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Superconducting loops exhibit macroscopic quantum phenomena that have

far-reaching implications; magnetic flux periodicity and flux quantization are

the key to our understanding of fundamental properties of superconductors and

are the basis for many applications. In superconducting rings, the electrical

current responds to a magnetic flux by having a periodicity of h/2e, where the

ratio of Plancks constant and the elementary charge defines the magnetic flux

quantum h/e. The well-known h/2e periodicity is a hallmark for electronic pair-

ing in superconductors and is considered evidence for the existence of Cooper

pairs. Here, we show that in contrast to this long-held belief, rings of many

superconductors bear an h/e periodicity. These superconductors include the

high-temperature superconductors, Sr2RuO4, the heavy-fermion superconduc-

tors, as well as all other unconventional superconductors with nodes (zeros) in

the energy gap, and conventional s-wave superconductors with small gaps. As

we show, the 50-year-old BardeenCooperSchrieffer theory of superconductivity

implies that for loops of such superconductors the ground-state energies and

consequently also the supercurrents are generically h/e periodic.

Currents of electrons moving on multiply connected paths are modulated by an applied

magnetic flux with a period of h/e (1), as predicted by Aharonov and Bohm2 . In super-

conducting rings the order parameter responds also periodically to a magnetic flux, as Fritz

London recognized when he analyzed the implications of a single-valued superconducting

wave function3; different condensate states, which differ by integer flux quanta, are related

by a gauge transformation. London concluded that the flux periodicity in superconduct-

ing rings is h/e (3). He missed, however, a class of supercurrent carrying wave functions,

which were identified years later4–6, and allowed to explain the experimentally observed

h/2e flux quantization7,8. Indeed, according to the Bardeen-Cooper-Schrieffer (BCS) the-

ory of superconductivity9 the electronic condensate is formed by Cooper pairs, which carry

twice the elementary charge. However, fundamentally it is not just the pairing motivated

substitution of e by 2e, from which the periodicity in h/2e originates, but rather the sub-

tle requirement of the degeneracy in energy4–6 of the two distinct classes of supercurrent

carrying states.

The original flux trapping experiments7,8, which proved the h/2e flux quantization in

superconductors, as well as the later experiments10–12 were considered a manifestation of the
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formation of Cooper pairs in the then known conventional superconductors. The discovery

that magnetic flux changes the magnetization of YBa2Cu3O7−δ rings with a periodicity of

h/2e was similarly argued to provide the evidence for Cooper pairs also in high-temperature

superconductors13.

Does, vice versa, the existence of Cooper pairs or the h/2e flux quantization necessarily

imply an h/2e periodicity of the energy or the current in superconducting loops? In fact, the

h/2e periodicity requires that multiply connected superconductors threaded by a flux n h/2e

are degenerate in energy for different integers n. In superconducting s-wave rings or hollow

cylinders with inner diameter d this degeneracy occurs if d � ξ, where ξ is the coherence

length4–6. In the opposite regime d . ξ the discrete quantum nature of the electronic states

in the ring matters and the energies at half-integer and integer flux quanta are generally

different; correspondingly the superconducting behavior is only h/e-periodic (see Fig. 8-8

in Ref. 14). This behavior should be observable, possibly in Al rings with d < ξ = 1.6 µm.

The oscillation period of energy and currents in superconducting rings is therefore not

always h/2e. In fact, as we report here, the BCS-theory strictly predicts that for rings of

superconductors with nodes in their gap functions, such as the high-Tc cuprates, Sr2RuO4,

or the heavy-fermion superconductors, the ground-state energy is generically h/e periodic.

For all these superconductors, the states that yield the BCS-condensate state also include

current-carrying states with energies close to the Fermi energy EF . As a result of the

magnetic-field driven change of occupation of these states and the concomitant reconstruc-

tion of the condensate, the superconducting rings develop an h/e periodicity of the super-

current.

