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Kinks in the dispersion of strongly correlated electrons
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The properties of condensed matter are deter-
mined by single-particle and collective excitations
and their mutual interactions. These quantum-
mechanical excitations are characterized by an
energy E and a momentum ~k which are related
through their dispersion Ek. The coupling of exci-
tations may lead to abrupt changes (kinks) in the
slope of the dispersion. Kinks thus carry impor-
tant information about internal degrees of free-
dom of a many-body system and their effective
interaction. Here we report a novel, purely elec-
tronic mechanism leading to kinks, which is not
related to any coupling of excitations. Namely,
kinks are predicted for any strongly correlated
metal whose spectral function shows a three-
peak structure with well-separated Hubbard sub-
bands and central peak, as observed, for exam-
ple, in transition metal-oxides. These kinks can
appear at energies as high as a few hundred
meV, as found in recent spectroscopy experi-
ments on high-temperature superconductors1–4

and other transition-metal oxides5–8. Our theory
determines not only the position of the kinks but
also the range of validity of Fermi-liquid theory.

In systems with a strong electron-phonon coupling
kinks in the electronic dispersion at 40-60 meV below
the Fermi level are well known9–11. Therefore the kinks
which are detected at 40-70 meV in the electronic dis-
persion of high-temperature superconductors are taken
as evidence for phonon12,13 or spin-fluctuation based14,15

pairing mechanisms. Collective excitations other than
phonons, or even an altogether different mechanism, may
be the origin of kinks detected at 40 meV in the dis-
persion of surface states of Ni(110)16. Surface states
of ferromagnetic Fe(110) show similar kinks at 100-200
meV17, and even at 300 meV in Pt(110) – far beyond
any phononic energy scale18. Kinks at unusually high en-
ergies are also found in transition-metal oxides5–8,19,20,
e.g., at 150 meV in SrVO3

7, where the Coulomb inter-
action leads to strong correlations. Very recently, kinks
were reported at 380 meV and 800 meV for three differ-
ent families of high-temperature superconductors1–4 and
at 400-900 meV in graphene21.

Interactions between electrons or their coupling to
other degrees of freedom change the interpretation of

Ek as the energy of an excitation with infinite lifetime.
Namely, the interactions lead to a damping effect im-
plying that the dispersion relation is no longer a real
function. For systems with Coulomb interaction Fermi-
liquid (FL) theory predicts the existence of fermionic
quasiparticles22, i.e., exact one-particle states with mo-
mentum k and a real dispersion Ek, at the Fermi surface
and at zero temperature. This concept can be extended to
k states sufficiently close to the Fermi surface (low-energy

regime) and at low enough temperatures, in which case
the lifetime is now finite but still long enough for quasi-
particles to be used as a concept.

Outside the FL regime the notion of dispersive quasi-
particles is, in principle, inapplicable since the lifetime
of excitations is too short. However, it is an experimen-
tal fact that k-resolved one-particle spectral functions
measured by angle-resolved photoemission spectroscopy
(ARPES) often show distinct peaks also at energies far
away from the Fermi surface1–20. The positions of those
peaks change with k, which means that the correspond-
ing one-particle excitations are dispersive, in spite of their
rather short lifetime. It turns out that kinks in the dis-
persion relation are found in this energy region which is
located outside the FL regime.

We describe a novel mechanism leading to kinks in the
dispersion of strongly correlated electrons, which does
not require any coupling to phonons or other excitations,
and which can occur at any energy inside the band. We
begin with a discussion of the physics of this microscopic
mechanism, which applies to a wide range of correlated
metals. Consider first a weakly correlated system and
imagine we inject an electron into the partially filled band
at an energy close to the Fermi surface. In this process the
entire system becomes excited, leading to the generation
of many quasiparticles and -holes. In view of their long
lifetime the Coulomb interaction with other quasiparti-
cles or -holes modifies their dispersion which, according
to FL theory, becomes Ek = ZFLεk. Here ZFL is a FL
renormalization factor and εk is the bare (noninteract-
ing) dispersion. By contrast, an electron injected at an
energy far from the Fermi level leads to excitations with
only a short lifetime; their dispersion is hardly affected
by the weak interaction, i.e., Ek ≈ εk (see supplement).
The crossover from the FL dispersion to the noninter-
acting dispersion can lead to kinks near the band edges
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FIG. 1: Kinks in the dispersion relation Ek for a strongly correlated system. The intensity plot represents the spectral
function A(k, ω) (Hubbard model in DMFT, cubic lattice, interaction U=3.5 eV, bandwidth W = 3.46 eV, n=1, ZFL=0.086,
T = 5 K). Close to the Fermi energy the effective dispersion (white dots) follows the renormalized band structure Ek = ZFLεk

