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Abstract. In underdoped high-Tc cuprates, d-wave superconductivity competes
with antiferromagnetism. It has generally been accepted that suppressing
superconductivity leads to the nucleation of spin-density wave (SDW) order with
wavevector near (π, π). We show theoretically, for a d-wave superconductor
in an applied magnetic field including disorder and electronic correlations,
that the creation of SDW order is in fact not simply due to suppression
of superconductivity, but rather due to a correlation-induced splitting of an
electronic bound state arising from the sign change of the order parameter
along quasiparticle trajectories. The induced SDW order is therefore a direct
consequence of the d-wave symmetry. The formation of anti-phase domain
walls proves to be crucial for explaining the heretofore puzzling temperature
dependence of the induced magnetism as measured by neutron diffraction.

A superconductor is characterized by a Bardeen–Cooper–Schrieffer (BCS) order parameter
1k(R), where R is the center-of-mass coordinate of a Cooper pair of electrons with momenta
(k, −k). The bulk ground state of such a system is homogeneous, but a spatial perturbation that
breaks pairs, e.g. a magnetic impurity, may cause the suppression of 1k(R) locally. What is
revealed when superconductivity is suppressed is the electronic phase in the absence of 1k, a
normal Fermi liquid. Thus the low-energy excitations near magnetic impurities and in the vortex
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cores of conventional superconductors are essentially Landau quasiparticles trapped in bound
states. The underdoped cuprates have been studied intensively in recent years, in part because
their proximity to the Mott insulator is thought to be responsible for many unusual properties,
including possibly high-temperature superconductivity itself. These systems are quite different
from conventional superconductors, because when the pair amplitude is suppressed locally,
e.g. by a vortex, a competing ordered state [1] stabilized by the proximity to the Mott state
appears to emerge instead of a normal metal. This state is characterized at low temperatures
T by static local spin-density wave (SDW) order with an ordering wavevector Q near (π, π),
an order that is not present in the state above Tc. This was first reported in elastic neutron
scattering experiments [2] on La2−xSrxCuO4 (LSCO), with a correlation length of several
hundred Angstrom (Å), but has been confirmed in other underdoped cuprates as well [3–6]. An
enhancement of incommensurate static order was observed on increasing the applied magnetic
field up to 14 T [2]. Because the signal disappeared above Tc, the magnetism was attributed to the
vortices; indeed, scanning tunneling microscopy (STM) measurements [7] on Bi2Sr2CaCu2O8+δ

(BSSCO) were able to directly image unusual charge order near the vortex cores, which is
almost certainly related to the field-induced SDW detected by neutron scattering.

Signatures of antiferromagnetic (AF) ordering in the SC state had been found earlier by
nuclear magnetic resonance (NMR) experiments [8]. Subsequently, µSR experiments [9, 10]
detected magnetic ordering as a wedge-shaped extension of the ‘spin glass’ phase into the SC
dome of the temperature versus doping phase diagram (figure 1(a)). Lake et al [2] reported
that an incommensurate magnetic order similar to the field-induced state was also observed in
zero field. Although it also vanished at Tc, the ordered magnetic moment in zero field had a
T dependence, which was qualitatively different from the field-induced signal. The zero-field
signal was attributed to disorder, but the relation between impurities and magnetic ordering
remained unclear. Because strong magnetic fluctuations with similar wavevectors are reported
at low but nonzero energies in inelastic neutron scattering experiments on these materials, e.g.
on optimally doped LSCO samples exhibiting no spin-glass phase in zero field, it is frequently
argued that impurities or vortices simply ‘freeze’ this fluctuating order [11].

Describing such a phenomenon theoretically at the microscopic level is difficult due to the
inhomogeneity of the interacting system, but it is important if one wishes to explore situations
with strong disorder, where the correlations may no longer reflect the intrinsic spin dynamics of
the pure system. Such an approach was proposed in a model calculation for an inhomogeneous
d-wave superconductor with Hubbard-type correlations treated in the mean field [12]. In this
model, a single impurity creates, at sufficiently large Hubbard interaction U and impurity
potential strength Vimp, a droplet of staggered magnetization with a size corresponding to the
AF correlation length of the hypothetical pure system [13–16]. When these droplets come
close enough to interact, there is a tendency to form incommensurate, phase-coherent Néel
domains whose size is sufficient to explain the observations by Lake et al [2] in zero field [12].
Such a model explains the empirical observations that both increasing disorder [17] and
underdoping [9] enhance the SDW order.

