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Abstract. We investigate transport through molecular wires whose energy
levels are affected by environmental fluctuations. We assume that the relevant
fluctuations are so slow that they, within a tight-binding description, can be
described by disordered, Gaussian distributed onsite energies. For long wires,
we find that the corresponding current distribution can be rather broad even for
a small energy variance. Moreover, we analyse with a Floquet master equation
the interplay of laser excitations and static disorder. Then the disorder leads to
spatial asymmetries such that the laser driving can induce a ratchet current.
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1. Introduction

Chemical adsorption of sulfur atoms on a gold surface allows a stable bond between gold
tips and thiol groups of molecules.This has been exploited for measuring the conductance
and the current–voltage characteristics of gold–molecule–gold junctions [1]–[6]. Repeated
measurements even with the same sample, however, reveal small but noticeable differences
which possibly stem from environmental fluctuations that impact upon the effective molecule
parameters. Moreover, the particular form of the gold tip can have a significant influence on the
transport properties [7].

A present line of experimental research is the measurement of molecular conductance
when the electrons are excited by electromagnetic waves. There one expects various phenomena
ranging from photo-assisted transport to ratchet or non-adiabatic pump effects, i.e. the induction
of dc currents by ac fields even in the absence of any voltage bias [8]–[10]. Moreover, it has been
predicted that properly tailored laser pulses can give rise to short current pulses [11]–[14]. Since
a dc current flows in one particular direction, a ratchet effect can occur only in ‘sufficiently
asymmetric’ systems [10]. In that respect, static disorder is sufficient to break the reflection
symmetry of an individual realization and, thus, may support a ratchet effect.

The quantitative prediction of the current through a molecule is still a great challenge
despite the significant progress achieved in recent years [15]–[18]. For a more qualitative
understanding of the mechanisms involved in molecular transport, it is thus advantageous
to employ for the molecule a rather generic tight-binding model [9, 10], [19]–[24]. Then a
flexible method for the computation of transport properties is provided by master equations
of the Bloch–Redfield type which allow one to include electron–electron and electron–phonon
interactions, as well as time-dependent fields [10, 25]. Similar methods have also been used for
describing incoherent transport [26, 27].

Here, we explore the role of slow fluctuations or static disorder for molecular conductance.
Thereby we will assume that the relevant environmental fluctuations are so slow that they can
be described as static disorder which defines an ensemble of wire Hamiltonians. Then a natural
quantity of interest is the corresponding distribution of stationary currents. A setup for which
this current distribution is also directly relevant is an array of molecular junctions that conduct in
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Figure 1. Bridged molecular wire model consisting of N = 5 sites with internal
tunnelling matrix elements 1 and effective wire–lead coupling strengths 0L/R.

parallel. We employ a tight-binding model for the molecule and treat it with the Floquet master
equation formalism derived in [25] which we review briefly in section 2. In section 3, we present
results for a static model with a large voltage bias, while in section 4, we investigate pumping
effects caused by an interplay of ac driving fields and disorder. The analytical derivation of the
current distribution for a wire with two sites is deferred to the appendix.

2. Wire–lead model and master equation

The system of the driven molecular wire, the leads, and the coupling between the molecule and
the leads, as sketched in figure 1, is described by the Hamiltonian

H(t) =Hwire(t) +Hleads +Hwire–leads. (1)

The wire is modelled by N tight-binding orbitals |n〉, n = 1, . . . , N , such that

Hwire =

∑
n

(En(t) + ξn)c
†
ncn − 1

N−1∑
n=1

(c†
n+1cn + c†

ncn+1) +
U

2
N (N − 1), (2)

with the tunnel matrix element 1 and the capacitive energy U . Each onsite energy En(t) + ξn

contains a random contribution ξn that subsumes the influence of environmental fluctuations.
We assume that these fluctuations are Gaussian distributed and so slow that we can treat them
as static disorder. Thus, the probability that the onsite energy of orbital n lies in an interval of
size dξ around En(t) + ξn reads

w(ξn) =
1

√
2πσ 2

exp
(

−
ξ 2

n

2σ 2

)
, (3)

where the variance σ 2 is assumed to be position-independent. This implies that the energy
fluctuations are spatially uncorrelated, such that 〈ξnξn′〉 = σ 2δnn′ . The onsite energies En(t) =

