
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Flux periodicities in loops of nodal superconductors

Florian Loder1, Arno P Kampf, Thilo Kopp and Jochen Mannhart
Center for Electronic Correlations and Magnetism, Institute of Physics,
University of Augsburg, D-86135 Augsburg, Germany
E-mail: florian.loder@physik.uni-augsburg.de

New Journal of Physics 11 (2009) 075005 (20pp)
Received 22 December 2008
Published 7 July 2009
Online at http://www.njp.org/
doi:10.1088/1367-2630/11/7/075005

Abstract. Supercurrents in superconducting flux threaded loops are expected
to oscillate with the magnetic flux with a period of hc/2e. This is indeed true
for s-wave superconductors larger than the coherence length ξ0. Here, we show
that for superconductors with gap nodes, there is no such strict condition for the
supercurrent to be hc/2e rather than hc/e periodic. For nodal superconductors,
the flux-induced Doppler shift of the near-nodal states leads to a flux-dependent
occupation probability of quasi-particles circulating clockwise and counter
clockwise around the loop, which leads to an hc/e periodic component of
the supercurrent, even at zero temperature. We analyze this phenomenon on a
cylinder in an approximative analytic approach and also numerically within the
framework of the BCS theory. Specifically for d-wave pairing, we show that the
hc/e periodic current component decreases with the inverse radius of the loop
and investigate its temperature dependence.
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1. Introduction

Electrons moving in a multiply connected geometry threaded by a magnetic flux 8 are an ideal
system to observe quantum mechanical phase coherence. If an electron encircles a flux-threaded
hole on a closed path, the phase difference of its wave function must be a multiple of 2π plus
the Aharonov–Bohm phase 2π 8/80, where 80 = hc/e is the flux quantum [1]. Therefore, a
finite phase gradient persists in the wave function for all flux values 8/80 /∈ Z. Consequently,
a persistent current is flowing around the hole, which is modulated by the magnetic flux with a
period of 80 [2, 3].

This phenomenon is best observed in phase coherent superconducting (SC) rings [4]–[6].
Measurements of magnetic flux trapped in SC rings showed that the flux is quantized in
multiples of 80/2 [7, 8], which implies a flux periodicity of hc/2e for the circulating
supercurrent and likewise for all thermodynamic quantities [9]. Indeed, the same periodicity has
been found by Little and Parks in measurements of the critical temperature Tc of flux-threaded
cylinders [10, 11].

The hc/2e flux periodicity of the SC state is naturally contained in the
Bardeen–Cooper–Schrieffer (BCS) pairing theory of superconductivity [12], as was shown
by Byers and Yang [5] and independently by Brenig [13] and by Onsager [14]. Byers and
Yang introduced two distinct classes of SC wave functions, which are not related by a gauge
transformation; one class of states has minima in the free energy at even multiples of the
SC flux quantum 80/2, whereas the second class has minima at odd multiples of 80/2.
They proved that the minima in the free energy become degenerate in the thermodynamic
limit and all thermodynamic quantities hc/2e periodic. In finite systems, this degeneracy is
lifted. Consequences for flux-dependent oscillations of Tc have been investigated by Bogachek
et al [15] using a quasi one dimensional (1D) thin-ring model with s-wave pairing. This and
other recent works, including an analysis of the supercurrent, made it evident that s-wave rings
smaller than the SC coherence length ξ0 display a flux periodicity of hc/e rather than the
anticipated hc/2e periodicity [16]–[19]. Special attention arose from numerical investigations
of SC d-wave loops [20, 21], in which the distinction between the two classes of SC states is
more pronounced than in s-wave rings. These results agree with the analytical approaches using
the thin-ring model [22]–[24] and will be extended in this paper to a 2D multi-channel model.

For the discussion of the flux periodicity of the supercurrent we choose a discrete 2D lattice
in a cylindrical geometry (figure 1). We recall that the magnetic flux threading an SC loop is
quantized in units of the SC flux quantum hc/2e [7, 8]. This quantization reflects the minima
of the free energy [5]. These minima are determined by gauge invariance and the electron
interaction; the flux quantum hc/2e is therefore a fundamental property of any superconductor.
Flux quantization in a cylinder requires that its walls are thicker than the penetration depth λ.
If the walls are thinner than λ, the cylinder can be threaded by an arbitrary magnetic flux and
only the quantity called fluxoid is quantized [4, 6, 9]. In this situation, which is discussed here,
it is the flux periodicity of thermodynamical quantities such as the supercurrent or Tc, for which
the pairing of electrons suggests hc/2e periodicity.

For two reasons we expect nodal rather than nodeless superconductors to support an hc/e
periodicity. The first arises from the discrete nature of the eigenenergies in a finite system.
The results of the summation over occupied eigenstates for integer and half-integer flux values
differ by an amount proportional to the mean level spacing δF in the vicinity of the Fermi energy
EF. In the normal state, δF ∝ 1/V , where V is the volume of the system. For the thin cylinder
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Figure 1. As a model system to study persistent supercurrents we use a thin-
wall cylinder constructed of a 2D discrete N × M lattice, where Na is the
circumference and Ma the height. The interior of the cylinder is threaded by
a magnetic flux 8; we assume that the flux does not penetrate into the cylinder
itself. In such a system, 8 can be chosen arbitrarily, since quantization applies
to the fluxoid and not the flux itself.

shown in figure 1 with a circumference Na and a height Ma, where a is the lattice constant, the
level spacing is δF ∝ 1/(N M); in s-wave superconductors with an order parameter 1 � δF, δF

matters little. For SC states with gap nodes, the situation is different. For example, in the d-wave
superconductors with an order parameter 1k ∝ k2

ϕ − k2
z , the nodal states closest to EF have to

fulfill the condition kz = kϕ; thus there are fewer possible eigenstates and δF ∝ 1/N .
The second reason is that for gapless superconductors with a finite density of states (DOS)

close to EF, the occupation probabilities of these states change with flux. The flux dependence of
the occupation enhances the difference of current matrix elements for integer and half-integer
flux values [19, 20, 23]. This effect can be understood in terms of the spacial extension of a
Cooper pair. In s-wave superconductors, the occupation probability remains constant for all 8,
if the diameter of the cylinder is larger than ξ0. If this condition is fulfilled, the constituents
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of a Cooper pair cannot circulate separately; the pair does not ‘feel’ the multiply connected
geometry of the cylinder. But for nodal SC states, the length scale that characterizes their
coherence diverges in the nodal directions and there are always Cooper pairs that extend around
the circumference of the cylinder. Therefore nodal superconductors have no characteristic length
scale above which the SC state is unaffected by the geometry of the system. These two combined
effects are investigated on the basis of an analytical model in section 3 and by numerical
calculations in section 4.