(blue line). For |ω| > ω? the dispersion has the same shape but with a different renormalization, Ek = ZCPεk − c sgn(Ek) (pink
line). Here ω?=0.03 eV, ZCP = 0.135, and c = 0.018 eV are all calculated (see supplement) from ZFL and εk (black line). A
subinterval of Γ-R (white frame) is plotted on the right, showing kinks at ±ω? (arrows).

which mark the termination point of the FL regime. How-
ever, for weakly correlated metals (ZFL . 1) the slope of
Ek changes only a little; hence the kinks are not very
pronounced.

The situation is very different in strongly correlated
metals where ZFL can be quite small such that kinks can
be well-pronounced. The strong interaction produces a
strong redistribution of the spectral weight in the one-
particle spectral function. Namely, the conduction band
develops so-called Hubbard subbands, whose positions
are determined by the atomic energies. For metallic sys-
tems a resonant central peak emerges around the Fermi
level which lies between these subbands. The central peak
of this so-called three-peak structure is often interpreted
as a “quasiparticle peak”, but it will be shown below
that genuine FL quasiparticles exist only in a narrow

energy range around the Fermi level. Outside this FL
regime, but still inside the central peak, we identify a new
intermediate-energy regime, where the dispersion is given
by Ek ≈ ZCPεk. Here ZCP is a new renormalization fac-
tor, given by the weight of the central peak, which differs
significantly from ZFL. At these intermediate energies,
which are much smaller than the interaction strength, an
injected electron or hole is still substantially affected by
the other electrons in the system. Therefore its dispersion
is neither that of a free system, nor that of the (strongly
renormalized) FL regime, but rather corresponds to a
moderately correlated system (ZFL < ZCP < 1). As a

consequence there occurs a crossover at an intermediate
energy ±ω? inside the central peak from ZFL renormal-
ization to ZCP renormalization, which is visible as kinks
in the dispersion. These observations apply to any cor-
related metal. As shown below, in a microscopic theory
the position of those kinks are located at the termination
point of the FL regime. We emphasize that this mecha-
nism yields kinks but does not involve coupling of elec-
trons and collective modes; only strong correlations be-
tween electrons are required.

For a microscopic description of these electronic kinks
we use the Hubbard model, which is the generic model for
strongly correlated electrons, and solve it by many-body
dynamical mean-field theory (DMFT)23–26, using the nu-
merical renormalization group as an impurity solver.
DMFT is known to provide the correct behavior of local
observables in the limit of large coordination numbers,
and is used here to quantitatively support the physical
mechanism discussed above. We focus on a single band
with particle-hole symmetry and discuss the asymmet-
ric case in the supplement. For the strongly correlated
Hubbard model (interaction U ≈ bandwidth) the disper-
sion relation is shown in Fig. 3 and the spectral func-
tion in Fig. 4a. The dispersion relation Ek crosses over
from the Fermi-liquid regime (blue line in Fig. 3) to the
intermediate-energy regime (pink line in Fig. 3), as de-
scribed above, and shows pronounced kinks at the energy
scale ω? = 0.03 eV. In some directions in the Brillouin
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zone these kinks may be less visible because the band
structure is flat (e.g., near the X point in Fig. 3). The
behavior of Ek is now analyzed quantitatively.

