Materialwiss. Master Wintersemester 2005/2006
06469 Method Course: Computational Physics and Materials Science [WPV]
Dozent Eyert V.
Dauer 6 SWS
Studiensemester 1
Schein Ja (8 LP)
Termin Di, 12:30-14:00 u. Mi, 12:30-14:00 u. Do, 12:30-14:00, 1003/HZ
Beginn 18.10.2005
Inhalt * numerical accuracy, errors, and limitations * linear algebraic equations * interpolation and extrapolation * differentiation and integration * evaluation of functions * special functions (Bessel functions, spherical harmonics) * random numbers * eigensystems * root finding, nonlinear equation systems * optimization (genetic algorithms, simulated annealing) * spectral analysis (Fourier transform) * modelling of data * ordinary differential equations * integral equations (maximum entropy method) * partial differential equations * finite element methods * Monte-Carlo techniques * lattice summation techniques (Ewald method, fast multipole method)

Vorkenntnisse Basic courses in mathematics; a programming language (Fortran95, C)
Literatur # W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992). # T. Pang, An Introduction to Computational Physics (Cambridge University Press, Cambridge, 1997). # R. H. Silsbee and J. Dräger, Simulations for Solid State Physics: An Interactive Resource for Students and Teachers (Cambridge University Press, Cambridge, 1997). # D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, 1989).
Weitere Informationen 4 Std. Vorlesung + 2 Std. Übungen