2. Superconductivity in a flux-threaded cylinder

The properties of a finite-size multiply connected superconductor depend sensitively on the
discrete energy spectrum in the normal state, in particular in circular symmetric geometries. To
understand the SC spectrum of the discrete N × M lattice, we therefore have to characterize first
its normal state spectrum. To illustrate the problem, we consider the tight-binding spectrum of
a 1D ring with N lattice sites and nearest-neighbor hopping t . A half-filled band corresponds to
chemical potential µ = 0 in equation (2). If N/4 is an integer, there is an energy level at energy
ε = 0 for φ = 0, where φ = 8/80 is the dimensionless magnetic flux. If N/4 is a half-integer,
the levels are symmetrically distributed above and below ε = 0 (figure 2). As a function of flux,
the spectrum is h/e periodic in both cases. If N is odd, there are two possible configurations of
energy levels, as shown in figure 2(c). In both configurations with odd N , two levels cross EF in
one flux period. The combination of a particle-like and a hole-like band, used to construct the
SC spectrum, then becomes hc/2e periodic. These number-dependent, qualitative differences
control the flux dependence of the normal persistent current, as was shown by Büttiker et al and
by Cheung et al [2, 25].

Whenever an energy level crosses EF with increasing flux, the current reverses its sign;
thus it is h/e periodic for even N and either paramagnetic or diamagnetic in the vicinity
of φ = 0, and it is hc/2e periodic for odd N . The lattice-size dependence persists also in
rings with electron–electron interactions [26]–[28] or in mesoscopic SC islands [29] and in
particular in a 2D cylinder geometry with circumference Na and height Ma. Each energy level
of the 1D case splits up into M levels, which results in a characteristic flux dependence of the
spectral density. For special ratios N/M , the flux values where the 1D levels cross have a high
degeneracy; for N = M , the degree of degeneracy is M . For the latter case, the differences
between the spectrum for integer and half-integer flux values are most pronounced; they are
similar to the 1D spectrum of figure 2(a), if N and M are even, and similar to the spectrum
of figure 2(b), if N and M are odd. For N = M ± 1, the spectrum is almost hc/2e periodic,
which is the extension of the odd N case in the 1D ring. Away from these special choices
of N and M , the degeneracies are lifted, indicated by the blue shaded ‘patches’ in figure 2.
A similar effect is produced by the inclusion of non-magnetic impurities or rough boundaries.
The inclusion of a next-nearest neighbor hopping term or a change of µ in equation (2) has a
similar effect, as shown by Zhu [21]. The size of the normal persistent current circulating around
the cylinder is controlled by the change of the DOS near EF upon increasing φ. Since normal
persistent currents in metallic rings are typically hc/e periodic [1, 30], we will choose N = M
and µ = 0 for our model study, where the hc/e periodicity of the spectrum is most clearly
established, and we will use even N and M for all subsequent calculations. In this section and
in section 3, we show how these size-dependent features survive into an SC state with gap
nodes.
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(a)

(b)

(c)

Figure 2. The energy spectrum of a cylinder in the normal state depends on
the numbers N and M , which parameterize the circumference and height of the
cylinder. The black lines represent the energy levels for a 1D ring with M = 1
and (a) N/4 an integer, (b) N/4, a half-integer, and (c) N , an odd number. In (a)
and (b), level crossings occur at each multiple of the maximum Doppler shift for
φ = 1/2, denoted by l1 (see section 3). For odd N , two different spectra without
level crossings at E(φ) = 0 are possible [N = 4n + 1 (left) and N = 4n − 1
(right) with n ∈ N]. At the red points, a level crosses the Fermi energy EF = 0.
For M � 1, the levels split up and form a quasi-continuous DOS that depends
on the ratio N/M (blue patches).

The starting point for our investigations is the BSC theory formulated on a flux-threaded
cylinder with circumference Na = 2π Ra and height Ma, where R is the dimensionless radius
of the cylinder and a the lattice constant. The pairing Hamiltonian is given by

H=

∑
k,s

εk(φ)c†
kscks +

∑
k

[
1∗

k(q)ck↑c−k+q↓ + 1k(q)c†
−k+q↓

c†
k↑

]
, (1)

where k = (kϕ, kz) with kϕ = n/R and n ∈ {−N/2 + 1, . . . , N/2}. In the z-direction along
the axis of the cylinder, we choose open boundary conditions, which allow for even-
parity solutions with kz = (2me − 1)π/M and odd-parity solutions with kz = 2πmo/M , where
me, mo ∈ {1, . . . , M/2}. The operators c†

ks and cks are creation and annihilation operators for
electrons with crystal angular momentum h̄n and crystal momentum h̄kz/a . The eigenenergies
of free electrons moving on a discrete lattice on the surface of the flux-threaded cylinder have
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the form

εk(φ) = −2t

[
cos

(
kϕ −

φ

R

)
+ cos kz

]
− µ. (2)

For R � 1, εk(φ) can be expanded to linear order in φ/R and

εk(φ) − εk(0) ≈ −2t
φ

R
sin kϕ (3)

is commonly called the Doppler shift.
The SC order parameter in the pairing Hamiltonian (1) is defined by

1k(q, φ) ≡ 1q(φ)g(k) =
1

2

∑
k′

V (k, k′)〈ck′↑c−k′+q↓ − ck′↓c−k′+q↑〉, (4)

where V (k, k′) is the pairing interaction. Here, we choose the interaction in the separable form
V (k, k′) = V g(k)g(k′) with the pairing interaction strength V . The order parameter 1k(q, φ)

represents spin-singlet Cooper pairs with total crystal angular momentum h̄q. On the cylinder,
the coherent motion of the Cooper pairs is possible only in the azimuthal direction; therefore
q = (q/R, 0) with q ∈ {−N/2 + 1, . . . , N/2}. The quantum number q is chosen to minimize
the free energy. The φ dependence of 1q(φ) enters through the self-consistency condition and
has been discussed extensively in [16, 19] for s-wave pairing, where g(k) ≡ const. Since 1q(φ)

varies only a little with φ, we shall postpone the discussion of the flux dependence of the d-wave
order parameter to the numerical evaluations of section 4 and start our analytical calculation
with a φ- and q-independent order parameter 1q(φ) ≡ 1. As in our preceding work [19], we
take q = floor(2φ + 1/2) in a first step, such that φ − q/2 is hc/2e periodic; eventual deviations
from this relation will be discussed in section 4. Since the Hamiltonian (1) is invariant under
the simultaneous transformation φ → φ + 1 and q → q + 2, it is sufficient to consider q = 0
or 1 and the corresponding flux sectors −1/46 φ < 1/4 and 1/46 φ < 3/4, respectively.