The physical quantity describing properties of one-
particle excitations in a many-body system is the Green
function or “propagator” G(k, ω) = (ω + µ − εk −
Σ(k, ω))−1, which characterizes the propagation of an
electron in the solid22. Here ω is the frequency, µ the
chemical potential, εk the bare dispersion relation, and
Σ(k, ω) is the self-energy, a generally complex quantity
describing the influence of interactions on the propa-
gation of the one-particle excitation, which vanishes in
a noninteracting system. The effective dispersion rela-
tion Ek of the one-particle excitation is determined by
the singularities of G(k, ω), which give rise to peaks in
the spectral function A(k, ω) = −ImG(k, ω)/π. If the
damping given by the imaginary part of Σ(k, ω) is not
too large, the effective dispersion is thus determined by
Ek + µ − εk − ReΣ(k, Ek) = 0. Any kinks in Ek that
do not originate from εk must therefore be due to slope
changes in ReΣ(k, ω).

In many three-dimensional physical systems the k de-
pendence of the self-energy is less important than the
ω dependence and can be neglected to a good approx-
imation. Then one may use the DMFT self-consistency
equations to express Σ(k, ω) = Σ(ω) as Σ(ω) = ω +
µ − 1/G(ω) − ∆(G(ω)), where G(ω) =

∫

G(k, ω) dk is
the local Green function (averaged over k) and ∆(G) is
an energy-dependent hybridization function, expressed
here as a function of G(ω). In DMFT, ∆(G) is deter-
mined by the requirement G(ω) = G0(ω + µ − Σ(ω)),
i.e., G0(∆(G)+1/G) = G. Here G0(ω) is the local Green
function in the absence of interactions. The hybridiza-
tion function describes how the electron at a given lat-
tice site is quantum-mechanically coupled to the other
sites in the system. It plays the role of a dynamical
mean-field parameter and its behavior is strongly depen-
dent on the electronic correlations in the system. Fig. 4a
shows a typical result for the integrated spectral function
A(ω) = −ImG(ω)/π with the aforementioned three-peak
structure. The corresponding real parts of the local prop-
agator G(ω) and self-energy Σ(ω) are shown in Fig. 4b
and Fig. 4c, respectively.

Kinks in ReΣ(ω) appear at a new small energy scale
which emerges quite generally for a three-peak spec-
tral function A(ω). Kramers-Kronig relations imply that
Re[G(ω)] is small near the dips of A(ω), located at ±Ω.
Therefore Re[G(ω)] has a maximum and a minimum at
±ωmax inside the central spectral peak (Fig. 4b). This di-
rectly leads to kinks in ReΣ(ω) for the following reason.
There are two contributions to Σ(ω): ω+µ−1/G(ω) and
−∆(G(ω)). The first contribution Re[ω + µ − 1/G(ω)]
is linear in the large energy window |ω| < Ω (Fig. 4d);
this is due to Kramers-Kronig relations (see supplement)
and not particular to DMFT. On the other hand the
term −Re[∆(G(ω))] is approximately proportional to
−Re[G(ω)] (at least to first order in a moment expan-
sion), and thus remains linear only in a much narrower
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FIG. 2: Local propagator and self-energy for a
strongly correlated system (parameters as Fig. 3).
a, Correlation-induced three-peak spectral function A(ω) =
−ImG(ω)/π with dips at ±Ω = 0.45 eV. b, Correspond-
ing real part of the propagator, −ReG(ω), with minimum
and maximum at ±ωmax inside the central spectral peak.
c, Real part of the self-energy with kinks at ±ω? (blue cir-
cles), located at the points of maximum curvature of ReG(ω),
(ω? = 0.4ωmax = 0.03 eV). d, ω − 1/G(ω) contributes to
the self-energy. In general Re[ω − 1/G(ω)] (blue line) is lin-
ear in |ω| < Ω. The other contribution to the self-energy is
−∆(G(ω)) ≈ −(m2 − m2

1)G(ω) (to lowest order in the mo-
ments mi of εk ; here m2−m2

1=0.5 eV2). Therefore the nonlin-
earity of −Re[G(ω)] at ±ω? determines the location of kinks.

energy window |ω| < ωmax. The sum of these two con-
tributions produces pronounced kinks in the real part of
the self-energy at ±ω?, where ω? = (

√
2 − 1)ωmax is the

energy where Re[G(ω)] has maximum curvature (marked
by blue circles in Fig. 4c). The Fermi-liquid regime with
slope ∂ReΣ(ω)/∂ω|ω=0 = 1 − 1/ZFL thus extends only
throughout a small part of the central peak (|ω| < ω?).
At intermediate energies (ω? < |ω| < Ω) the slope is
then given by ∂ReΣ(ω)/∂ω|ω=0 = 1 − 1/ZCP. The kinks
at ±ω? mark the crossover between these two slopes. As
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a consequence there is also a kink at ω? in the effective
band structure Ek.