En + Axncos(�t) are modulated by a harmonically time-dependent dipole force, where A
denotes the electrical field amplitude multiplied by the electron charge and the distance between
neighbouring sites, with xn =

1
2(N + 1 − 2n) the scaled position of site |n〉. Our goal will be to

compute for many realizations of the wire Hamiltonian the resulting dc current which provides
the current distribution P(I ). The last term in equation (2) captures the electron–electron
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interaction within a capacitor model and the operator N =
∑

n c†
ncn describes the number of

excess electrons residing on the molecule. Below we shall assume that U is so large that only
states with zero or one excess electron play a role. The first and the last sites of the molecule,
|1〉 and |N 〉, couple via the tunnelling Hamiltonian

Hwire−leads =

∑
q

(VLq c†
Lqc1 + VRq c†

RqcN ) + h.c. (4)

to the respective lead. The operator c†
Lq (c†

Rq) creates an electron in the left (right) lead in state
|Lq〉 which is orthogonal to all wire states. The influence of the tunnelling Hamiltonian is fully
characterized by the spectral density 0`(ε) = 2π

∑
q |V`q |

2δ(ε − εq). If the lead states are dense
and located at the centre of the conduction band, the spectral densities can be replaced by a
constant, i.e. we assume 0`(ε) = 0 for both leads.

The leads are modelled as ideal Fermi gases

Hleads =

∑
q

(
εqL c†

LqcLq + εqR c†
RqcRq

)
, (5)

which are initially at thermal equilibrium with the chemical potential µL/R and, thus, are
described by the density operator ρleads,eq ∝ exp [−(Hleads − µLNL − µRNR)/kBT ], whereN` =∑

q c†
q`cq` is the electron number operator for lead ` = L, R. Since a typical metal screens all

electric fields with a frequency below the plasma frequency, we assume that the bulk properties
of the leads are not affected by the laser irradiation.

2.1. Perturbation theory

The derivation of a master equation starts from the Liouville–von Neumann equation i h̄ρ̇(t) =

[H(t), ρ(t)] for the total density operator ρ(t) for which one obtains by standard techniques the
approximate equation of motion [10], [28]–[31]

ρ̇(t) = −
i

h̄
[Hwire(t) + Hleads, ρ(t)] −

1

h̄2

∫
∞

0
dτ [Hwire–leads, [H̃ wire–leads(t − τ, t), ρ(t)]]. (6)

Here, the first term corresponds to the coherent dynamics of both the wire electrons and the
lead electrons, while the second term describes resonant electron tunnelling between the leads
and the wire. The tilde denotes operators in the interaction picture with respect to the molecule
and the lead Hamiltonian without the molecule–lead coupling, X̃(t, t ′) = U †

0 (t, t ′) X U0(t, t ′),
where U0 is the propagator without the coupling. The net (incoming minus outgoing) electrical
current through the left contact is given by minus the time-derivative of the electron number in
the left lead multiplied by the electron charge −e. From equation (6) follows for the current in
the wide-band limit the expression

IL(t) = e tr[ρ̇(t)NL] = −e
0L

π h̄
Re

∫
∞

0
dτ

∫
dε eiετ/h̄

×

{
〈c†

1c̃1(t, t − τ)〉 f̄ L(ε) − 〈c̃1(t, t − τ)c†
1〉 fL(ε)

}
, (7)

where f` is the Fermi function of the respective lead and f̄ ` = 1 − f`. Furthermore, 〈· · ·〉 =

trwireρwire · ·· denotes the expectation value with respect to the wire density operator. We
emphasize that the expectation values in equation (7) depend directly on the dynamics of the
isolated wire and are thus influenced by the driving.
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2.2. Floquet theory

An important feature of the current formula (7) is its dependence on solely the wire operators
while all lead operators have been eliminated. Therefore, it is sufficient to consider the reduced
density operator ρwire = trleadsρ of the wire electrons. The effort necessary to calculate ρwire

can be reduced significantly by exploiting the fact that the master equation (6) inherited from
the total Hamiltonian H(t) a periodic time-dependence, which opens the way for a Floquet
treatment.