The diagonalization of the Hamiltonian (1) leads to the quasi-particle dispersion

E±(k, q, φ) =
εk(φ) − ε−k+q(φ)

2
±

√
12

k + ε2(k, q, φ), (5)

with ε(k, q, φ) = [εk(φ) + ε−k+q(φ)]/2. Expanding E±(k, q, φ) to linear order in both φ/R and
q/R gives

E±(k, q, φ) ≈ −eq(k) ±

√
12

k +
(
εk(0) − lq(k)

)2
, (6)

where

eq(k) =
φ − q/2

R
2t sin kϕ and lq(k) =

tq

R
sin kϕ. (7)

In the normal state 1 = 0, the additive combination of eq(k) and lq(k) leads to the
q-independent dispersion, equation (2). For 1 > 0, the spectrum (6) differs for even and odd
q, except for special ratios of N and M , as discussed above. This difference is crucial for nodal
SC states, as shown schematically in figure 3 (and especially for d-wave pairing in figure 7):
the condition kϕ ≈ kz for levels close to EF causes a level spacing δF ≈ 2l1(kF) for small 1,
where kF is the Fermi momentum. If N and M are even and q = 0, the degenerate energy level
at E = EF = 0 splits into 2M levels for increasing 1, which spread between −1 and 1. For
q = 1, the degenerate levels closest to EF are located at E = ±|l1(kF)|; thus a gap of 2l1(kF)
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Figure 3. Scheme for the evolution of the multiply degenerate energy levels from
the normal into the superconducting state with increasing order parameter 1 for
the d-wave SC state. For φ = 0 and q = 0 (a), there is a 2M-fold degenerate level
E(k, 0, 0) = 0 that splits up for finite 1 into levels spreading between −1 and
1. For φ = 1/2 and q = 1 (b), there is an energy gap around E = 0 of width 2l1,
which persists into the SC state.

remains in the SC spectrum. If N and M are odd, the spectra for even and odd q (figures 3(a)
and (b)) are exchanged, and if either N or M is odd, the spectrum is a superposition of
(a) and (b).

The gauge invariant circulating supercurrent is given by

Jq(φ) =
e

h

∑
k,s

vknks(q), (8)

where vk = ∂εk(φ)/∂(Rkϕ) is the group velocity of the single-particle state with eigenenergy
εk(φ). The spin-independent occupation probability of this state is

nks(q) = 〈c†
kscks〉(q) = u2(k, q, φ) f (E+(k, q, φ))− v2(k, q, φ) f (E−(k, q, φ)), (9)

where f (E) = 1/(1 + eE/kBT ) is the Fermi distribution function for the temperature T . The
Bogoliubov amplitudes are

u2(k, q, φ) =
1

2

[
ε(k, q, φ)

E(k, q, φ)
+ 1

]
and v2(k, q, φ) = 1 − u2(k, q, φ), (10)

where E(k, q, φ) =

√
12

k + ε2(k, q, φ).
From equations (8) and (9), the supercurrent in the cylinder is obtained by evaluating either

the sum numerically, as discussed in section 4, or from the approximative analytic solution in
section 3, which allows insight into the origin of the hc/e periodicity in nodal superconductors.

3. Analytic solution and qualitative discussion

An analytic evaluation of the supercurrent is possible only in the thermodynamic limit where
the sum over discrete eigenstates is replaced by an integral. For a multiply connected geometry,
this limit is not properly defined because the supercurrent or the Doppler shift vanish in the limit
R → ∞. Care is needed to modify the limiting procedure in a suitable way to access the limit
of a large but non-infinite radius of the cylinder. In this limit, it is mandatory to consider the
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supercurrent density jq(φ) = Jq(φ)/M rather than the supercurrent Jq(φ). In this scheme, we
treat the DOS as a continuous function in any energy range where the level spacing is ∝ 1/N M ,
but we keep the finite energy gap of width 2lq(kF) ∝ 1/R ∝ 1/N around EF in the odd-q sectors.

For a tight-binding energy spectrum as defined in equation (2), the DOS is a complete
elliptic integral of the first kind. For the purpose of an analytic calculation, a quadratic spectrum
with a constant DOS in two dimensions is a more appropriate starting point. We use the
expanded form of equation (2):

εk(φ) = t

[(
kϕ −

φ

R

)2

+ k2
z

]
− µ′, (11)

where µ′
= µ + 4t . The quadratic spectrum (11) has no upper bound and the sum in equation

(8) correspondingly extends from −∞ to ∞ for both kϕ and kz.
Some algebraic steps are needed to rearrange the sum in equation (8) suitably to convert it

into an integral. For finite φ, εk(φ) 6= ε−k(φ), and consequently the sum has to be decomposed
into a component with kϕ > 0 and a second one with kϕ < 0. We therefore take kϕ > 0 and write
vk as

v±k =
2t

R

(
±kϕ −

φ

R

)
= vd(k) ± vp(k), (12)

where vd(k) = −2tφ/R2 is the diamagnetic contribution and vp(k) = 2tkϕ/R is a paramagnetic
contribution, respectively [31].