The flux periodicity in mesoscopic loops of d-wave superconductors is contained in the

solution of the Bogoliubov–de Gennes (BdG) equations15 for the pairing Hamiltonian:

H = −t
∑
〈ij〉,σ

eiϕijc†iσcjσ +
∑
〈ij〉

[
∆∗

ijcj↓ci↑ + ∆ijc
†
i↑c

†
j↓

]
.

The operators cjσ (c†jσ) annihilate (create) an electron on lattice site j with spin σ =↑, ↓;

t is the hopping matrix element between nearest neighbor sites, ϕij = 2πe/h
∫ j

i
A(r) · dr

is the Peierls phase factor, and A is the vector potential of the magnetic field. The order

parameter of the superconducting state ∆ij is defined on the links between neighboring sites

with phase factors appropriate for d-wave symmetry.

Figure 1 displays the probability density of the wave function for a state with energy close

3



Figure 1 | Real-space representation of a square loop with a typical electronic prob-
ability density |Ψ|2 of a single state in the condensate. The figure displays an eigenstate
of the d-wave pairing Hamiltonian, calculated for a square-loop with 80×80 lattice sites with a
pairing interaction of 0.3t. The hole in the center has a size of 28×28 unit cells. To enhance the
contrast of the complex pattern, the special color code shown on the right is used and the discrete
lattice points are smoothly interpolated.

to EF on a square loop, whose edges are oriented parallel to the [100] and [010]-directions,

respectively. The d-wave loop eigenstates are obviously far more complex than the angular

momentum eigenstates of a one-dimensional circular ring (cf. Ref. 14), and the current flow

in this loop can only be evaluated numerically. Nevertheless, also a qualitative discussion

allows insight into the underlying physics.

To assess the global quantities, viz. energy and current, the evolution of the eigenenergies

with magnetic flux has to be calculated. The eigenstates with energies below EF form the

ground-state condensate (Fig. 2). Only flux values Φ between 0 and h/2e are discussed,

because all quantities are either symmetric or antisymmetric with respect to flux reversal

Φ → −Φ. Two clearly distinct regimes are found: the flux intervals between 0 and h/4e and

from h/4e to h/2e.

Up to Φ ' h/4e the supercurrent J generates a magnetic field which tends to reduce the

applied field. This is achieved by a continuous shift of the eigenenergies in the condensate.

At Φ = 0, pairs of states with opposite circulation compensate their respective currents,

thus J = 0. The well separated states at Φ = 0 in Fig. 2 are the states in the vicinity of the
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Figure 2 | Energy spectrum of the d-wave BCS model. The eigenenergies in the gap region
are shown for a square 40×40 loop with a hole of 14×14 unit cells and pair interaction 0.3t as a
function of flux Φ (in units of h/e). The energies are given in units of the superconducting order
parameter ∆0 at Φ = 0 (∆0 ≈ 0.22t). The superconducting condensate consists of the states below
EF = 0 (red lines). Reconstruction of the condensate takes place near Φ = ±(2n + 1)h/4e, where
the eigenenergies jump abruptly. The blue labels ‘a’ and ‘b’ refer to the current patterns shown
in Fig. 4.

nodes of the mesoscopic d-wave superconductor. At energies further away from EF , the state

density is higher; these are the states near the maximum energy gap that provide most of

the condensation energy. For Φ > 0, the energy of the states with orbital magnetic moment

anti-parallel (parallel) to the magnetic field is increased (decreased). Correspondingly the

supercurrent, which is carried by these states, depends on the details of level crossings and

avoidings. The main contribution to the supercurrent arises from the occupied levels closest

to EF , because the contributions from the lower-lying states tend to cancel in adjacent pairs.