One possibility for such a treatment is to use the Floquet states of the central system, i.e. the
driven wire, as a basis. Thereby we also use the fact that in the wire Hamiltonian (2), the single-
particle contribution commutes with the interaction term and, thus, these two Hamiltonians
possess a complete set of common eigenstates. In analogy to the quasimomenta in Bloch theory
for spatially periodic potentials, the quasienergies εα come in classes εα,k = εα + kh̄�, k ∈ Z, of
which all members represent the same physical solution of the Schrödinger equation. Thus we
can restrict ourselves to states within one Brillouin zone such as, for example, 06 εα < h̄� .

For the computation of the current it is convenient to have an explicit expression for
the interaction picture representation of the wire operators. It can be obtained from the
(fermionic) Floquet creation and annihilation operators defined via the transformation cα(t) =∑

n〈ϕα(t)|n〉cn, which reads in the interaction picture c̃α(t, t ′) = e−i(εα+UNwire)(t−t ′)/h̄cα(t ′), with
the important feature that the time difference t − t ′ enters only via the exponential prefactor [10].

2.3. Master equation and current formula

In the following, we assume the interaction U to be the dominant energy scale in the system,
therefore we can restrict the wire Hilbert space to the N + 1 dimensional subspace of states
with zero or one electron, such that a basis for the decomposition of the reduced operator is
{|0〉, c†

α(t) |0〉}, where |0〉 denotes the wire state in the absence of excess electrons. Moreover, it
can be shown [25] that at large times, the density operator of the wire becomes diagonal in the
electron number N . Therefore a proper ansatz reads

ρwire(t) = |0〉ρ00(t)〈0| +
∑
α,β

c†
α|0〉ραβ(t)〈0|cβ . (8)

Note that we keep terms with α 6= β, which means that we work beyond a rotating-wave
approximation (RWA).

Following our evaluation of the master equation [25], we arrive at a set of N 2 coupled
equations of motion for ραβ(t) which in Fourier representation read

i(εα − εβ − kh̄�)ραβ,k =
0L

2

∑
k′,k′′

〈ϕα,k′+k′′|1〉〈1|ϕβ,k+k′′〉ρ00,k′( fL(εα,k′+k′′) + fL(εβ,k+k′′))

−
0L

2

∑
α′,k′,k′′

〈ϕα,k′+k′′|1〉〈1|ϕα′,k+k′′〉ρα′β,k′ f̄ L(εα′,k+k′′)

−
0L

2

∑
β ′,k′,k′′

〈ϕβ ′,k′+k′′|1〉〈1|ϕβ,k+k′′〉ραβ ′,k′ f̄ L(εβ ′,k′+k′′)

+ same terms with the replacement 1, L → N , R. (9)
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Figure 2. Current distribution for a channel with N sites in the limit of a large
bias voltage. The standard deviation of the onsite energies is σ = 0.51 (a) and
σ = 21 (b), while the wire–lead coupling is 0 = 0.11. The distributions have
been obtained by computing the current for 1.5 × 104 realizations of the wire
Hamiltonian. The black dotted lines mark the analytical results for N = 2 sites.

In an analogous manner we obtain for the dc current the expression

IL =
e0L

h̄
Re

∑
α,k

( ∑
β,k′

〈ϕβ,k′+k|1〉〈1|ϕα,k〉ραβ,k′ f̄ L(εα,k) −

∑
k′

〈ϕα,k′+k|1〉〈1|ϕα,k〉ρ00,k′ fL(εα,k)
)
.