The above analysis also explains why outside the FL
regime Ek still follows the uncorrelated dispersion, albeit
with a different renormalization ZCP and a small offset
c. This behavior is due to ω + µ − 1/G(ω), the main
contribution to the self-energy inside the central peak
for ω? < |ω| < Ω. In particular our analysis explains the
dependence of Ek on k that was observed in previous
DMFT studies of SrVO3

27 (see supplement).
The FL regime terminates at the kink energy scale

ω?, which cannot be determined within FL theory itself.
The quantities ω?, ZCP, and c can nevertheless all be ex-
pressed in terms of ZFL and the bare density of states
alone; explicitly, one finds ω? = ZFL(

√
2− 1)D, where D

is an energy scale of the noninteracting system, e.g., D
is approximately given by half the bandwidth (see sup-
plementfor details). For weak correlations (ZFL . 1) the
kinks in Ek thus merge with the band edges and are
almost undetectable, as discussed above. On the other
hand, for increasingly stronger correlations (ZFL � 1)
the kinks at ω?/D ∝ ZFL move closer to the Fermi en-
ergy and deeper inside the central peak, whose width
diminishes only as Ω/D ∝

√
ZFL

28.
The energy scale ω? involves only the bare band struc-

ture which can be obtained, for example, from band
structure calculations, and the FL renormalization ZFL =
1/(1−∂ReΣ(ω)/∂ω)|ω=0 ≡ m/m∗ known from, e.g., spe-
cific heat measurements or many-body calculations. We
note that since phonons are not involved in this mech-

anism, ω? shows no isotope effect. For strongly inter-
acting systems, in particular close to a metal-insulator
transition26, ω? can become quite small, e.g., smaller
than the Debye energy.

The mechanism discussed here applies to systems with
partially occupied d or f orbitals, where the local inter-
action is strong. An analysis similar to the one presented
above also holds for systems with strong hybridization
such as the high-temperature superconductors, where the
overlap between d and oxygen p states is important. The
assumption of a k-independent self-energy may also be
relaxed: if a correlation-induced three-peak spectral func-
tion A(k, ω) is present for a certain range of momenta
k, the corresponding self-energies Σ(k, ω) and effective
dispersion Ek will also develop kinks, as can be proved
formally using cluster extensions to DMFT. Kinks in the
dispersion are thus a robust many-body feature of cor-
related metals with a three-peak spectral function, inde-
pendent of the computational approach.

The energy of electronic kinks is a quantitative mea-
sure of electronic correlations in many-body systems;
they mark the termination point of the Fermi-liquid
regime and can be as high as several hundred meV.
ARPES experiments at such high binding energies can
thus provide new, previously unexpected information
about strongly correlated electronic systems. Electronic
kinks are a fingerprint of a strongly correlated metal and
are expected to be observable in many materials, includ-
ing high-temperature superconductors.
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Existence of kinks in the self-energy

A sufficient condition for kinks in the real part of the
self-energy Σ(ω) and in the effective dispersion Ek is the
existence of a correlation-induced three-peak structure in
the spectral function A(ω) = −ImG(ω)/π. These kinks
are located at energies inside the central peak of A(ω).
This can be derived from the DMFT self-consistency con-
dition,

Σ(ω) = ω + µ − 1/G(ω) − ∆(G(ω)) , (1)

where G(ω) is the local Green function and ∆(G) is
the hybridization function. In DMFT, ∆(G) is deter-
mined by the requirement G(ω) = G0(ω + µ − Σ(ω)),
i.e., G0(∆(G)+1/G) = G. Here G0(ω) is the local Green
function in the absence of interactions.