In a continuous energy integration, the Doppler shift is noticeable only in the vicinity of
EF. On the Fermi surface, kϕ and kz are related by

kϕ,F(kz) =

√
µ′

t
− k2

z . (13)

In this spirit, we approximate eq(k) and lq(k) by eq(kz) ≈ 2t (φ − q/2)kϕ,F(kz)/R and lq(kz) ≈

tqkϕ,F(kz)/R, respectively. The eigenenergies (6) near EF are thereby rewritten as

E+(±kϕ, kz, q, φ) = ∓eq(kz) +
√

12
k +

(
εk(0) ∓ lq(kz)

)2
, (14)

E−(±kϕ, kz, q, φ) = ∓eq(kz) −

√
12

k +
(
εk(0) ∓ lq(kz)

)2
. (15)

For the evaluation of the supercurrent Jq(φ) in equation (8), the sum over k is now replaced
by an integral over kϕ and kz, which is then performed by integrating over the normal state
energy ε and an angular variable θ . According to our scheme for replacement of discrete energy
levels by a continuous spectrum, the DOS becomes gapless in the limit M → ∞ for q = 0,
although N is kept finite. For q = 1 instead, a kz-dependent gap 2|l1(kz)| remains. Thus we
replace εk(0) ∓ |lq(kz)| by the continuous quantity ε ± |lq(EF, θ)|. In summary, the procedure is
defined by the following steps:∑

k

R,M→∞

−→
RM

2π

∫
∞

0
dkϕdkz =

RM

2π

∫
∞

0
dkk

∫ π/2

−π/2
dθ = MN

∫ µ′

−µ′

dε

∫ π/2

−π/2
dθ, (16)

where we use the parametrization(
kϕ

kz

)
=

(
k cos θ

k sin θ

)
=

√
ε + µ′

t

(
cos θ

sin θ

)
, (17)
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with ε = tk2
− µ′ and where N = R/4π t is the constant DOS in the normal state. The energy

integral runs over the whole tight-binding band width 8t with the Fermi energy EF = 0 in the
center of the band. Correspondingly, we integrate from −µ′ to µ′. Furthermore, the Doppler
shift is parameterized for ε ≈ EF as

eq(θ) =
φ − q/2

R
2t

√
µ′/t cos θ and lq(θ) =

tq

R

√
µ′/t cos θ, (18)

where the function lq(θ) is positive for all allowed values of θ . The supercurrent thus becomes

jq(φ) =
1

M

e

h

 ∑
kϕ>0,kz,s

vknks(q) +
∑

kϕ<0,kz,s

vknks(q)


≈ 2N

e

h

∫ π/2

−π/2
dθ

∫ µ′

−µ′

dε[nq+(ε, θ)v+(ε, θ) + nq−(ε, θ)v−(ε, θ)], (19)

where nq±(ε, θ) = n±k(ε,θ)(q) and v±(ε, θ) = v±k(ε,θ). The factor 2 in equation (19) originates
from the spin sum. We collect the terms proportional to vd(ε, θ) = −2tφ/R2 into a
diamagnetic current contribution jd and the terms proportional to vp(ε, θ) = 2tkϕ,F(ε, θ)/R into
a paramagnetic contribution jp. Using f (−E) = 1 − f (E), equation (19) simplifies to

jd = 4N
e

h

∫ π/2

−π/2
dθ

∫ µ′

lq (θ)

dε vd (ε, θ)
ε

√
12 + ε2

[
f (E + eq(θ)) − f (−E + eq(θ))

]
, (20)

jp = 4N
e

h

∫ π/2

−π/2
dθ

∫ µ′

lq (θ)

dε vp (ε, θ)
[

f (−E − eq(θ)) − f (−E + eq(θ))
]
, (21)

where jd = jd(q, φ) and jp = jp(q, φ). Here, the integration is over positive values of ε only
and the lower boundaries of the integration over ε are controlled by lq(θ). Since lq(k) = 0
at the minimum of the band (ε = −µ′), the upper integral boundary remains µ′. We used
the abbreviations 1 = 1(θ) and E = E(ε, θ) =

√
12(θ) + ε2 . The current jd turns out to be

diamagnetic in the even-q flux sectors and paramagnetic in the odd-q sectors. For even q, it is
equivalent to the diamagnetic current obtained from the London equations [32, 33]. The current
jp has always the inverse sign of jd and is related to the quasi-particle current as shown below.
As presented in section 2, E displays distinct spectra in the even-q and odd-q flux sectors.
To analyze the flux-dependent properties of the spectra and the current, we distinguish the
case of s-wave pairing (or any other SC state with a complete energy gap) and the case of
unconventional pairing with nodes in the gap function. For the latter, we focus on d-wave
pairing.

3.1. s-Wave pairing symmetry

For s-wave pairing, 1(ε, θ) ≡ 1 is constant. Therefore, if we assume that 1> eq(θ) for all θ ,
the lower energy integration boundaries in equations (20) and (21) are equal to 1. Thus jq(φ)

is equal in both the even-q and odd-q flux sectors and the flux periodicity is hc/2e. However,
if 1 < maxθ eq(θ), equation (8) has to be evaluated exactly, the procedure and results of which
have been presented in [19].
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With ε =
√

E2 − 12, equations (20) and (21) transform into integrals over E with dε =

Ds(E) dE , where

Ds(E) =
∂ε

∂ E
=

{
E (E2

− 12)−1/2, for E >1,

0, for E < 1
(22)

is the SC DOS for s-wave pairing. This leads to

jd = 4N
e

h

∫ π/2

−π/2
dθ

∫ µ′

1

dEvd

(√
E2 − 12, θ

) [
f (E + eq(θ)) − f (−E + eq(θ))

]
, (23)

jp = 4N
e

h

∫ π/2

−π/2
dθ

∫ µ′

1

dE Ds(E)vp

(√
E2 − 12, θ

) [
f (−E − eq(θ)) − f (−E + eq(θ))

]
. (24)

At T = 0, we find

jd = −4N
e

h

∫ π/2

−π/2
dθ

∫ µ′

1

dE 2t
φ − q/2

R2
= −2(µ′

− 1)
e

h

φ − q/2

R
, (25)

jp = 4N
e

h

∫ π/2

−π/2
dθ

∫ eq (θ)

1

dE Ds(E)
2t

R

√
ε + µ′

t
cos θ

=
8tN

R

e

h

√
µ′

t

∫ π/2

−π/2
dθ cos θ

∫ eq (θ)

1

dE Ds(E) +O
(ε

t

)2
. (26)

In the integral over jp, the inequality ε/t � 1 applies, and terms of orderO(ε/t)2 are negligible.
The current jd becomes independent of the SC DOS. Its size is essentially proportional to