(10)

The results of this section allow us to numerically compute the dc current through a driven
conductor as well as studying the undriven limit. The current distributions discussed below are
obtained by computing the dc current for typically 104 realizations of the wire Hamiltonian (2).
Then these values are taken for a histogram with 150 bins which finally will be scaled such that
we obtain a normalized probability density.

3. Electron transport with slowly fluctuating energies

We first address an undriven wire in the configuration sketched in figure 1 where the
distribution of all wire levels is centred at energy En = 0. The transport voltage is so large
that all eigenenergies lie well within the voltage window and, consequently, the transport
is unidirectional. Then in the absence of onsite energy fluctuations (σ = 0), the current can
be evaluated analytically within a RWA and reads Imax = e0/h̄(N + 1), i.e. it decays with
increasing wire length [32]. The index ‘max’ refers to the fact that any modification of the
onsite energies can only reduce the current—which is confirmed by our simulations. The
physical reason for this is that for equal onsite energies, solely the kinetic energy determines
the eigenstates which, consequently, are delocalized. Different onsite energies, by contrast, tend
to ‘localize’ the eigenstates. Thus in the limit of small disorder, the current distribution P(I ) is
expected to possess a clear peak at I = Imax and some minor contribution for lower values of I .

Figure 2 shows the simulated current distributions for two different variances. For a small
variance (panel (a)), the distributions for short wires (N = 2, 3) show the expected behaviour.
With increasing wire length, the peak at I = Imax disappears and is eventually replaced by an
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apparently parabolic distribution. This length dependence can be understood in the following
way: for a short wire, the probability that a level is out of resonance is rather low and, thus,
most realizations of the wire Hamiltonian will allow resonant inter-site tunnelling. With an
increasing number of levels, however, the probability of having at least one misaligned level
increases and a current significantly smaller than Imax becomes more likely. The precise values
will depend on the details and, consequently, we expect a broad distribution. This means that
whenever a large number of levels plays a role, the transport through a molecule is extremely
sensitive to even small disorder induced by environmental fluctuations.

With a larger variance, this scenario becomes even more pronounced, as can be seen in
figure 2(b): then the peak at Imax is rather small and noticeable only for 2 and 3 sites. The
most likely realization is a completely disordered wire with an accordingly low conductance.
For N > 3, the distributions even possess a significant peak at I = 0 which corresponds to
isolating behaviour. A closer inspection of the numerical data reveals that the crossover between
conducting and isolating behaviour occurs when the effective disorder

√
Nσ exceeds the tunnel

matrix element 1.
Interestingly enough, for N = 2, 3 the distribution turns out to even be non-monotonic,

which means that one most likely finds either a current close to the theoretical maximum or a
significantly smaller lower value. The non-monotonic behaviour for N = 2 can also be derived
analytically. The derivation of the corresponding current distribution (A.3) can be found in the
appendix. The excellent agreement of this analytical solution and the simulated distributions
emphasize that the simulation with approximately 104 realizations ensures good convergence.

4. ac-driven disordered junctions

In order to investigate the influence of an ac driving, we employ the same model as above,
but now with an additional dipole driving modelled by time-dependent onsite energies En(t) =

Axncos(�t) as discussed in section 2. The driving frequency � = 21/h̄ is chosen such that
it matches the average splitting of the wire energies, while the amplitude A = 1 corresponds
to intermediately strong driving. The solid line in figure 3 shows the current distribution in
the absence of a voltage bias, V = 0. The reflection symmetry of the ensemble relates to the
symmetric shape of the distribution, which implies that the current vanishes in the ensemble
average. An individual realization of the wire, however, generally does not possess reflection
symmetry because the random energy shifts are spatially uncorrelated. This asymmetry in
combination with the non-adiabatic driving induces a coherent ratchet current, i.e. a dc current
even in the absence of any net voltage bias. In the present case, the ratchet current is of the
order of 10–20% of the current observed above in the large bias limit. This order of magnitude
is typical when the driving frequency or a multiple of the driving frequency lies close to an
internal resonance, while the intensity is moderate [25]. In addition to the broad distribution
of ratchet currents, P(I ) exhibits a peak at I = 0. This stems from realizations for which the
driving is well out of resonance.