As the highest occupied state shifts with increasing flux to lower energies, the current

in the square loop first increases for small Φ (Fig. 3), then decreases, when the highest

occupied level with an orbital moment opposite to the applied magnetic field starts to

dominate. With increasing flux this state approaches EF . For s-wave rings this “Doppler

shift energy” (cf. Ref. 15) corresponds to the critical value of the superfluid velocity, for

which the indirect energy gap closes. For d-wave loops, the order parameter is protected by

the numerous states that form the “lobes” of the d-wave gap parameter.

For d-wave loops and rings with other unconventional order parameter symmetries, the

states in the vicinity of the nodes evolve with increasing flux as in small gap s-wave rings.
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Figure 3 | Flux dependence of energy and current. Total energy (E(Φ) − E(0))/E(0) (a)
and total circulating current J (b) for a square 40×40 loop with a hole of 14×14 unit cells and
pair interaction 0.3 t as a function of flux Φ in units of h/e. J is given in units of et/~ = 6×10−5A

for a typical choice of t = 250 meV. There is a clear difference between condensate states with an
even and an odd winding number q of the order parameter, reflected e.g. in the deformation of the
q = 0-parabola. The overall Φ-periodicity for E and J is h/e.

They do not necessarily cross EF (Fig. 2) due the hybridization of the respective states

above and below EF . Nevertheless, a state with one direction of current is replaced by

a state of opposite direction (Fig. 4). The current carrying states of the condensate are

thereby continuously changing near the extrapolated crossing points. As a consequence the

energy “parabola” centered at zero flux is different from the ground-state energy parabola

centered at Φ = h/2e (Fig. 3). The deviation from a parabolic shape near zero flux is

due to the evolution of the near-nodal states; the vertical offset of the energy minima at

Φ = nh/e results mostly from the flux dependence of the states near the maximum value of
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the anisotropic gap.

For a flux value near h/4e the condensate reconstructs. The superconducting state be-

yond h/4e belongs to the class of wavefunctions introduced by Byers and Yang4 in which, for

a circular geometry, each pair acquires a center of mass angular momentum ~14. Remark-

ably, in the flux interval from near h/4e to h/2e, a full energy gap exists also for d-wave

superconductors (Fig. 2). Here the circulating current enhances the magnetic field; the

paramagnetic moment of the current is parallel to the field. The resulting energy gain is

responsible for the field-induced energy gap. This reconstruction of the condensate is the

origin of the h/e periodicity in energy and current. Intriguingly, for superconductors with

unconventional order parameter symmetries also larger loops (d � ξ) are h/e periodic.

The numerical solution of the BdG equations with a self-consistency condition for the

order parameter is adequate for ' 15 nm rings. However, to examine systems of micrometer

size, the nodal states have to be described using a continuous gapless density of states. The

flux induces a Doppler shift which modifies the states and alters their occupation near EF ,

thereby causing an h/e component of the current J . While the h/2e component of J ∝ 1/d,

the h/e component decreases with 1/d2 (see Appendix B). In quantitative agreement the h/e

component which, as compared to a ring of the size shown in Fig. 1, reduces by a factor of

60 for a corresponding ring of 1 µm size, measured by the weight of its Fourier peak. Using

typical parameter values for a YBCO ring of 1 µm size, the ratio of the h/e versus the h/2e

component remains in the percent range. The frame width w of the ring has little influence

on the weight of the h/e component for the loops with w smaller than the penetration depth

λ. A similar behavior is also shown by loops with w > λ, because only states that result in

the current-transport channels within λ affect significantly the h/e component.

Our calculations show that while changes in geometry, the number of transverse chan-

nels and elastic scattering by impurities modify the J(Φ) characteristics in detail, they do

not eliminate the h/e component. As long as the single particle states are well defined,

also electronic correlation effects, which are responsible for the renormalization of states

and of coupling parameters, are not expected to bear a strong influence on the discussed

phenomena.