Suppose that A(ω) has three well-developed peaks with
dips at Ω± (Fig. 4a), i.e., the central peak is located in the
interval Ω− < ω < Ω+ (allowing for a general, asymmet-
ric case). Kramers-Kronig relations imply that ReG(ω)
becomes small in the vicinity of Ω± and thus has ex-
trema inside the central spectral peak (Fig. 4b). Consider
now the complex function ω − 1/G(ω). Peaks and dips
in A(ω) are reflected as dips and peaks in Im[−1/G(ω)],
respectively (red line in Fig. 4d). By Kramers-Kronig re-
lations, the peaks of Im[−1/G(ω)] near Ω± imply zeros
in ω−Re[1/G(ω)], which thus has one maximum and one
minimum inside the central peak (blue line in Fig. 4d).
Hence we find that inside the central peak Re[ω−1/G(ω)]
is monotonous and may be approximated by a straight

line, provided A(ω) is sufficiently smooth. Note that this
linear behavior is due only to Kramers-Kronig relations
and not particular to DMFT. Thus there are two different
contributions to ReΣ(ω) (Fig. 4c): (i) Re[ω+µ−1/G(ω)]
is approximately linear in ω throughout the central spec-
tral peak, while (ii) Re[−∆(G(ω))] is linear in a smaller
interval ω?,− < ω < ω?,+, thus leading to kinks in

ReΣ(ω) inside the central spectral peak. Below we deter-
mine the location ω?,± of these kinks and the resulting
effective dispersion relation Ek.

Location of kinks in the self-energy

As discussed above, since Re[ω+µ−1/G(ω)] is approx-
imately linear in this interval, we can expand the inverse
of the local propagator as 1/G(ω) = z0 +z1ω +O(ω2) for
small ω. We rewrite this as

G(ω) =
ZCP

ω − ω0 + i(γ + γ′ω)
+ O(ω2) , (2)

i.e., z0 = (−ω0+iγ)/ZCP and z1 = (1+iγ′)/ZCP. For the
particle-hole symmetric case ω0 and γ′ are zero. We note
that in the vicinity of ω = 0 the local Green function
G(ω) can thus be approximated by a simple pole. When
neglecting γ′, the parameter ZCP equals the weight of
the central peak of A(ω), which is approximated by a
Lorentzian.

The parameters ZCP, γ, ω0, γ′ are determined as fol-
lows. We employ the DMFT self-consistency equation

G(ω) = G0(ω + µ − Σ(ω)) , (3)

which is equivalent to Eq. (1). Here

G0(z) =

∫

dε
ρ0(ε)

z − ε + i0

is the propagator and ρ0(ω) the density of states (DOS)
for the noninteracting case. We also have the Fermi-liquid
relations ∂Σ(ω)/∂ω|ω=0 = 1 − 1/ZFL and Luttinger’s
theorem29, which reduces to µ − Σ(0) = µ0 in DMFT,
where µ0 is the chemical potential for the corresponding
noninteracting system. Altogether this leads us to the
equations

z0 =
1

G0(µ0)
, z1 =

−G′
0(µ0)

ZFLG0(µ0)2
,

which are immediately solved by taking real and imagi-
nary parts, i.e.,

ZCP =
1

Re z1

, γ =
Im z0

Re z1

,

ω0 =
−Re z0

Re z1

, γ′ =
Im z1

Re z1

.



2

The parameters ZCP, γ, ω0, γ′ are thus determined by
ZFL and the bare DOS alone. For the parameters in Fig. 3
we obtain ZCP = 0.135, γ = 0.076 eV, ω0 = 0, γ′ = 0.