EF, as long as µ′
� 1 holds. The paramagnetic current jp depends on the absolute value of the

order parameter and on its symmetry.
If 1 > eq(θ) for all values of θ , then jp = 0 and the supercurrent jq = jd consists of the

diamagnetic part alone. For T > 0, jd decreases slightly, but remains of the same order of
magnitude. The current jp increases with an increase in T and reaches its maximum value at
Tc. For finite temperatures, jp usually denotes the quasi-particle current. The entire supercurrent
is always the sum of the diamagnetic current jd and the quasi-particle current jp, and therefore
decreases with temperature and vanishes at Tc [34]. The quasi-particle current has the same flux
periodicity as the supercurrent, even though it is carried by single quasi-particle excitations. In
the normal state (1 = 0),

jp =
8tN

R

e

h

√
µ′

t

∫ π/2

−π/2
dθ cos θ

∫ eq (θ)

0
dE = 4µ′

e

h

φ − q/2

Rπ

∫ π/2

−π/2
dθ cos2 θ

= 2µ′
e

h

φ − q/2

R
, (27)

which cancels jd exactly in the limit M → ∞.2

2 In this procedure, the normal persistent current vanishes, but this is unproblematic here because the normal
current above Tc is exponentially small for kBTc � δF.
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d d

Figure 4. Scheme for the DOS of a d-wave superconductor for φ = 1/4, where
eq(1/4) = l1/2. The center of mass angular momentum h̄q of the Cooper pairs
is (a) q = 0 and (b) q = 1. The energies are Doppler shifted to higher (red) or
lower energies (blue). This results in a double-peak structure and for q = 0 in an
overlap of the upper and lower ‘band’ in the region −|e0| < E < |e0| [35] and
states in the upper band become partially occupied. For q = 1 there is a gap l1 of
the size of the maximum Doppler shift at φ = 1/4. The black line represents the
DOS (a) for φ = 0 and (b) for φ = 1/2.

3.2. Unconventional pairing with gap nodes

For a more general order parameter 1(θ), an analytic solution of equations (20) and (21) is
hard to obtain. For s-wave symmetry, jd depends only weakly on 1; jd is indeed maximal
for 1 = 0. Equation (25) for jd is valid also for unconventional order parameter symmetries.
Physically, jd reflects the difference in the DOS of quasi-particle states with orbital magnetic
moment parallel and antiparallel to the external magnetic field. The first group of states is
Doppler shifted to lower energies, whereas the latter is Doppler shifted to higher energies. This
is schematically shown in figure 4 for d-wave pairing (cf [35]). In this picture, jd is proportional
to the difference between the area beneath the red and blue curves representing the DOS arising
from bands E−(±|k|, q, φ) < 0 (areas shaded in red and blue). Therefore we approximate jd for
1(θ) � µ′

= EF + 4t by

jd = −2µ′
e

h

φ − q/2

R
, (28)

as given by equation (25) with 1 = 0. On the other hand, jp is represented by the occupied
quasi-particle states in the overlap region of E+(k, q, φ) and E−(k, q, φ) with width 2eq(kF). It
is therefore strongly dependent on the characteristic DOS in the vicinity of EF. In figure 4(a),
which refers to even q, the current jp is determined by the small triangular patch where
the upper and lower bands overlap. For odd q, the two bands do not overlap, therefore
jp = 0.

We will now analyze such a scenario for d-wave pairing. With an order parameter 1k =

1(k2
ϕ − k2

z ) ≈ 1cos 2θ . Again, we assume 1 > eq(θ) for all θ ; then the integral in equation (21)
contains only the nodal states closest to EF, for which the d-wave symmetry demands kϕ ≈ kz.
Jointly with equation (13) this condition fixes the Doppler shift at EF to the k-independent value
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eq = (φ − q/2)
√

2tµ′/R and lq = (q/R)
√

tµ′/2 . With the DOS in the d-wave SC state

Dd(E) =
1

√
E2 − 12 cos2 2θ

, (29)

equation (21) for the paramagnetic current jp at T = 0 then takes the form

jp = 4N
e

h

∫ eq

lq

dE
∫ π/2

−π/2
dθ Dd(E)

2t

R

√
ε + µ′

t
sin θ. (30)

In the odd-q flux sectors, lq > eq for all values of φ; therefore jp = 0. In the q = 0 sector, lq = 0
and

jp ≈
2e

hπ

√
µ′

t

∫ eq

0
dE

∫ π/2

−π/2
dθ sin θ

1
√

E2 − 12 cos2 2θ
≈

2e

πh

√
µ′

t

∫ eq

0
dE

E

1
=

e

πh1

√
µ′

t
e2

q

=
2

π1

√
tµ′3

e

h

(
φ − q/2

R

)2

, (31)

where the same approximations as in the s-wave case are applied. The dominant contribution to
the angular integral over θ originates from the nodal parts, where the integrand can be linearized
in θ , such that the integral can be performed approximately (see e.g. [36]).

In the even-q sectors, the total current jq = jd + jp finally becomes

jq(φ) = −2µ′
e

h

φ

R

[
1 −

√
tµ′

π1

φ

R

]
, (32)

which results in the ratio
jp
jd

=

√
tµ′

π1

φ

R
≡ bφ (33)

of the two current components.
In the odd-q flux sectors, jp = 0 and the supercurrent is jq(φ) = jd. As a function of φ,

jq(φ) is consequently hc/e periodic; within one flux period from −1/2 to 1/2 we represent it as

j (φ) = −2
µ′

R

e

h


φ + 1/2, for −1/26 φ < −1/4,

φ(1 − bφ), for −1/46 φ < 1/4,

φ − 1/2, for 1/46 φ < 1/2,

(34)

(cf figure 5). The amount by which the supercurrent differs in the even-q and odd-q flux sectors
is represented best in the form of Fourier components: the nth Fourier component of j (φ) is
jn =

∫ 1/2
−1/2 dφ j (φ)e2π inφ. Here, we denote the first Fourier component by jh/e and the second

Fourier component by jh/2e and obtain

jh/e = −2
µ′

R

e

h
b

8 − π 2

16π3
and jh/2e = −2

µ′

R

e

h

4π i − b

16π 2
. (35)

To leading order in 1/R, the ratio of the h/e and the h/2e Fourier component therefore is∣∣∣∣ jh/e

jh/2e

∣∣∣∣ =
π2

− 8

4π2

√
2tµ′

1R
µ=0
−→ ≈ 0.07

2t

1R
(36)

and scales with the inverse ring diameter. This 1/R law is the direct consequence of the d-wave
DOS Dd(E) ∝ E . For some other unconventional SC states with D(E) ∝ En in the vicinity
of EF, the decay of the jh/e Fourier component results in a 1/Rn law. Using equation (36) to
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Figure 5. The supercurrent density jq(φ) = jd + jp in a thin d-wave cylinder as
a function of flux φ (arbitrary units). Shown is the result of the analytical model
(equation (34)) for the characteristic value b = 0.4. For −1/4 < φ < 1/4, where
q = 0, the current is reduced by a contribution proportional to φ2, whereas it is
linear in φ otherwise. This gives rise to an overall flux periodicity of hc/e.

estimate this ratio for a mesoscopic cylinder with a circumference Ra = 2600a ≈ 1 µm and a
ratio 1/t = 0.01, we obtain jh/e/jh/2e ≈ 0.03.