The robust, magnetic-flux induced presence of currents that flow opposite to the main

screening currents affect many properties of unconventional superconductor. Of particular

importance are a resulting enhancement of the London penetration depth and a weakening
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Figure 4 | Current distribution in a square loop of 40×40 lattice sites. The current
expectation value of the occupied state closest to EF = 0 is shown for flux Φ = 0.17 h/e (top
panel, the state is marked with ‘a’ in Fig. 2) and for Φ = 0.21 h/e (bottom panel, marked with
‘b’ in Fig. 2). The color encodes the projection of the current onto a square path around the loop
whereby red presents a counterclockwise and blue a clockwise circulation. The maximal current is
Jmax = 0.15 et/~ for a and 0.13 et/~ for b. The current distribution of each of the two states has
strong spatial variations and does not fulfill the continuity condition which, however, is restored
for the total current.

of the rf-shielding. Further, at any temperature, including T = 0, the condensation energies,

the screening current densities, the kinetic inductances and the penetration depths of rings of

nodal superconductors are h/e periodic, the relative intensity of the h/e-Fourier components

decreasing with 1/d. The same properties are predicted for loops of s-wave superconductors

with small gap such as rings with diameters smaller than ξ. These predictions are strict,
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free of fitting parameters and therefore open to stringent experimental tests. The h/e

periodicity of the supercurrent is a fundamental property of loops formed by unconventional

superconductors.
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APPENDIX A: NUMERICAL METHOD

To investigate ring geometries with finite width, we self-consistently solve the Bogoliubov

- de Gennes (BdG) equations on the square frame shown in Fig. 5 for the Hamiltonian

H = −t
∑
〈ij〉s

eiϕijc†iscjs +
∑
〈ij〉

[
∆∗

ijcj↓ci↑ + ∆ijc
†
i↑c

†
j↓

]
, (A1)

where

∆ij =
V

2
(〈cj↓ci↑〉 − 〈cj↑ci↓〉) (A2)

is the order parameter defined on the two neighboring lattice sites i and j. The pairing

interaction strength is V and appropriate phases for d-wave pairing: ∆i,i+x̂ = −∆i,i+ŷ are

implicitly incorporated. A magnetic flux is represented by the Peierls phase factor ϕij =

2πe
h

∫ j

i
A(r) · dr. We choose a vector potential of the form A = φ(y,−x)/(2πr2), yielding

a flux threading the hole with no magnetic field penetrating the superconductor, where

φ = Φ e/h measures the flux in units of h/e. The Hamilton operator (A1) is diagonalized

Figure 5 | A two dimensional discrete lattice for a square frame with open boundary conditions.
The figure shows the standard geometry for a system size of 40×40 lattice sites with a centered
hole of 14×14 lattice sites, on which calculations were typically performed.

by the Bogoliubov transformation

ci↑ =
∑

n

[
uniγn↑ − v∗niγ

†
n↓

]
, (A3)

ci↓ =
∑

n

[
uniγn↓ + v∗niγ

†
n↑

]
. (A4)
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where γ†
ns and γns are creation and annihilation operators for fermionic Bogoliubov quasi-

particles. The coefficients un and vn have to fulfill the equationH0 ∆

∆† −H†
0

 un

vn

 = En

un

vn

 . (A5)

where the operators H0 and ∆ act on the “single particle” wave functions un and vn as

H0uni = −t
∑

j

eiϕijunj − µuni, (A6)

∆vni =
∑

j

∆ijvnj, (A7)

and
∑

j denotes the sum over all nearest neighbor sites of i. The order parameter ∆ij is

calculated self-consistently from

∆ij =
V

2

∑
n

[
univ

∗
nj + unjv

∗
ni

]
tanh

(
En

2kBT

)
, (A8)

where the sum runs over the positive eigenvalues En only and T is the temperature. The

current density Jij from lattice site i to j is

Jij = −i
et

~
∑

s

(
c†iscjse

iϕij − c†sjcise
iϕji

)
(A9)

= −4
et

~
∑

n

Im
[(

unju
∗
nif(En) + v∗njvni(1− f(En))

)
eiϕij

]
; (A10)

f(E) = 1/(1+eE/kBT ) is the Fermi distribution function. The self-consistent solutions of the

BdG equations on the square loop are characterized by the winding number q of the phase of

the order paraneter ∆ij around the loop. For a fixed value of flux φ, ground-state solutions

in different q-sectors are found by choosing suitable starting values for the iterations in the

self consistency loop.