In this paper, we investigate the origin of the ‘order by disorder’ phenomenon described
in [12], as well as the T evolution of the disordered magnetic state in applied magnetic field.
An apparently very natural approach to the problem was developed by Demler et al [18],
who constructed a Ginzburg–Landau (GL) theory for competing SDW and SC order in a
magnetic field. This phenomenology describes correctly the reduction of condensation energy
in the vortex phase of the pure superconductor, and leads to a phase diagram qualitatively
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Figure 1. Phase diagrams and temperature dependence of magnetic order.
(a) Schematic temperature T versus doping x-phase diagram for cuprates.
(b) t/U dependence of the SC Tc and the disorder-induced magnetic transition
temperature Tg for an impurity concentration nimp = 10% with potential strength
Vimp = 2.0t and a hole concentration x = 0.1. t is the nearest-neighbor hopping
amplitude and U denotes the Hubbard on-site repulsion. (c, d) Magnetic Fourier
component |M(q)|2 at the ordering wavevector integrated around (π, π) versus
temperature for (c) different interaction strengths U (at fixed Vimp = 2.0t) and
(d) different impurity potential strengths Vimp (at fixed U = 2.5t).

consistent with experiments [1]. But it ignores the energies of the quasiparticles moving in
the inhomogeneous state, which can also crucially affect the competition between SDW and SC
order at low T , as we show here.

In a d-wave superconductor without AF correlations, a bound state of an isolated vortex
is found at zero energy [19] due to the sign change of the order parameter on quasiparticle
trajectories through the vortex core. On the other hand, solutions of the Bogoliubov–de Gennes
(BdG) equations describing coexisting d-wave superconductivity and SDW order [20–24] show
that this resonance is split by the SDW formation; that is, the system can lower the energy
of the nearly bound quasiparticles by moving them below the Fermi energy. This finding is
consistent with the STM experiments in the Abrikosov state of YBa2Cu3O7−δ (YBCO) [25]
and of BSCCO [26], in which split peaks were observed in the vortex cores. A similar bound
state is associated with non-magnetic impurities such as Zn in BSCCO and was also imaged by
STM [27]. It is therefore important to explore the role of quasiparticle bound states and their
coupling to the SDW order to identify the origin of both types of induced local AF in the SC
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state. An understanding of field-induced order is also highly relevant for the interpretation of the
quantum oscillations observed in recent transport experiments in high magnetic fields [28, 29],
since oscillations are possibly due to the formation of Fermi surface pockets as a consequence
of SDW ordering.

The inhomogeneous mean-field theory presented here for electrons hopping on a square
lattice with a d-wave pairing potential and subject to a Hubbard on-site repulsion U reproduces
the essential aspects of the field-induced spin-glass phase shown schematically in figure 1(a).
If doping is assumed to be correlated with the ratio of bandwidth to local Coulomb repulsion,
a phase diagram very much like the one found in various cuprate materials is obtained (see
figures 1(b)–(d)). We consider this a reasonable qualitative approach, since the reported changes
in the Fermi surface of these materials over the ‘spin-glass’ doping range are small [30] and it
is therefore plausible that the primary effect on the electronic structure is due to the correlation-
induced band narrowing [12]. The magnetically ordered phase can be enhanced by the increase
in the correlation strength or stronger disorder potentials (see figures 1(c) and (d)).

Our results reproduce well the qualitative aspects of the experiment by Lake et al [2]. We
find that some features depend on nonuniversal aspects of disorder, in particular the process
of domain wall nucleation, and that while disorder- and magnetic-field-induced SDW order
both add to the ordered moment, the interference of disorder and magnetic-field effects is
quantitatively significant. The domain wall formation proves to be responsible for the distinct
T dependences of the field- and the disorder-induced magnetization. The present theory also
includes a crossover from magnetic droplets to filamentary stripe-like structures in selected
regimes of hole densities and impurity concentrations. The model therefore offers a route to
describe the physics of the pinning of stripe correlations in the SC state. This insight may prove
relevant for many experiments in the underdoped cuprates that have been attributed to stripes.

