the Hilbert space �Russian doll ap-
proach�. The actual reduction is due to the recursion relation �R�,
whereas the projection �P� separates a part of the Hilbert space
through the Hamiltonian Hj+1,j. The low-lying poles of the resol-
vent G2j �indicated by the levels� are removed recursively by the
method.
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G0 = 
E − H0,1�E − �0�
j

bj
†bj − 2g2/�0 − U�

2

−1
H1,0�

0

−1
.

�19�

H0,1�¯�2
−1H1,0 is a matrix in a Hilbert space with Nj=0 ac-

cording to the definition of P0. H1,0 creates phonons as well
as a PEDS. This will be picked up by the diagonal matrix
�¯�2

−1. Finally, H0,1 annihilates the phonons and the PEDS.
Consequently, the entire expression is either diagonal or has
off-diagonal elements with nearest-neighbor pseudospin ex-
changes. Such a matrix can be expressed by an �anisotropic�
pseudospin-1 /2 Hamiltonian. A detailed calculation gives an
anisotropic Heisenberg Hamiltonian

Heff � H0,1
E − �0�
j

bj
†bj − 2g2/�0 − U�

2

−1
H1,0

= �
j,j�


a↑↑�Sj
zSj�

z −
1

4
� + a↑↓�Sj

xSj�
x + Sj

ySj�
y �� �20�

with the pseudospin-1 /2 operators Sx, Sy, Sz, and E-depen-
dent coupling coefficients �cf. the Appendix�

a↑↑ = �t↑
2 + t↓

2�
e−2g2/�0

2

�0
�*�U + 2g2/�0 − E

�0
,− 2g2/�0

2� ,

a↑↓ = 2t↑t↓
e−2g2/�0

2

�0
�*�U + 2g2/�0 − E

�0
,2g2/�0

2� . �21�

�* is related to the incomplete gamma function �Ref. 16�:

�*�a,y� = �
m�0

1

m!

�− y�m

a + m
.

It should be noticed that the coupling coefficients depend on
the pair of neighboring sites �j , j�� through the hopping rates:

a���,jj� = a����t↑,jj�,t↓,jj�� .

The parameter U+2g2 /�0 as well as the parameter 2g2 /�0
2

appear separately in the coupling coefficients. The former
parameter is assumed to be large, whereas the latter can be
tuned independently without leaving the region of validity of
the approximations. It will be discussed in the next section
that this provides a tool to describe a crossover of the model
between two qualitatively different regimes by changing the
electron-phonon coupling constant g.

A. Crossover from weak to strong electron-phonon coupling

The E-dependent coefficients in Heff simplify substan-
tially for the asymptotic regimes of weak and strong elec-
tron-phonon coupling g. Relevant are low energies E which
represent the poles of the resolvent in Eq. �6�. To avoid the
poles of the incomplete gamma function, the following dis-
cussion is restricted to energies:

E � U + 2g2/�0. �22�

It will be shown that in this case there exist poles of the
projected resolvent with Ej �0. The restriction �22� implies

that the approximated diagonal resolvent G2 in Eq. �18� has
only negative matrix elements:

G2 = �E − 2g2/�0 − U − �
j

Nj�
2

−1
	 0.

Thus H0,1G2H1,0 is a negative matrix and the projected re-
solvent,

�E − H0,1G2H1,0�0
−1,

has all poles Ej on the negative real axis. The relevant pa-
rameter in our truncated recursive projection formalism is
U /�0+2g2 /�0

2
1. This allows a free tuning of the electron-
phonon coupling g, as long as U is sufficiently large.

The weak-coupling limit of the isotropic case t↓= t↑� t
corresponds with the Hubbard model. For the latter �i.e., for
g=0� it is known that a 1 /U expansion at half filling gives in
leading order an isotropic Heisenberg model with coupling
coefficients �Ref. 14�

a↑↑ = a↑↓ = 2t2/U .

A similar result was obtained for the strong-coupling pertur-
bation theory of the Holstein model.15 The main difference
between the strong-coupling perturbation theory and the re-
cursive projection method is the energy dependence of the
coupling constants in the latter. The result of the recursive
projection method can be understood as a partial summation
of the strong-coupling expansion. For nonzero but small g
�g /�0�1� the coupling coefficients of Eq. �21� have the
asymptotic behavior

a↑↑ �
t↑
2 + t↓

2

2g2/�0 + U − E
, a↑↓ �

2t↑t↓
2g2/�0 + U − E

.

Thus, the coupling of the Sz component dominates in the
anisotropic case since a↑↑�a↑↓.

In the opposite regime, where the electron-phonon cou-
pling is strong �i.e. g /�0
1�, the incomplete gamma func-
tion is approximated by

�*�U + 2g2/�0 − E

�0
, � 2g2/�0

2�
�

�0

U + 2g2/�0 − E
�

m�0

1

m!
�±2g2/�0

2�m =
�0e±2g2/�0

2

U + 2g2/�0 − E
.

Thus the coupling coefficients of the pseudospin-1 /2 Hamil-
tonian are

a↑↑ �
t↑
2 + t↓

2

2g2/�0 + U − E
, a↑↓ � 0.