APPENDIX B: MULTI-CHANNEL MODEL FOR LARGE D-WAVE RINGS

Since the numerical method outlined above is not suited for calculations on loops of larger

size say in the µm range, we use a multi-channel ring model which allows for an analytic

calculation. A superconducting ring is thereby composed from many one dimensional (1D)

loops with different radii. Each loop represents one current channel; the properties of the ring
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are obtained by integrating over its thickness. In 1D, the only spin-singlett pairing symmetry

possible is s-wave pairing. To obtain the current characteristics of a d-wave loop, we use the

following sceme: We obtain the supercurrent in the loop through an energy integration over

the current contribution of all occupied eigenstates of the BCS Hamiltonian. In a circular

loop (with no hybridization), the Doppler shift of the eigerenergies is a linear function of the

flux independent of the pairing symmetry. The only way in which the symmetry influences

the supercurrent is through its characteristic density of states (DOS). We therefore perform

the following calculations for a 1D s-wave loop and obtain the d-wave supercurrent for a

quasi 1D channel by inserting the (Doppler shifted) d-wave DOS (Fig. 6) into the final

energy integration for the supercurrent (Eq. (B15)).

1. Superconducting State in a 1D s-wave loop

We describe the kinetic energy of the electrons on an individual flux threaded ring with

N discrete lattice sites

H0 =
∑
ks

εk−φc
†
kscks, (B1)

by the tight binding dispersion

εk−φ = −2t cos

(
k − φ

R

)
. (B2)

εk−φ is the energy of a single particle state with angular momentum ~k with k ∈ Z. The

radius of the ring measured in units of the lattice constant a is R = N/2π. The BCS pairing

Hamiltonian has the form

H = H0 +
∑
k,q

[
∆∗

k(q)c−k+q↓ck↑ + ∆k(q)c
†
k↑c

†
−k+q↓

]
, (B3)

where

∆k(q) =
∑

k

Vkk′

2
[〈ck′↓c−k′+q↑〉 − 〈ck′↑c−k′+q↓〉] (B4)

is the superconducting order parameter and q ∈ Z its winding number. For a perfectly

circular ring geometry, the winding number can be identified with the angular momentum

~q of a Cooper pair. Choosing the pairing energy Vkk′ = V independent of k and k′ leads

to pairing in the s-wave channel, which is the only possibility in one space dimension.

Since we are interested in low temperature properties, we assume that the superconducting
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condensate in its ground state is characterized by the quantum number q(φ), which changes

its value as a function of flux φ whenever the total energies for two different q-values become

degenerate. Up to finite size effects, the q-number of the ground state changes to the next

integer whenever φ crosses the flux values (2n− 1)/4, n ∈ Z:

q(φ) = int

(
2φ +

sign(φ)

2

)
, (B5)

where for positive (negative) x, int(x) is the largest (smallest) integer number equal or

smaller (larger) than x. We therefore choose an ansatz for ∆k(q) of the form

∆k(q
′) = δq(φ),q′∆k, (B6)

with arbitrary k-dependence of ∆k. For s-wave pairing ∆k = ∆ is constant and ∆k(q) =

∆(q). With this ansatz the diagonalization of the Hamiltonian (B3) leads to the energy

spectrum

E±(k, φ) =
εk−φ − ε−k−φ+q

2
±

√
∆2 +

(
εk−φ + ε−k−φ+q

2

)2

. (B7)