The basis for our model analysis is the pairing Hamiltonian for a d-wave superconductor
with orbital coupling to an applied magnetic field B, to which we add site-centered disorder and
a local Hubbard repulsion; the latter is treated in an unrestricted Hartree–Fock approximation:

H = −

∑
i jσ

ti j eiϕi j c†
iσ c jσ − µ

∑
iσ

c†
iσ ciσ +

∑
〈i j〉

(
1i j c

†
i↑c†

j↓ + h.c.
)

+
U

2

∑
i

(
〈ni〉ni − 〈σ z

i 〉σ z
i

)
+

∑
iσ

V imp
i c†

iσ ciσ . (1)

Here, c†
iσ creates an electron on a square lattice site i with spin σ =↑, ↓. The hopping matrix

elements between nearest and next-nearest neighbor sites are denoted by ti j = t and ti j = t ′,
respectively. An electron moving in the magnetic field from site j to i acquires additionally the
Peierls phase ϕi j = (π/80)

∫ ri

r j
A(r) · dr, where 80 = hc/(2e) and A(r) = B(0, x) is the vector

potential in the Landau gauge. The chemical potential µ is adjusted to fix the electron density
n =

1
N

∑
i〈ni〉 = 1 − x , where x is the hole concentration; in the following we will focus on

x = 0.1. The d-wave pairing amplitude 1i j is determined by the strength of an attractive nearest-
neighbor interaction Vd. The non-magnetic impurity potential V imp

i consists of a set of point-like
scatterers at random positions, and all fields, i.e. 1i j , the local charge density 〈ni〉 and the local
magnetization 〈σ z

i 〉 are calculated self-consistently from the solutions of the associated BdG
equations. (For further details see the appendix.)

We start with a single impurity in a d-wave superconductor at U = 0. The fingerprint of
the induced virtual bound state is a single near-zero-energy peak in the local density of states
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Figure 2. Impurity- and field-induced magnetization. (a, c) LDOS at a nearest-
neighbor site of a single impurity (Vimp = 60t)(a) and in the center of one vortex
(c). In both cases, above a critical Uc, local SDW order is induced; concomitantly
the zero-energy peak in the absence of the Hubbard repulsion (blue curve)
splits spin dependently (red curve). The dashed curves show the clean LDOS
far from the perturbation. (b, d) Real-space patterns of the magnetization 〈σ z

i 〉

in units of µB on a 38 × 38 lattice for U = 2.2t > Uc at low temperature T =

0.025t . (b) shows the magnetization nucleated by a strong impurity (Vimp = 60t)
located at the center. In (d) two superconducting flux quanta 8 = 280 thread an
impurity-free d-wave superconductor.

(LDOS) (figure 2(a)), and no magnetization is induced by the impurity. Increasing the Hubbard
repulsion beyond a critical value Uc, a staggered magnetization emerges in the neighborhood of
the impurity (figure 2(b)). The two-sublattice nature of the magnetic pattern, in conjunction with
the spatial extent of the impurity resonance, leads to a spin-dependent splitting of the peak in
the LDOS; one resonant state with a selected spin direction is thereby shifted below and the
other above the Fermi energy, as is most clearly seen at the nearest-neighbor sites of the impurity
(figure 2(a)). The spin-dependent splitting reduces the bound-state energy of a spin-up or -down
state, and therefore stabilizes a local droplet of staggered magnetization, which carries a total
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spin-1/2 moment. The splitting of the resonance peak can therefore be viewed as the origin of
the impurity-induced magnetization. It is important to note that the splitting of the bound state is
not due to the suppression of the d-wave order parameter near the impurity. As we have verified,
the order parameter can be artificially held constant in the solution of the BdG equations, and a
nearly identical result is obtained.