4. Numerical solution for d-wave pairing at T = 0

In this section, we evaluate numerically the supercurrent in equation (8) together with the self-
consistency condition

1

V
=

1

N M

∑
k′

g2
k(q)

2
√

12
q(φ)g2

k(q) + ε2(k′, q, φ)

[
f (E−(k′, q, φ)− f (E+(k′, q, φ)

]
, (37)

where the d-wave pairing symmetry follows from

gk(q) = cos(kϕ − q/2) − cos kz (38)

and the order parameter is 1k(q, φ) = 1q(φ)gk(q). Here we take into account the full q- and
φ-dependence of 1k(q, φ). The q-dependence of gk(q) is essential to ensure the invariance of
the gap equation (37) under the replacement φ → φ + 1 and q → q + 2. At those flux values for
which the total energies

Et(q, φ) =

∑
k,s

εk(φ)nks(q) −
12

q(φ)

V
. (39)

are equal, q advances to the next integer. This flux value may deviate from the values φ =

(2n − 1)/4, for which we fixed the q-sector transitions in section 2.
Loops of d-wave superconductors can be arranged in two different ways. In a first choice

for the geometry the order parameter winds jointly with the lattice around a hole such that
the phase of the order parameter remains constant on the selected path. The cylinder geometry
described here is an example for this choice. The second option is to fix the orientation of the
lattice and to cut out a hole. Then the phase of the order parameter rotates by 2π on any closed
path encircling the hole once. This was investigated with a square frame in [20] and also in the
1D model in [22]. These two arrangements are in fact physically equivalent. The square frame
geometry ensures the right number of lattice sites for the maximum difference in the spectrum
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Figure 6. Energy spectrum and supercurrent Jq(φ) in a cylinder with
circumference of N = 56 and height M = 28 and 10 = 1q(φ = 0) ≈ 0.1t . The
red lines represent occupied states that form the condensate, whereas the black
lines represent empty states. The spectrum (a) is similar to the one obtained
in [20] for a square frame geometry. Clearly visible is the energy gap in the odd-
q flux sectors, whereas in the even-q flux sectors states cross the Fermi energy
upon changing the flux. At these crossing points, a jump in the supercurrent is
observed (b).

of the even-q and odd-q flux sectors, as discussed in section 2. For a direct comparison to
the cylinder geometry, we chose a cylinder with N = 56 and M = 28, which has the same
hole diameter as the square frame in [20], and the ratio N/M = 2 produces qualitatively the
same energy spectrum. The resulting spectrum is shown in figure 6(a). It has indeed the same
characteristic features as in the square frame geometry. An energy gap of the same order of
magnitude exists in the odd-q flux sectors, and the DOS in the even-q flux sectors is gapless.
There are no hybridization effects in the spectrum of the cylinder, since it preserves the full
rotational symmetry. The features mentioned above are also in agreement with the qualitative
discussion of section 3. Clearly visible in figure 6(b) are the jumps in the supercurrent whenever
an energy level crosses EF, and the offset in the flux value for which q changes (large jumps).
This offset depends in a complex way on the system size and the pairing potential strength, but
generally decreases for larger values of N , M and V .

The spectrum and the supercurrent in figure 6 display the expected signatures of
discreteness, which are not captured by the analytic analysis of section 3. The important
parameter is obviously the size of the level spacing. Explicitly we take a closer look at a cylinder
with N = M = 2600, and thus a circumference of the order of 1 µm. The calculated spectra are
shown in figures 7(a) and (b) for different pairing potentials, resulting in (a) 1q(φ) ≈ 0.05t and
(b) 1q(φ) ≈ 0.02t . The qualitative features of the much smaller cylinder remain, but the gap l1

in the odd-q flux sectors is smaller, because l1 decreases with 1/N . In the even-q flux sectors,
there are ∼2M levels spread out between −1q(φ) and 1q(φ), which leads to an increase in the
DOS around EF with decreasing 1q(φ) for fixed N and M . The representation with a continuous
DOS is therefore appropriate for 1q(φ) � t , which is fulfilled well in figure 7(b). Figure 7(c)
shows the spectrum for M − 1 = N = 2600, which is almost identical in even-q and odd-q
flux sectors. There is still a gap for non-integer (or half-integer) values of φ, but it is equally
distributed in the even-q and odd-q sectors. Other choices of N and M produce mixed features
of the spectra in figures 7(a) and (c). All the energy levels shown in each part of figure 7, which
belong to nodal states, have apparently the same derivative with respect to φ.
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Figure 7. A section of the energy spectrum around EF with energy in units of t .
(a) and (b) The spectra of a cylinder with N = M = 2600. (a) V = 0.4t and
10(0) ≈ 0.05t ; (b) V = 0.2t and 10(0) ≈ 0.02t . The energy gap l1 � 1q(φ) for
these systems and all the states shown have the same Doppler shift (all lines are
parallel / perpendicular). The DOS is quasi-continuous in the even-q flux sectors,
with a level spacing ∝ l1/M , and grows linearly with decreasing 1q(φ). (c) The
hc/2e-periodic spectrum of a cylinder with N = 2600 and M = N + 1.