For a bias voltage V > 0, the ensemble no longer possesses reflection symmetry and the
current distribution is shifted towards positive values (see figure 3). For sufficiently small
voltages V .1/e, non-adiabatic pumping against the voltage bias is still possible. Rather
surprisingly, the peak at zero current remains. It now corresponds to realizations for which
on the one hand, the driving is off-resonant while on the other hand, both levels lie outside the
voltage window. With increasing bias voltage, the second condition is less frequently fulfilled,
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Figure 3. Current distribution for an ac-driven wire with N = 2 sites for various
bias voltages. The fluctuations of the onsite energies are characterized by the
standard deviation σ = 0.51, the driving frequency and amplitude are A = 1

and � = 21/h̄, respectively. All the other parameters are as in figure 2.

and eventually the distribution assumes a form similar to that found for a large voltage in the
absence of driving. Already for V ≈ 41/e, the distribution is hardly distinguishable from the
one shown in figure 2(a) for a wire with N = 2 sites in the absence of driving.

5. Conclusions

We have investigated the current through a molecular wire with disordered onsite energies.
Such disorder can stem from the interaction with slow fluctuations of background charges in
the substrate. In particular, we computed the resulting current distribution for two typical cases,
namely an ‘open transport channel’ and a driven molecular wire for which random energy shifts
break reflection symmetry and, thus, the driving can induce a ratchet current.

The open transport channel is characterized by tight-binding levels with equal onsite
energies, such that any misalignment stems from the disorder. Its main consequence is that
as soon as the standard deviation of the onsite energies exceeds the tunnel matrix elements, the
current distribution no longer peaks only at a finite value, but also at zero. For longer wires,
only the peak at zero current remains. This isolating behaviour resembles Anderson localization
which is found for electrons in a one-dimensional disordered lattice [33]. Note however, that we
here considered short wires far from the scaling limit in which Anderson localization is usually
studied.

Since the random energy shifts break reflection symmetry, driving the molecular wire with
a laser field induces ratchet currents for which we found a relatively broad distribution. If the
driving frequency is far from any molecular excitation energy, the ratchet current will be rather
small, and we indeed found that this is the case for very many wire realizations. It has the
consequence that the corresponding distribution possesses a spike at zero current. This means
that non-adiabatic pumping of electrons against a voltage bias becomes generally impossible
whenever the relevant wire energy levels lie well within the voltage window.
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In conclusion, our results reveal that slow fluctuations or a static disorder can have a
significant effect on molecular conduction. In various cases, the current distribution emerges
to be rather flat, which means that even the magnitude of the current depends sensitively on
environmental influences.
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Appendix. Analytical solution for two levels

A wire model with N = 2 sites represents an analytically solvable case for which one
observes a non-monotonic current distribution and which can serve as test case for numerical
implementations. Here, we consider a two-level system with on-site energies ξ1,2, i.e. with a
bias 2η = ξ1 − ξ2. Since the random energy shifts ξn are Gaussian distributed with variance σ 2,
the bias 2η is also Gaussian distributed but with variance 2σ 2, i.e. its distribution function reads
w(η) = exp(−η2/σ 2)/

√
πσ 2.

For the computation of the current, we restrict ourselves to the limit of a large transport
voltage such that both eigenenergies of the two-level system lie within the voltage window.
Then, the Fermi functions of the left and the right lead effectively become fL = 1 and fR = 0.
In this case, transport can be described within the RWA which practically means that the
reduced density operator of the wire is diagonal in energy representation [32]. Within the
RWA follows from the master equation (9) the occupation probability ραα = w1

α/w
2
α and,

thus, ρ00 = 1 −
∑

α w1
α/w

2
α . The coefficients wn

α = |〈φα|n〉|
2 denote the overlap between the

eigenstate |φα〉 and the localized state |n〉 (note that in the undriven case, all non-vanishing
contributions have sideband index k = 0, such that here the sideband index k can be omitted).
Inserting this solution into the current formula (10), we obtain I = e0/h̄(1 +

∑
α w1

α/w
2
α).