For a finite density of impurities, we recover at T = 0 the results of [12], i.e. the creation
of a defective but magnetically ordered state as defined by strong peaks in the Fourier transform
of the local magnetization M(q) at incommensurate wavevectors q near (π, π). The effect of
temperature is now naturally included in the theory via T -dependent occupation probabilities of
Bogoliubov quasiparticle states. In figure 1(b), we show the extent of the quasi-ordered phase,
labeled ‘spin glass’, which expands as correlations increase, and disappears at a critical value
of t/U , which depends on the strengths of the pairing interaction and the impurity potential.
The intensity of the incommensurate magnetic Bragg peaks is shown in figures 1(c) and (d) as
functions of T for fixed t/U and fixed impurity potential strength, respectively. From figure 1(c)
it becomes evident that the magnetic ordering or ‘glass transition’ temperature Tg can be smaller,
equal to or larger than Tc depending on U . Increasing the impurity potential Vimp can increase
both the amplitude of the disorder-induced SDW and Tg itself (figure 1(d)). These results are
consistent with the empirical observation that the size of the spin-glass phase is not universal,
and in particular the critical doping beyond which magnetic order is no longer observed varies
considerably between intrinsically disordered cuprates, such as LSCO and BSCO, and clean
materials, like YBCO.

The magnetization induced by an orbital magnetic field can be traced to the same
microscopic origin as the impurity-induced magnetization [21]. Above a critical Uc, a staggered
spin pattern is nucleated in the vortex cores with a spatial extent reaching beyond the size of
a vortex core (figure 2(d)), as observed in experiment [2]. For the parameter set chosen, the
core radius estimated from the area where the order parameter is suppressed is about one lattice
spacing. The LDOS in the vortex center reveals that the origin of the field-induced magnetization
is tied to the spin-dependent splitting of the Andreev bound state in the vortex core (figure 2(c)).
The conjecture that the field-induced magnetization indeed appears simultaneously with the
peak splitting in the LDOS is explicitly verified in figure 3. For the unmagnetized vortex at
T = 0.175t , a single Andreev bound-state peak exists at zero energy. With decreasing T , the
vortices nucleate a staggered spin pattern precisely when the zero-energy peak in the LDOS
splits. With further cooling the peak splitting grows, more spectral weight is shifted below the
Fermi energy and the magnetization is enhanced.

The natural next step is to consider a finite density of non-magnetic impurities in the
presence of an external magnetic field and to compare it with the zero-field results. Specifically
for the modeling of LSCO, we assume in the following that the Sr ions are the primary
source of disorder, such that x equals the impurity concentration nimp. These systems are in
the strongly disordered regime where the AF correlation length (droplet size) is comparable
to the average distance between the dopants. Since the Sr dopants are removed from (but
close to) the CuO2 planes, we model them as weak scatterers with Vimp = 1.3t . Figures 4(a)
and (b) show the averaged magnetic structure factor S(q) at a fixed temperature far below
Tc in zero and finite magnetic field. As in figures 1(c) and (d), S(q) is approximated by
|M(q)|2 with M(q) =

1
N

∑
i eiq·r

〈σ z
i 〉. The magnetic signal in the structure factor appears at

the incommensurate wavevectors q = (π, π ± δ) and q = (π ± δ, π) (figure 4(a)). δ, however,
varies for randomly selected impurity configurations. For the weak magnetic signal in zero field,
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Figure 3. Temperature-dependent peak splitting in a magnetic field. LDOS at
the vortex center for three different temperatures below Tc in the absence of
impurities. Below the critical temperature Tg = 0.175t , the vortices magnetize
and simultaneously the Andreev bound-state peak splits. The black dashed curve
shows the LDOS far away from the vortex.

the averaging over different impurity configurations is therefore imperative but computationally
demanding. Applying an external magnetic field strongly enhances the magnetization and
reinforces incommensurate peaks at unambiguous wavevectors that are robust against variations
in the impurity configurations (figure 4(b)).