The small level spacing in the µm-sized cylinders results in solutions 1q(φ) of the gap
equation (37); which are nearly constant (figure 8(a); note the vertical scale discussed in the
figure caption). The φ dependence of the total energy Et(q, φ) also becomes small, whereas
the small difference for even-q and odd-q remains important for the supercurrent Jq(φ). Since
Jq(φ) ∝ ∂ Et(q, φ)/∂φ, the differences in Et(q, φ) imply different current amplitudes in the
even- and odd-q sectors (see figures 8(b) and (c)). This effect is larger for smaller 1q(φ),
because the number of energy levels crossing EF increases with decreasing 1q(φ). For the
chosen pairing potentials V , the difference of the amplitudes of Jq(φ) for even and odd q are of
the order of a few per cent. Per contra, the current jumps within a q sector are tiny for the large
radius of the µm-size cylinders. However, the resulting 1q(φ) is considerably larger than in the
d-wave cuprate superconductors3. Consequently, the upper limit for the difference of Jq(φ) in
the even-q and odd-q sectors would be larger in the cuprate superconductors than in the model

3 Angle-resolved photoemission spectroscopy on various cuprates suggests a tight-binding t ≈ 200–400 meV.
The gap at the antinodes, obtained from tunneling spectra, varies between 10 and 50 meV [37, 38], therefore
1 ≈ 0.002t– 0.01t .
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Figure 8. (a–c) Self-consistent order parameter 1q(φ), total energy Et(φ) and
supercurrent Jq(φ) plotted as a function of flux φ for V = 0.25t (dark blue)
V = 0.2t (light blue) and V = 0.15t (green). 1q(φ) and Et(φ) are shown in
units of t and Jq(φ) is shown in units of et/hc. The oscillations of all quantities
are ∝1/R and of the order of t for Et(φ). The amplitude of the oscillations
in 1q(φ) are rather small. For V = 0.25t , 1q(φ) ≈ 0.036t with an oscillation
amplitude δ1 = [10(0) − 11(1/2)]/10(0) ≈ 10−8, 1q(φ) ≈ 0.02t and δ1 ≈

5 × 10−6 (V = 0.2t), and 1q(φ) ≈ 0.009t and δ1 ≈ 4 × 10−5 (V = 0.15t).
(d) Ratio of the first and second Fourier components of the supercurrent as a
function of the cylinder radius R for fixed values of 1. The height M of the
cylinder is equal to N = 2π R, which yields the maximum values for Jh/e. For
N larger than some 1-dependent number (see main text), the results of the exact
evaluations fit very well to the prediction of equation (36) (black line).

system calculated here. The offset in the jump of Jq(φ) from the flux values φ = (2n − 1)/4 is
resolved for the smallest V in figure 8. However, at low temperatures, the SC state for each q
becomes metastable for those flux values for which it is not the ground state. It is not clear at
which flux values such a metastable state decays into the ground state, and the position of the
jump in the supercurrent can vary in experiments.

We now compare the R dependence of the ratio of the first and second Fourier components
Jh/e/Jh/2e analogous to section 3. This is shown in figure 8(d) for different values of V . The ratio
is in excellent agreement with equation (36) for system sizes larger than a few hundred lattice
constants. For smaller systems, Jh/e becomes larger than predicted by the 1/R size dependence.
The scale that decides about the validity of the approximations used in section 3 is the ratio of
the level spacing and 1q(φ). Equation (36) therefore holds, if the prefactor of φ in equation (33)
is small, that is, if

√
8 t � π1R, because t/R is proportional to the level spacing of the nodal
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Figure 9. Periodicity crossover at T = 0 in a cylinder with N = M = 400
for V = 0.40t (dark blue), V = 0.2t (light blue), V = 0.15t (green), V = 0.1t
(orange) and V = 0.07t (purple). For V = 0.1t and V = 0.07t , 1q(φ) is smaller
than the Doppler shift for all φ; thus Jq(φ) approaches the hc/e-periodic normal
persistent current.

states. For a cylinder with radius Ra = 2600a ≈ 1 µm and 1q(φ)/t ≈ 0.01, we obtain the ratio
Jh/e/Jh/2e ≈ 0.04, which is almost identical with the result of section 3.

5. Periodicity crossover for small 1

So far we always assumed that 1q(φ) � eq(φ) and concluded that variations in 1q(φ) are
negligible. But if 1q(φ) is of the same order as the Doppler shift eq(φ), the situation changes
dramatically. This is the case if either the radius R of the cylinder is very small, or the pairing
potential V is small or the temperature T is close to Tc. Here, we analyze the flux periodicity and
the crossover from a ‘small-gap’ to a ‘large-gap’ regime by increasing V from zero to higher
values at T = 0, and by lowering T through Tc for fixed V . As mentioned above, the amplitude
of the oscillations, especially those of 1q(φ), become very small for increasing R. For very
large R, the periodicity crossover takes place within a tiny range of V or T , respectively. To
observe the crossover more comfortably in a larger window of V or T , we use smaller systems
here.

The mechanism of the periodicity crossover at T = 0, controlled by V , is best discussed
by analyzing the total energy Et(q, φ) (figure 9(b)). It differs little from the crossover in s-wave
superconductors, for which it was investigated in [19]. In the normal state (V = 0), Et(q, φ) is
q independent and consists of an hc/e periodic series of parabolae. For increasing V , a new
minimum in Et(q, φ) forms at the crossing points of two parabolae. This minimum moves
downward in energy until this new parabolic arc crosses the neighboring parabolae at the flux

New Journal of Physics 11 (2009) 075005 (http://www.njp.org/)

http://www.njp.org/


18

Figure 10. Temperature-driven periodicity crossover for fixed V = 0.4t in a
cylinder with N = M = 100 for kBT = 0.1863t (dark blue), kBT = 0.1870t
(light blue) and kBT = 0.1873t (green). The amplitude of the normal persistent
current in the sectors with 1q(φ) = 0 is much smaller than for 1q(φ) > 0 and is
invisible on this plot scale.

values φ = (2n − 1)/4. The energies of the old and the new minima are generally different for
any finite system, but they approach each other when 1q(φ) � δF. In the odd-q flux sectors,
1q(φ) is nearly constant because no energy levels cross EF, whereas in the even-q sectors,
levels cross EF for all values of V . This causes the wiggles in Et(q, φ) and the decrease of
1q(φ) with increasing φ (figure 9(a)). For the smallest two values shown in figure 9(a), 1q(φ)

approaches zero as a function of φ for even q; for this reason the odd-q states extend far into
the even-q flux sectors. With increasing V , the nearly hc/2e periodic sawtooth pattern of the
supercurrent evolves from the hc/e periodic normal persistent current (figure 9(c)).