The remaining task is now to diagonalize the single-particle Hamiltonian which provides
the coefficients wn

α. For bias 2η and tunnelling matrix element 1, the Hamiltonian in pseudo-
spin notation reads H = ησz + 1σx and possesses the eigenenergies ±δ = ±(η2 + 12)1/2. The
corresponding eigenvectors φα are proportional to (δ + η, 1) and (δ − η, 1), respectively, such
that w1

α/w
2
α = (δ ± η)2/12. Then we obtain for the current the expression

I (η) =
e0

h̄

1

3 + 4η2/12
=

Imax

1 + 4η2/312
, (A.1)

which assumes its maximum Imax = e0/3h̄ in the unbiased limit η = 0.
The probability distribution for the current is related to w(η) via

P(I ) =

∑
i

w(ηi)

∣∣∣dηi

dI

∣∣∣, (A.2)
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where the summation considers all values of η that fulfil the condition I = I (η). After some
straightforward algebra, we obtain by evaluating expression (A.2) the current distribution

P(I ) =

√
312

4πσ 2

Imax/I 2

√
Imax/I − 1

exp
(

−
312

4σ 2
(Imax/I − 1)

)
, (A.3)

which is defined and normalized on the interval [0, Imax].

References

[1] Datta S, Tian W, Hong S, Reifenberger R, Henderson J I and Kubiak C P 1997 Phys. Rev. Lett. 79 2530
[2] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252
[3] Kergueris C, Bourgoin J P, Palacin S, Esteve D, Urbina C, Magoga M and Joachim C 1999 Phys. Rev. B 59

12505
[4] Cui X D, Primak A, Zarate X, Tomfohr J, Sankey O F, Moore A L, Moore T A, Gust D, Harris G and Lindsay

S M 2001 Science 294 571
[5] Reichert J, Ochs R, Beckmann D, Weber H B, Mayor M and von Löhneysen H 2002 Phys. Rev. Lett. 88

176804
[6] Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A and Bar-Joseph I

2005 Nature 436 677
[7] Yaliraki S N and Ratner M A 1998 J. Chem. Phys. 109 5036
[8] Lehmann J, Kohler S, Hänggi P and Nitzan A 2002 Phys. Rev. Lett. 88 228305

Lehmann J, Kohler S, Hänggi P and Nitzan A 2003 J. Chem. Phys. 118 3283
[9] Platero G and Aguado R 2004 Phys. Rep. 395 1

[10] Kohler S, Lehmann J and Hänggi P 2005 Phys. Rep. 406 379
[11] Franco I, Shapiro M and Brumer P 2007 Phys. Rev. Lett. 99 126802
[12] Li G Q, Schreiber M and Kleinekathöfer U 2007 Europhys. Lett. 79 27006
[13] Kohler S and Hänggi P 2007 Nat. Nanotechnol. 2 675
[14] Fainberg B D, Jouravlev M and Nitzan A 2007 Phys. Rev. B 76 245329
[15] Di Ventra M, Pantelides S T and Lang N D 2000 Phys. Rev. Lett. 84 979
[16] Damle P, Ghosh A W and Datta S 2002 Chem. Phys. 281 171
[17] Heurich J, Cuevas J C, Wenzel W and Schön G 2002 Phys. Rev. Lett. 88 256803
[18] Evers F, Weigend F and Koentopp M 2004 Phys. Rev. B 69 235411
[19] Mujica V, Kemp M and Ratner M A 1994 J. Chem. Phys. 101 6849
[20] Segal D, Nitzan A, Davis W B, Wasielewski M R and Ratner M A 2000 J. Phys. Chem. B 104 3817
[21] Foa Torres L E F, Pastawski H M and Makler S S 2001 Phys. Rev. B 64 193304
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