Remarkably, the temperature dependence of the structure factor (figure 4(c)) closely
resembles the neutron scattering data on LSCO by Lake et al [2]. For the results shown in
figure 4, we have chosen a parameter set where the staggered magnetization in zero field has its
onset at a temperature Tg indistinguishable from Tc. This reflects a situation where, upon cooling
through Tc, the localized bound states inside the d-wave energy gap emerge and immediately
split in the self-stabilizing staggered magnetic pattern. Towards lower T the magnetic structure
factor rises in a markedly different way in zero and in finite field. While the field-induced part
of the magnetic signal has a negative curvature, the zero field S(q) increases approximately
linearly upon cooling. The two mechanisms of impurity- and field-induced SDW do not simply
cooperate additively; the field-induced part is twice as large in the presence of impurities as
compared with the field-induced magnetization in the clean system (figure 4(c)). The zero-
field increase of the magnetization in the inhomogeneous SC state originates from the merging
of AF patches nucleated by the individual impurities. Without impurities the increasing field-
induced magnetization with cooling results from the growth of the magnetized regions around
the well-separated vortex cores. Thus, both our zero- and finite-field results for the finite density
of impurities nimp = x closely follow the T dependence of the neutron scattering data for
underdoped LSCO [2]. Still, due to computational restrictions, we are not yet able to access
the low magnetic-field strengths to allow for a direct comparison with experiment.

An important remaining question is why the T dependences of the magnetization are
different in zero and in finite field. A hint is provided by the observation that the T dependence
of the magnetic structure factor for the impurity-free field-induced magnetization and also for
just two single impurities in zero field has a negative curvature. In both cases, the induced
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Figure 4. Averaged magnetic structure factor for a many-impurity system.
(a, b) Intensity plot of the magnetic structure factor around (π, π) at T = 0.025t
in zero magnetic field (a) and at finite field (b). The structure factor data
were averaged over ten different impurity configurations. For the used system
size of 22 × 22 lattice sites, a magnetic flux of 280 corresponds to a strong
magnetic field with H = 59 T . The impurity concentration nimp = x is fixed to
10% (Vimp = 1.3t) and U = 2.9t > Uc. (c) T dependence of the peak intensity
integrated around (π, π) in zero field and at finite field with the finite density
of impurities nimp = x (blue and red curves, respectively); for the data with
8 = 280 and nimp = x , the zero-field data were subtracted. For comparison, the
structure factor in a clean system is also included for the same magnetic-field
strength (purple curve). |M(q)|2 (integrated) translates directly to the ordered
spin moment squared in units of µB per Cu2+.

staggered magnetization patterns around each impurity or each vortex, respectively, adjust their
individual two-sublattice spin structures in phase and thereby avoid domain walls [31]. For three
nearby impurities, however, it already proves difficult to find a specific configuration where
anti-phase domain walls are absent. In figures 5(a) and (b), we compare two three-impurity
configurations with distinctly different domain-wall patterns. Remarkably, placing the three
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c

Figure 5. Anti-phase domain walls. (a, b) Real-space image of the staggered
magnetization at T = 0.025t induced by three non-magnetic impurities. In
impurity configuration, (a) anti-phase domain walls appear vertically. In
configuration (b), the staggered magnetization induced by the three impurities
adjusts to a uniform AF domain around them. (c) Temperature dependence of
the integrated magnetic structure factor for the impurity configurations (a) (blue
curve) and (b) (red curve), respectively.

impurities on the same sublattice to form a right-angled isosceles triangle, as in figure 5(a),
generates a sequence of vertical anti-phase domain walls. If instead the impurities are configured
in an acute isosceles triangle, as in figure 5(b), a simply connected AF island forms around
them. As figure 5(c) shows, with decreasing T the magnetic signal evolves differently for each
impurity configuration. Intriguingly, |M(q)|2 rises almost linearly for the configuration with
vertical anti-phase domain walls while it has a negative curvature for the single domain island.
These examples suggest that the linear low-T rise of the magnetic signal for a finite density of
impurities in zero field originates from the anti-phase domain walls that are always present in
the randomly generated impurity configurations. For the field-induced magnetization, it is the
larger distance between the magnetized vortices that prevents the occurrence of domain walls
and therefore alters the T dependence of |M(q)|2.
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Figure 6. (a, c) Charge-density profiles. (b, d) Magnetization. (a, b) The same
parameter set in zero field as in figure 4: U = 2.9t , doping x = 10% = nimp

and pairing interaction strength Vd = 1.34t . (c, d) U = 4.0t , doping x = 15%,
nimp

= 7.5% and Vd = 2.0t . In (a–d) the temperature is fixed to T = 0.025t and
Vimp = 1.3t .