The temperature-controlled crossover at Tc is analogous to the crossover controlled by
V , but the finite temperature has quenched all the effects of discreteness as well as the gap
in the odd-q flux sectors. This means that the deviations from the hc/2e periodicity are
invisible in figure 10. Deviations appear with decreasing temperature as kBT approaches l1.
The supercurrent decreases linearly with increasing T until it reaches the exponentially small
value of the normal persistent current at T = Tc (figure 10(b)) [34]. This suppression as well
as the suppression of 1q(φ) with temperature (figure 10(a)) differ only little from those of
s-wave superconductors. The only qualitative difference is that a characteristic temperature T ∗

exists for s-wave superconductors, below which 1(φ = 0) is larger than the maximum Doppler
shift. This is equivalent to a coherence length ξ(T ∗) = 2R [19]. Below T ∗, 1(φ) > 0 for all φ

in s-wave superconductors, and the thermodynamic quantities are therefore not affected by the
Doppler shift. The relation 1(φ = 0, T = 0) ≈ 1.75Tc leads to the estimate

Tc − T ∗

Tc
≈

EF

3.1k2
BT 2

c R2
. (40)

For d-wave pairing, there is no such characteristic temperature because of the nodal states,
but in analogy we can define T ∗ as the crossover temperature below which 1q(φ) > 0 for
all φ. Analogously to the s-wave case, we denote this situation as the ‘large-gap’ regime.
For temperatures T ∗ < T < Tc, 1q(φ) approaches zero for certain values of φ, which we call
the ‘small-gap’ regime. Since for a d-wave superconductor with nearest-neighbor hopping
1(φ = 0, T = 0) > 1.75kBTc [39], one expects that Tc − T ∗ is also larger and the crossover
broader than for s-wave pairing.
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6. Conclusions

We have shown that in rings of unconventional superconductors with gap nodes, there is a
paramagnetic, quasi-particle-like contribution jp > 0 to the supercurrent at T = 0. This current
is generated by the flux-induced ‘reoccupation’ of nodal quasi-particle states slightly below and
above EF. Formally, a coherence length h̄vF/1k(q, φ) > 2R can be ascribed to these reoccupied
states, which are therefore affected by the geometry of the system however large the number of
lattice sites is. If the normal state energy spectrum has a flux periodicity of hc/e, then the SC
spectrum is hc/e periodic, too. The normal state spectrum of a cylinder with a discrete lattice
strongly depends on the number of lattice sites on the cylinder. This problem is characteristic
for rotationally symmetric systems and is much less pronounced in geometries with lower
symmetry, such as the square frame discussed in [20]. In such systems, the addition or removal
of a small number of lattice sites or impurities does not change the spectrum qualitatively, as
tested by numerical calculations on a square frame. For an experimental arrangement where
the difference in even and odd flux values is as large as possible, a square loop would be
preferable. The results we obtained in sections 3 and 4 for the periodicity of the physical
quantities 1q(φ), Et(q, φ), and Jq(φ) therefore provide an upper limit for the hc/e periodic
components.

The hc/e periodicity is best visible in the current component jp at T = 0. For d-wave-
pairing jp ∝ 1/R2, and the hc/e periodic Fourier component decays like the inverse radius of
the cylinder, relative to the hc/2e periodic Fourier component. The lack of a characteristic length
scale in nodal superconductors, such as the coherence length for s-wave pairing, generates this
algebraic decay with increasing R. Although jp is larger for small 1, it almost vanishes close to
Tc, if 1 � δF, and variations of Tc with flux, as in the Little–Parks experiment [10, 11], do not
differ for s- and d-wave superconductors.

A possible setup for the experimental detection of the hc/e periodicity of the supercurrent
is the insertion of Josephson junctions into the cylinder, thereby creating a superconducting
quantum interference device SQUID. The oscillations of the SQUID’s critical current have the
same flux periodicity as the circulating supercurrent. Indeed, experiments with d-wave SQUIDs
by Schneider and Mannhart have shown an hc/e periodic Fourier component under certain
conditions [40]. The relation to the effect described here, however, is not yet established because
of the so far unexplored influence of the Josephson junctions.

A different approach to study the crossover from the normal persistent current to the
supercurrent in a ring was proposed by Büttiker and Klapwijk [41] and later by Cayssol
et al [42]. They analyzed a normal metal ring with an s-wave SC segment of variable length l.
The energy spectrum which they found depends on l in a similar way as it does in our analysis
on the radius R. In this setup, hc/e periodicity should be found if l < ξ0, although the ring
diameter is much larger than ξ0. Analogously, we expect the ratio jh/e/jh/2e to be proportional
to 1/ l for a d-wave SC segment. This might be advantageous for experimental detection.

Acknowledgments

We are grateful to Yuri Barash and Doug Scalapino for helpful discussions in an early stage of
this work and to Markus Büttiker for useful correspondence. This work was supported by the
Deutsche Forschungsgemeinschaft through SFB 484 and the EC (Nanoxide).

New Journal of Physics 11 (2009) 075005 (http://www.njp.org/)

http://www.njp.org/


20

References

[1] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[2] Büttiker M, Imry Y and Landauer R 1983 Phys. Lett. A 96 365
[3] Landauer R and Büttiker M 1985 Phys. Lett. 54 2049
[4] London F 1950 Superfluids (New York: Wiley)
[5] Byers N and Yang C N 1961 Phys. Rev. Lett. 7 46
[6] Schrieffer J R 1964 Theory of Superconductivity (Reading, MA: Addison  Wesley)  chapter  8
[7] Doll R and Näbauer M 1961 Phys. Rev. Lett. 7 51
[8] Deaver B S and Fairbank W M 1961 Phys. Rev. Lett. 7 43
[9] de Gennes P G 1966 Superconductivity of Metals and Alloys (Reading, MA: Addison Wesley) chapter 5

[10] Little W A and Parks R D 1962 Phys. Rev. Lett. 9 9
[11] Parks R D and Little W A 1964 Phys. Rev. 133 A97
[12] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[13] Brenig W 1961 Phys. Rev. Lett. 7 337
[14] Onsager L 1961 Phys. Rev. Lett. 7 50
[15] Bogachek E N, Gogadze G A and Kulik I O 1975 Phys. Status Solidi b 67 287
[16] Czajka K, Maśka M M, Mierzejewski M and Śledź Z 2005 Phys. Rev. B 72 035320
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