Using the expansion (2), the first contribution to the
self-energy [Eq. (1)] becomes

Re[ω + µ − 1/G(ω)] = const + (1 − 1/ZCP)ω , (4)

i.e., this function is linear inside the central peak. On the
other hand Re[∆(G(ω))] is linear only on the narrower
scale |ω| < |ω?,±| � |Ω±| and is thus responsible for
kinks in Re[Σ(ω)] at ω?,±, which are located inside the
central peak. This location can now be calculated by in-
serting the linear ansatz for 1/G into ∆(G). To identify
the relevant energy scales we proceed by expanding30 the
DMFT self-consistency equation as

∆(G) = (m2 − m2
1)G + (m3 − 3m1m2 + 2m3

1)G
2 + · · · ,

where mi are the moments of the bare DOS. This mo-
ment expansion terminates after the first term for a semi-
elliptical DOS; we omit the other terms in the following
discussion. The kinks are located roughly at the extrema
of Re[∆(G(ω))], i.e., at

ωmax,± = ω0 ±
γ + γ′ω0
√

1 + γ′2
. (5)

To better understand the energy scales involved we as-
sume particle-hole symmetry for the moment and use the
first-order expansion of ∆(G). Then we find

ωmax,± ≈ ±γ ≈ ±2qZFL

√

m2 − m2
1 =: ZFLD ,

with q = (p + 1/p)/2 ≥ 1 and p = πρ0(µ0)
√

m2 − m2
1.

The kink location is thus given by ZFL times a non-

interacting energy scale D which depends on the details

of the DOS. For example, for a half-filled band with semi-
elliptical model DOS D is given by half the bandwidth.

An improved estimate of the kink energy scale ω? is
obtained from the maximum curvature of Re[−∆(G(ω))].
The relevant solutions of ∂3ReG/∂ω3 = 0 are

ω?,± = ω0 ∓
γ + γ′ω0
√

1 + γ′2



1 −
√

2

(

1 ± γ′

√

1 + γ′2

)1/2


 ,

(6)

which reduces to ω? = ZFL(
√

2−1)D for the particle-hole
symmetric case. We obtain ω? = |ω?,±| = 0.03 eV for the
parameters of Fig. 3. This agrees well with the location
of the kinks in ReΣ(ω), as seen in Fig. 4c, where ±ω? is
marked by blue circles.

Effective dispersion relation

For energies inside the central peak we now deter-
mine the effective dispersion Ek, which is defined as the

frequency ω where A(k, ω) has a maximum. Neglecting
the ω dependence of ImΣ(ω), kinks in Ek occur at the
same energy ω? as the kinks in ReΣ(ω). We approxi-
mate ReΣ(ω) by a piecewise linear function with slope
1 − 1/ZFL inside the Fermi liquid regime and 1− 1/ZCP

in the intermediate-energy regime, i.e.,

Re[Σ(ω) − Σ(0)]

=







a− + (1 − 1/ZCP)ω for Ω?,− < ω < ω?,−

(1 − 1/ZFL)ω for ω?,− < ω < ω?,+

a+ + (1 − 1/ZCP)ω for ω?,+ < ω < Ω?,+

. (7)

This approximation assumes that the self-energy con-
tribution (4) dominates over Re[−∆(G(ω))] outside the
Fermi-liquid regime. Here a± = −(1/ZFL − 1/ZCP)ω?,±

is required for continuity. We obtain the effective disper-
sion from the equation Ek + µ − εk − ReΣ(Ek) = 0 and
use the approximation (7). This yields

Ek =







ZCP(εk − µ0) + c− for Ω?,− < Ek < ω?,−

ZFL(εk − µ0) for ω?,− < Ek < ω?,+

ZCP(εk − µ0) + c+ for ω?,+ < Ek < Ω?,+

. (8)

The effective dispersion thus follows the bare dispersion
with two different renormalization factors: ZFL in the
Fermi liquid regime and ZCP in the intermediate-energy
regime. The offset in Eq. (8) is given by

c± = ZCPa± = −
(

ZCP

ZFL

− 1

)

ω?,± .

In the particle-hole symmetric case (half-filled band with
symmetric DOS and µ0 = 0) we find the effective disper-
sions Ek = ZFLεk and Ek = ZCPεk ∓ c with c = |c±|,
respectively. For the parameters in Fig. 3 we obtain
c = 0.018 eV. As Fig. 3 shows, the agreement of these
renormalized dispersions with the observed maxima of
A(ω) is very good.

Further examples

We close with three figures in order to put the occur-
rence of electronic kinks into broader perspective.

A strongly correlated system without particle-hole

symmetry is shown in Fig. 5. For this less than half-filled
band we find a pronounced kink in the effective disper-
sion above the Fermi level. On the other hand, there is
no kink below the Fermi level because the lower Hub-
bard band in A(ω) is not separated well enough from the
central spectral peak.