The results presented above focused on static disorder- and field-induced SDW, but
inelastic neutron scattering experiments have shown that in the SC state the spin excitations
at finite energy have almost the same distribution of spectral weight in q as the frozen magnetic
order (for a review see [32]). Thus in the SC state, where our model is applicable, we have
provided a concrete foundation for the freezing of fluctuating spin correlations by disorder and
magnetic field on the same footing; in particular, the role of the quasiparticle bound states in the
formation of the magnetic order has been highlighted.

The new picture that emerges is complementary to the global competition between SC and
AF phases in the sense that superconductivity and disorder may significantly enhance SDW
order in the underdoped regime. The d-wave pairing of the SC condensate is crucial for this
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generation of local magnetism, as we have shown. Support for this cooperative effect between
SDW and superconductivity comes not only from the onset of the elastic magnetic neutron
signal at Tc but also from Zn-substituted optimally doped LSCO. There it is found by µSR
that 2% Zn induces a magnetic signal, but 3% Zn is found to eliminate it, but also destroys
superconductivity [33]; within the context of the current theory, this effect is understood not as
a consequence of spin dilution [33], but rather due to the destruction of the SC phase and thereby
its ability to generate (or enhance) magnetic order via bound state creation. Similar effects were
observed at smaller Zn concentrations in underdoped LSCO samples [34].

Finally, we show that a qualitatively different kind of inhomogeneous texture may also be
stabilized within the present weak-coupling approach. Figures 6(a) and (b) show the typical
charge-density profile and the corresponding magnetization in zero field for the parameter
set used above to explore the onset of static AF order. As expected, the electron density is
reduced at the impurity sites, and local SDW patches nucleate around them. With increasing
repulsion U and for hole densities that exceed the impurity concentration, the inhomogeneous
spin and charge patterns change qualitatively (see figures 6(c, d)). The magnetically ordered
patches evolve to connected strongly magnetized areas separated by hole-rich filamentary
structures serving as anti-phase domain walls. In this still SC state the filaments constitute
snake-like paths through an SDW background with an average density of almost one electron
per site. These textures provide a link to the study of disordered (quenched) stripes similar to
those discussed recently within various GL models [35–37]. Therefore, depending upon the
correlation strength and the details of the disorder, the magnetic ordering temperature Tg can
vary significantly, and the ordering itself can be droplet or filamentary-like. This may explain
many of the differences of neutron and µSR experiments on different cuprate families at various
doping levels.
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Appendix. Numerical method

In order to investigate disorder- and field-induced magnetic order in d-wave superconductors,
we self-consistently solve the BdG equations on a square lattice for the Hamiltonian

H = −

∑
i jσ

ti j eiϕi j c†
iσ c jσ − µ

∑
iσ

c†
iσ ciσ +

∑
〈i j〉

(
1i j c

†
i↑c†

j↓ + h.c.
)

+
U

2

∑
i

(
〈ni〉ni − 〈σ z

i 〉σ z
i

)
+

∑
iσ

V imp
i c†

iσ ciσ , (A.1)

where the hopping amplitude between nearest-neighbor and next-nearest-neighbor sites i
and j is described by ti j = t and ti j = t ′

= −0.4t , respectively. An orbital magnetic field is
represented by the Peierls phase factor ϕi j = (π/80)

∫ ri

r j
A(r) · dr, while 80 = hc/(2e) is the

superconducting flux quantum and A(r) = (0,Bx) is the vector potential of the magnetic field
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in the Landau gauge. The d-wave pairing potential is defined on two nearest-neighbor sites i
and j by

1i j = −Vd〈c j↓ci↑〉 = 1 j i , (A.2)

where Vd is the attractive pairing interaction strength, which we set to Vd = 1.34t throughout
the paper. We then define a gauge invariant d-wave order parameter on each lattice site i :

1d
i =

1
4

(
1d

i,i+x̂ + 1d
i,i−x̂ − 1d

i,i+ŷ − 1d
i,i−ŷ

)
, (A.3)

where 1d
i, j = 1i j exp[ − i(π/80)

∫ ri

r j
A(r) · dr]. The chemical potential µ is adjusted to fix the

average charge density n =
1
N

∑
i〈ni〉, while the electron number operator for spin σ at site i

is given by niσ = c†
iσ ciσ , and the local charge-density operator by ni = ni↑ + ni↓, Sz

i =
1
2σ

z
i =

1
2(ni↑ − ni↓) is the z-component of the spin operator at site i .