The crossover regime, within the restriction of Eq. �22�, is
plotted in Fig. 2 for isotropic hopping. It indicates that at
weak electron-phonon coupling there is a strong isotropic
pseudospin-pseudospin coupling, whereas a strong electron-
phonon coupling implies a strong pseudospin-pseudospin
coupling only for the Sz component but a weak one for Sx

and Sy. Thus the tuning of the electron-phonon interaction is
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given by a crossover from an isotropic Heisenberg to an
Ising model. This may be accompanied by a sequence of
crossovers and/or phase transitions.

The pole from the groundstate of the projected resolvent
�E−Heff�−1 is easily evaluated in the asymptotic regimes. For
the weak-coupling regime it is

EH = g2/�0 + U/2 − ��g2/�0 + U/2�2 − �H,

and for the strong-coupling regime

EI = g2/�0 + U/2 − ��g2/�0 + U/2�2 − �I,

where �H ��I� is the lowest eigenvalue of the Heisenberg
�Ising� Hamiltonian with coupling constants Jx=Jy =2t↑t↓,
Jz= t↑

2+ t↓
2 �Jx=Jy =0, Jz= t↑

2+ t↓
2�, respectively.

These results imply that the anisotropy of the electronic
hopping with respect to the orbitals is created or enhanced by
the electron-phonon interaction. The exponential suppression
of the Sx–Sy coupling by the latter strongly supports an
Ising-like interaction of the orbital degrees of freedom. This

may be crucial in two-dimensional systems, where an Ising-
like interaction can lead to orbital order, in contrast to a
Heisenberg interaction.

An experimental consequence of the crossover to the
Ising-like behavior should be observed in layered materials
�e.g., La1−xSr1+xMnO4 or La4Ru2O10�. To separate the spin
degrees of freedom, a spin-polarized state can be created by
a weak magnetic field. Then, in the presence of a strong
electron-phonon interaction, the material undergoes an Ising-
like phase transition to a state with orbital order. For
La4Ru2O10 a two-dimensional transition to orbital ordering
with an opening of a spin gap was reported in Ref. 17.
Whether or not the spin gap is related to a anisotropic inter-
action of the orbital degrees of freedom is not clear in this
case.

V. CONCLUSIONS

Starting from a Hamiltonian with short-range Coulomb
and E � � Jahn-Teller interaction, a system of spinless fermi-
ons was studied at half filling. An effective Hamiltonian Hef f
was derived under the assumption that the kinetic energy
�i.e., the hopping term� is always dominated by the local
interaction energy. In the absence of the electron-phonon in-
teraction this leads to the well-known isotropic pseudospin-
1 /2 Heisenberg Hamiltonian for Hef f. A weak electron-
phonon interaction suppresses the pseudospin-1 /2 interac-
tion of the effective Hamiltonian, and an increasing electron-
phonon interaction develops an anisotropy, where the
pseudospin-pseudospin interaction in the xy plane decreases
as exp�−4g2 /�0

2� with the electron-phonon coupling constant
g and the pseudospin-pseudospin interaction in the z direc-
tion decreases like 1/g2.
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APPENDIX

Using the shorthand notation

	0,↑� = 	0,1,0� 	0,↓� = 	0,0,1�

one can write for the coupling coefficients of the effective
Hamiltonian

a↑↑ ª − �t↑
2 + t↓

2� �
m,m��0

�0,↑	m,0,0��m,0,0	0,↑��0,↓	m�,0,0��m�,0,0	0,↓�
E − ��0�m + m�� + 2g2/�0 + U�

= − �t↑
2 + t↓

2�e−2g2/�0
2 �
m,m��0

1

m!m�!

�g2/�0
2�m+m�

E − ��0�m + m�� + 2g2/�0 + U�
.

The double sum is reduced to a single sum

=− �t↑
2 + t↓

2�e−2g2/�0
2 �
m�0

1

m!

�2g2/�0
2�m

E − �0m − 2g2/�0 − U

and

FIG. 2. Coupling coefficients of the effective pseudospin-1 /2
Hamiltonian of Eq. �21� for isotropic hopping t↓= t↑� t as a func-
tion of y=2g2 /�0

2: a↑↑ �upper set of curves� and a↑↓ �lower set of
curves� in units of t2 /�0 for �U−E� /�0=1.0,1.2,1.5 �from top to
bottom in each set of curves�.
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a↑↓ ª − 2t↑t↓ �
m,m��0

�0,↑	m,0,0��m,0,0	0,↓��0,↓	m�,0,0��m�,0,0	0,↑�
E − ��0�m + m�� + 2g2/�0 + U�

= − 2t↑t↓e
−2g2/�0

2 �
m,m��0

1

m!m�!

�− g2/�0
2�m+m�

E − ��0�m + m�� + 2g2/�0 + U�
.

The double sum is again reduced to a single sum

=− 2t↑t↓e
−2g2/�0

2 �
m�0

1

m!

�− 2g2/�0
2�m

E − �0m − 2g2/�0 − U
.

These expressions are related to the incomplete gamma func-
tion �Ref. 16�

�*�a,y� = �
m�0

1

m!

�− y�m

a + m

such that

a↑↑ = �t↑
2 + t↓

2�
e−2g2/�0

2

�0
�*�U − E + 2g2/�0

�0
,− 2g2/�0

2� ,

a↑↓ = 2t↑t↓
e−2g2/�0

2

�0
�*�U − E + 2g2/�0

�0
,2g2/�0

2� .
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