For a degenerate multi-band system the analysis is very
similar to that for a single-band system; results for SrVO3

(with three degenerate correlated bands) are given in
Fig. 6.

Finally, Fig. 7 shows results for a weakly correlated

system with particle-hole symmetry. For weakly corre-
lated systems the spectral function A(ω) usually has
a single peak, given by the bare DOS with additional
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broadening. The real part of the self-energy is much
smaller than in the strongly correlated case and typi-
cally has a broad maximum near the lower and a mini-
mum near the upper band edge. At these extrema the
effective dispersion Ek crosses over from the FL dis-
persion ZFLεk to the free dispersion εk, but the corre-
sponding kinks are very faint since ZFL is close to 1.
Since Re[ω − 1/G(ω)] is approximately linear through-
out the band, these weak kinks are located at the ex-
trema of Re[−∆(G(ω))] ≈ −(m2 − m2

1)Re[G(ω)], i.e., at
ωmax,± [Eq. (5)]. For the parameters of Fig. 7 we calcu-
late ωmax=0.71 eV, which agrees well with the observed
location of the crossover.
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FIG. 5: Intensity plot of the spectral function A(k, ω) for a strongly correlated system without particle-hole symmetry (Hubbard
model in DMFT, cubic lattice, U=4 eV, bandwidth W = 3.46 eV, n=0.8, ZFL=0.26, T = 5 K). The effective dispersion Ek

(white dots) follows ZFLεk (blue line) near the Fermi level. At ω?,+=0.062 eV it crosses over to ZCPεk +c+ (pink line at positive
energies, ZCP = 0.40, c+=0.035 eV). The crossover between these two regimes leads to a pronounced kink. Here ω?, ZCP, and
c+ were calculated from ZFL and the uncorrelated band structure as described above. On the other hand, below the Fermi level
there is no crossover to ZCPεk + c− (pink line at negative energies) because the lower Hubbard subband is not separated well
enough from the central spectral peak.
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FIG. 6: Kinks in the dispersion relation Enk (white dots) obtained for SrVO3 with LDA+DMFT. In the vicinity of the
Fermi energy it follows the LDA band structure εnk (black lines) renormalized by a Fermi-liquid factor ZFL = 0.35, i.e.
Enk = ZFLεnk (blue line). Outside the Fermi-liquid regime the dispersion relation follows the LDA band structure with a
different renormalization, Enk = ZCPεnk + c± (pink line), with ZCP = 0.64, c+=0.086 eV, c− =0.13 eV (as determined from
the linear approximation to 1/G, in contrast to27). Along the directions Γ-M and Γ-R the crossover between the two regimes
leads to kinks at energies ω?,+=0.22 eV and ω?,−=-0.24 eV in the effective dispersion. These kinks are marked by arrows in
the plot on the right, which corresponds to the white frame and shows the approximately piecewise linear dispersion of the
lowest-lying band. From the intensity plot of the spectral function A(k, ω) we note that in the intermediate-energy regime the
resonance is rather broad but nonetheless dispersive. The LDA+DMFT calculation was performed for Hubbard interaction
U = 5.55 eV and exchange interaction J = 1.0 eV27; due to the degeneracy of the t2g band the self-energy obtained from
DMFT is a diagonal matrix with equal elements. The results were obtained at temperature T = 0.1 eV with QMC as the
impurity solver.

FIG. 7: Intensity plot of the spectral function A(k, ω) for a weakly correlated system (Hubbard model in DMFT, cubic lattice,
U=1 eV, bandwidth W=3.46 eV, n=1, ZFL=0.80, T = 5 K). The effective dispersion Ek (white dots) follows ZFLεk (blue line)
near the Fermi level and crosses over to bare dispersion εk (black line) at higher energies. The crossover between these two
regimes does not lead to a sharp kink. As in Fig. 3 and 5, the Gaussian DOS for the hypercubic lattice with t∗=0.71 eV was
used, which for a three-dimensional cubic lattice corresponds to t = t∗/

√
6, i.e., bandwidth W=3.46 eV.