The Bogoliubov transformation

ciσ =

∑
n

(
uinσγnσ + v∗

inσγ †
n−σ

)
(A.4)

diagonalizes the Hamiltonian in equation (A.2), which thereby takes the form

H = E0 +
∑
nσ

Enσγ †
nσγnσ . (A.5)

E0 is the ground-state energy and γ †
nσ creates an elementary fermionic Bogoliubov quasiparticle

excitation with quantum number n, spin σ and energy Enσ > 0. Calculation of the commutators
of H from equation (A.5) with the electron operators ciσ leads to a Schrödinger-like set of BdG
equations ∑

j

(
H +

i j 1i j

1∗

i j −H−

i j
∗

) (
u jn↑

v jn↓

)
= En↑

(
uin↑

vin↓

)
(A.6)

and ∑
j

(
H +

i j 1i j

1∗

i j −H−

i j
∗

) (
v∗

jn↑

u∗

jn↓

)
= −En↓

(
v∗

in↑

u∗

in↓

)
, (A.7)

with

H±

i j = −ti j + δi j

[
−µ +

U

2

(
〈ni〉 ∓ 〈σ z

i 〉
)

+ V imp
i

]
. (A.8)

As we only search for solutions with positive Enσ , it is sufficient to solve the following single
matrix equation:∑

j

(
H +

i j 1i j

1∗

i j −H−∗

i j

) (
u jn

v jn

)
= En

(
uin

vin

)
. (A.9)

This is because the solutions for En > 0 are obviously identical to the solutions for the (positive)
eigenvalues En↑ of equation (A.6)

En > 0 :

(
uin↑

vin↓

)
=

(
uin

vin

)
and En↑ = En > 0, (A.10)
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Figure A.1. Division of the lattice into identical supercells. Lattice sites
belonging to the same supercell are connected via solid lines, whereas dashed
lines link sites of different supercells. Red lattice sites simulate a possibly
existing disorder.

while for En < 0 the following relation holds:

En < 0 :

(
v∗

in↑

u∗

in↓

)
=

(
uin

vin

)
and En↓ = −En > 0. (A.11)

Since the solutions of equations (A.6) and (A.7) can be mapped onto those of the BdG
equation (A.9), we diagonalize equation (A.9) to obtain the pairing potential 1i j , the charge
density 〈ni〉 and the local magnetization 〈σ z

i 〉 self-consistently from

1i j =
Vd

4

∑
n

(
uinv

∗

jn + u jnv
∗

in

)
tanh

(
En

2kBT

)
, (A.12)

〈ni↑〉 =

∑
n

|uin|
2 f (En), (A.13)

〈ni↓〉 =

∑
n

|vin|
2(1 − f (En)), (A.14)

〈σ z
i 〉 = 〈ni↑〉 − 〈ni↓〉, (A.15)

where f (En) = (1 + eEn/kBT )−1 is the Fermi distribution function and T is the temperature.
Sums over n run over positive and negative energies En.

To maximize the size of the system for which equation (A.9) can be diagonalized
numerically, we take advantage of the magnetic translation symmetry of our model Hamiltonian
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t’

tR

Figure A.2. Hopping between supercells. A particle, which hops from the left
supercell into the right supercell, is mapped back to the left supercell through the
translation vector R. As a result the wave functions u and v obtain an additional
phase given by the magnetic Bloch theorem equation (A.17).

equation (A.1) by dividing the lattice into Mx × My identical supercells each with Nx × Ny sites
(see figure A.1) [21, 38, 39]. We define the following magnetic translation operator [40]:

TR = exp

(
−i R ·

(
k +

q

ch̄
A

))
, (A.16)

where R is the translation vector and TR translates any lattice vector r to the position r + R.
Because [H, TR] = 0, it is possible to block diagonalize the Hamiltonian H in equation (A.1)
using the eigenstates of TR. This reduces the eigenvalue problem equation (A.9) of dimension
2Mx Nx × 2My Ny to Mx × My eigenvalue equations of dimension 2Nx × 2Ny . Applying the
magnetic Bloch theorem(

unk(TRri)

vnk(TRri)