The energies E±(k, φ) shift with flux and for φ 6= n the particle-hole symmetry of the

spectrum is broken. Near the Fermi energy, in different q-sectors, the Doppler shift e(φ) of

the eigenenergies is found by expanding E±(k, φ) in φ, leading to e(φ) = ±(φ− q/2) 2t/R +

O((φ/R)2). If therefore ∆(q) ≤ e(φ = 1/4) = t/2R, where the condensate changes q form

0 to 1, the indirect energy gap closes and the occupation of states changes. For φ > 1/4,

the pairing of electrons in states with total angular momentum q 6= 0 according to Eq. (B4)

becomes favorable. In one dimension, the gap closes exactly at the depairing velocity of the

condensate beyond which no self-consistent solution of the order parameter exists16.

2. Current in a d-wave loop

In this section, we first derive a expression in form of an energy integration for the

supercurrent in a s-wave loop which is then transformed into a d-wave loop as described

above.

In the nearest-neighbor tight binding model for a 1D ring, the current is given by

J(R) =
e

h

∑
ks

Jk(R)nks =
e

~R

∑
ks

∂εk−φ

∂k
〈c†kscks〉, (B8)
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where Jk = ∂εk−φ/∂k is the group velocity of the state with angular momentum ~k and the

occupation probability nks is obtained using a Bogoliubov transformation:

nks = 〈c†kscks〉 =
∑

α=±1

α

2

 εk−φ + ε−k−φ+q√
4∆2 + (εk−φ + ε−k−φ+q)

2
+ α

 f(Eα(k, φ)). (B9)

Eqs. (B8) and (B9) are a closed-form solution for the total current in a superconducting flux

threaded ring. The sum over k has to be computed numerically, though. As shown below,

the expansion of Jk(R) in powers of φ/R, provides a φ independent contribution which is

paramagnetic for q = 0 and diamagnetic for q = 1 plus a contribution linear in φ, which is

diamagnetic for q = 0 (Meissner effect) and paramagnetic for q = 117.

Figure 6 | Scheme for the density of states of a d-wave superconductor for a finite flux |φ| < 1/4
(q = 0) (a) and for 1/4 < φ < 3/4 (q = 1) (b). The energies are Doppler shifted to higher (red)
or lower energies (blue). This results in a double-peak structure of the coherence peaks and for
q = 0 in an overlap of the upper and lower band in the region −e(φ) < E < e(φ) (18). States in
the upper band become partially occupied. For q = 1 there is a gap of width 2δ1 ≡ 2δ1(φ). The
black line in b represents the density of states for φ = 1/2.
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In the following we restrict the discussion to the flux interval −1/4 ≤ φ ≤ 1/4 where

q = 0 in the ground state. We assume that R � 1 and expand ε±k−φ and Jk in φ/R for

k ≥ 0 as:

ε± = ε±k−φ = εk ±
2t

R
φ

√
1−

(εk

2t

)2

+O((φ/R)2), (B10)

J±(R) = J±k(R) = ∓2te

R

[√
1−

(εk

2t

)2

∓ φ

R

εk

2t

]
+O((φ/R)2). (B11)

To leading order, the quasiparticle energies in the superconducting state become

E± = E±(±k, φ) = E ± 2t

R
φ

√
1−

(εk

2t

)2

+O((φ/R)2), (B12)

with E =
√

ε2
k + ∆2 if εk > 0 and E = −

√
ε2
k + ∆2 if εk < 0. In the vicinity of the Fermi

energy EF , this simplifies to ε± = εk ± e(φ) and E± = E ± e(φ). Converting the sum over k

in Eq. (B8) to an integral over the normal state energy εk, the total current becomes