)
= e−ik·R

(
e−i(π/80)A(R)·ri unk(ri)

ei(π/80)A(R)·ri vnk(ri)

)
(A.17)

block diagonalizes the BdG equation (A.10), where k = 2π( nx
Mx Nx

, ny

My Ny
), unk(ri) = uink and

vnk(ri) = vink. Thus, we have to solve the following 2Nx × 2Ny matrix equation for each
k value: ∑

j

(
H +

i j(k) 1i j(k)

1∗

i j(k) −H−∗

i j (k)

) (
u jnk

v jnk

)
= Enk

(
uink

vink

)
, (A.18)

where

1i j =
Vd

4Mx My

∑
nk

(
uinkv

∗

jnk + u jnkv
∗

ink

)
tanh

(
Enk

2kBT

)
, (A.19)

〈ni↑〉 =
1

Mx My

∑
nk

|uink|
2 f (Enk), (A.20)

〈ni↓〉 =
1

Mx My

∑
nk

|vink|
2(1 − f (Enk)). (A.21)

Hi j and 1i j are only k dependent if i and j belong to different supercells. Then the back-
mapping (see figure A.2) leads to an additional phase for the u’s and v’s according to
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a d

b e

c f

Φ = 0 Φ = 2Φ 0

Figure A.3. Switching on an orbital magnetic field. (a–c) Zero-field data. (d–f)
Finite-field data (8 = 280). (a, d) show the charge density 〈ni〉, (b, e) the
d-wave order parameter 1d

i and (c, f) the magnetization 〈σ z
i 〉 in real space. The

same set of parameters is used here as in the rest of the paper, i.e. x = 10% =

nimp, U = 2.9t, Vimp = 1.3t . These data were obtained at the lowest temperature
T = 0.025t we considered throughout the paper. Note the different scales in (c)
and (f).
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equation (A.18), which is assigned to the matrix elements ti j(k) and 1i j(k). To make sure that
two magnetic translations commute, we have to choose the magnetic field such that its flux
through every supercell is a multiple of 280 [21, 40]. Hence 280 provides a lower boundary for
the magnetic flux threading each supercell, which corresponds to a supercell enclosing an area
of e.g. 22a × 22a to a magnetic field of about 59 T (we assumed a typical value for the in-plane
lattice constant a in the cuprates of about a = 3.8 Å).

In order to make contact with neutron scattering experiments, we evaluate the magnetic
structure factor S(q). In homogeneous systems it is defined as

S(q) =
1

N

∑
i

〈σ z
i σ z

0 〉e−iq·(ri −r0). (A.22)

We approximate the spin–spin correlation function by the following factorization:

〈σ z
i σ z

0 〉 → 〈σ z
i 〉〈σ z

0 〉. (A.23)

Because the system that we are interested in is in general inhomogeneous, we have to sum over
all lattice sites. Hence we find the expression

|M(q)|2 =
1

N 2

∑
i j

〈σ z
i 〉〈σ z

j 〉e
−iq·(r j −ri ). (A.24)

This approximation of the magnetic structure factor is identical to the Fourier transform of the
magnetization squared.

In figure A.3, the results for 〈ni〉, 1d
i and 〈σ z

i 〉 are shown in zero field (left column) and
in finite magnetic field (right column) for a typical impurity configuration. One can identify the
location of the impurities by the point-like suppression of the charge density (top row). While the
d-wave order parameter is nearly homogeneous in the zero-field case (see figure A.3(b)), one can
clearly spot the positions of the two vortices where 1d

i is suppressed to zero in figure A.3(e). In
comparison to the zero-field case, a finite orbital magnetic field leads to an additional reduction
in the order parameter over the entire lattice. Finally, for the parameters used here, the zero-
field case already contains impurity-induced AF order (see figure A.3(c)), which is significantly
enhanced by switching on a magnetic field. The magnetization peaks near the vortex cores, but,
due to the fact that strong type-II superconductors are penetrated by the field much beyond the
cores, the magnetization is also enhanced in regions far away from the vortices, where the order
parameter is nearly homogeneous. The SDW emerges due to the splitting of the Andreev bound
state, as explained in greater detail in the main body of the paper.
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