J(R) =

∫
dε D(ε) n+(ε)J+(R, ε) +

∫
dε D(ε) n−(ε)J−(R, ε) +O((φ/R)2), (B13)

where

n±(ε) = n±k =
∑

α=±1

α

2

(
|ε|√

∆2 + ε2
+ α

)
f(E±) (B14)

and D(ε) is the DOS of the normal state. With ε = ±
√

E2 −∆2 we rewrite Eq. (B13) as

J(R) = N0

∫ 2t

−2t

dE

[ ∑
α=±1

1

2
(α + Ds(E)) f(E + e(φ))J−(E)

+
∑

α=±1

1

2
(α + Ds(E)) f(E − e(φ))J+(E)

]
(B15)

where we assume D(ε) = N0 constant in the vicinity of EF and Ds(E) is the DOS in the

s-wave superconductor: Ds(E) = |E|/
√

E2 −∆2 if |E| > ∆ and Ds(E) = 0 if |E| < ∆. At

T = 0 the current can be separated into two contributions J(R) = J1(R) + J2(R), where

J1 contains all the contributions from the states which are below EF within the interval

−1/4 < φ < 1/4 representing the standard supercurrent and J2 contains the additional

contributions from J(R) which appear if e(φ) > ∆. One finds:

J1(R) = −N0
2e

hR2
φ

∫ −e(φ)

−2t

dE|E| ∼= −N0
e

h
φ

(
2t

R

)2

, (B16)

J2(R) = N0
2te

hR

∫ e(φ)

−e(φ)

dEDs(E) +O
(

φ3

R5

)
, (B17)
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Figure 7 | The current in a thin d-wave ring as a function of flux Φ (in arbitrary units). Shown
is the result of the multi-channel model for the characteristic value 2t/(∆0R) = 0.4. For −h/4e <

Φ < h/4e, where q = 0, the current is reduced by a contribution proportional to Φ2, whereas it is
strictly linear in Φ otherwise. This gives rise to an overall current periodicity of h/e.

where the upper integration boundary in Eq. (B16) is extended to zero.

We replace now Ds(E) in Eq. (26) by the DOS Dd(E) of a d-wave superconductor as

shown in Fig. 6 a. For finite flux φ, all energy levels are shifted according to the magnetic

moment of their current; this results in a Doppler shift of the coherence peaks18. In the

relevant regime ∆0 > e(φ), it is sufficient to approximate Dd(E) ' |E|/∆0 (Fig. 6 a) and

J2(R) ' N0

∆0

2te

hR

∫ e(φ)

−e(φ)

dE |E| = N0

∆0

e

h
φ2

(
2t

R

)3

. (B18)

The total current J(R) = J1(R) + J2(R) of this channel becomes

J(R) = −N0
e

h
φ

(
2t

R

)2 [
1− φ

2t

∆0R

]
. (B19)

The normal state DOS, N0 = R/(2t), is itself a function of R. The total current J for q = 0

in a ring of finite thickness D and inner radius R< is obtained from

J =

∫ R<+D

R<

dR(J1(R) + J2(R)). (B20)

= −N0
e

h
φ(2t)2 D

R<(R< + D)

[
1− φ

2t

∆0

D + 2R<

2R<(R< + D)

]
. (B21)

In the limit of thin rings (R< � D), we introduce d = 2R< in units of the lattice constant

a and find that the ratio
J2

J1

= 2
2t

∆0

φ

d
(B22)

shows the same power law in 1/d as for a single channel.
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For q = ±1, an energy gap ∆(q) > e(φ) persists for all φ, thus a flux induced effective gap

2δ1(φ) is present, as shown in Fig. 6 b. Therefore calculations as above are valid also for this

flux window, however J2(R) = 0. Only the standard supercurrent component contributes

to the total current with J(R) = J1(R) for each channel (Fig. 7).

Because J2 is finite for even q but zero for odd q, whereas J1 is identical for all q, we find

that J1 is periodic with h/2e and J2 with h/e. The result in Eq. (B22) implies that the ratio

of the h/e and the h/2e Fourier component of the total current scales with the inverse ring

diameter.
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